Outline

LIGO and Virgo detectors

- Brief introduction and current status (will hear much more with David Schoemaker's presentation)
- Searching for GW transients

• GW and multimessenger astrophysics

- Why? Scientific motivations
 - Connection to Gamma-ray bursts
- How? Coordination for joint observations
 - Externally triggered GW searches
 - Electromagnetic follow-up of GW events

Gravitational wave spectrum

European Pulsar Timing Array Pulsar Timing

nHz

eLISA & LISA Pathfinder

Space-based interferometers

mHz

Advanced Virgo/LIGO Ground-based interferometers

100 Hz

Gravitational wave spectrum

GW detectors in the world

GW detectors: status and timeline

1st generation – initial

3 joint LIGO – Virgo science runs ~2 yrs total, target sensitivity reached 40 papers on transient & continuous sources *horizon* = detection distance to coalescing binaries of neutron stars Initial: LIGO ~ 40 Mpc Virgo ~ 20 Mpc

2nd generation – advanced

Improvement x 10 - # of events x 1000

Adv: LIGO ~ 450 Mpc Virgo ~ 320 Mpc

Future GW detectors

2.5th generation – "enhanced"

Same infrastructure as 2^{nd} generation Improvement x 3 – # of events x 30

BNS 1.4 x 1.4 M_{sun}: 600 Mpc, z~.15

NS-BH 1.4 x 10 M_{sun}: 1.2 Gpc, z~.25

3rd generation (Einstein Telescope)

FP7 concept study New infrastructure (underground, long arms) Improvement x 10 – # of events x 1000

BNS 1.4 x 1.4 M_{sun}: 2 Gpc, z~.4 NS-BH 1.4 x 10 M_{sun}: 4 Gpc, z~.6

Searches for GW transient sources

Searches for GW transient sources

GW data streams are analyzed jointly

- Initially LIGO Hanford+Livingston and Virgo; later others too
- Two main types of transient searches

Compact Binary Coalescence (CBC) Known waveform → Matched filtering Require consistency with waveform morphology Correlation with templates for a range of component masses and spins

Unmodelled GW Burst $\lesssim 10$ sec duration Arbitrary waveform \rightarrow Excess power Excess power in time-frequency representation. Require coherent signals in detectors

Event strength characterized by detection statistics ρ (scale as SNR) obtained from data

Background estimation and significance

Real noise is non-Gaussian

- "Glitches" limit sensitivity
- Data quality is crucial
 - $\checkmark\,$ Exclude events from known bad times
- Cannot be modeled accurately

Estimate false alarm rate

- = rate of as loud background trigger
- Time slide experiments: time-shift data streams with non-physical delays and repeat analysis
- **CBC**: thank to consistency tests, the background rate falls rapidly
- **Bursts**: noise artifacts have a greater impact, especially at lower freq.

GW and multimessenger astrophysics

GW and multimessenger astrophysics

- **GW transient sources** are **highly energetic** astrophysical events and must be **relatively close** to be detected by LIGO and Virgo
 - GW emission is weakly beamed
- They will likely release **other types of radiations** (electromagnetic and neutrinos)

Order-of-magnitude estimate – back of the envelop

1% of rest mass released in GW during a stellar-mass merger Assume 1% of this amount is released into EM radiation in **few seconds** over the **entire EM spectrum** up to γ-rays (3 x 10²⁰ Hz, MeV) if source at 100 Mpc, **flux density at Earth is 50 mJy, 12 mag_{AB}**

BUT source is very dense (opaque to EM).

Gamma-ray bursts

GW observability of short GRBs

- Best candidate for joint GW-EM observation
- Population of short GRBs
 - Current: Fermi/GBM, Swift/BAT, IPN
 Future mission: SVOM (China/France) 2021
 - ~50 short GRB/yr, <*z*> ~ 0.5
 - Uncertain beaming: jet opening angle ~10 degrees?
 - Rate ~ 8-30 /Gpc³/yr [Guetta & Piran, 2006]
- Prospect for joint EM-GW observation
 - GRB080905A, z=0.12 D~550 Mpc [Clark et al., 1409.8149] NS-NS: SNR=7.7 (FAR 1%). NS-BH: detected

GW observability of short GRBs

Few events/yr in LIGO/Virgo horizon distance Clark et al., 1409.8149

Motivations for multimessenger astrophysics

- Confirm the astrophysical nature of the observed GW event
- Allow deeper searches for weak GW signals
- Get a more complete picture of the source
 - Follow the successes of multiwavelength astrophysics
 - GW: bulk motion global source dynamics
 - EM: thermal emission at the surface, particule acceleration
 - Neutrino: radioactive decay, hadron acceleration
- **Better constraints** on the source physics
 - Assess source energetics what are the driving physical processes?

Coordinated observations are required

Multiwavelength astrophysics

Radio

charge/plasma oscillation Interstellar medium – cold gas

Micro-wave

plasma oscil./molecule rotation Interstellar medium – dust

Infra-red/Visible

Molecular electron excitation Surface of stars

X-rays/Gamma-rays

Radioactive decay, pair production *Supernova, BH accretion*

Physics corresponding to emitted frequency in the source frame Can be redshifted in observer frame – cosmology or relativistic jet

Different strategies for joint observations (1)

- Deep GW searches triggered by astrophysical alerts
 - e.g., process all GCN & SNEWS notices with few days latency
- Electromagnetic follow-up of GW alerts
 - e.g., seek a counterpart (for ex., GRB afterglow)
- Off-line joint coincidence with other astrophysical events (possibly sub-threshold)
 - e.g., high-energy neutrinos

Deep targeted GW searches (1)

- Astrophysical trigger provides time and direction
 - reduction of the search parameter space \rightarrow gain in sensitivity

M Was et al. 2013

Event localized in a time window of **few minutes** during a science run of **few months**

Reduction ~ 10⁻⁵

Sensitivity gain: 15 % (amplitude) 50 % (volume)

Deep targeted GW searches (2)

- Astrophysical trigger provides time and direction
 - reduction of the search parameter space \rightarrow gain in sensitivity

M Was et al. 2013

Event localized in a time window of **few minutes** during a science run of **few months**

Reduction ~ 10⁻⁵

Sensitivity gain: 20 % (amplitude) 70 % (volume)

Deep targeted GW searches (3)

- Astrophysical trigger provides time and direction
 - reduction of the search parameter space \rightarrow gain in sensitivity

M Was et al. 2013

Event localized in a time window of **1 day** during a science run of **few months**

Reduction ~ 10⁻²

Sensitivity gain: 60 % (amplitude) x 4 (volume)

GRB070201 & GRB051103

- Short bursts, potentially close-by
 - GRB070201: error box overlap with M31 (770 kpc)
 - GRB051103: error box overlap with M81 (3.6 Mpc)
- No GW detection
 - GW data exclude a local binary coalescence with high confidence
- Data compatible with
 - Giant flare from Soft Gamma Repeater in M31/M81
 - Binary coalescence behind M31/M81

GRB070201 error box (Mazets et al., 2008)

GRB051103 error box (Hurley et al., 2010)

Different strategies for joint observations (2)

- Deep GW searches triggered by astrophysical alerts
 - e.g., process all GCN & SNEWS notices with few days latency
- Electromagnetic follow-up of GW alerts
 - e.g., seek a counterpart (for ex., GRB afterglow)
- Off-line joint coincidence with other astrophysical events (possibly sub-threshold)
 - e.g., high-energy neutrinos

Potential EM counterparts to GW Example of short hard burst

LIGO-Virgo GW alert system

Identify significant transients worth following up Distribute alerts to observing partners within 5-10 mins

Source direction reconstruction

Antenna beam pattern Virgo

- Each detector have a broad antenna beam pattern (non directional)
- Basic localization principle: triangulation from times of flight
 - Two detectors localize to a ring in the sky
 - Three detectors to two points, etc.
 - Leading order approx.: gives a rule of thumb for localization accuracy but it is pessimitic
- Amplitude & phase measured at each detector allow coherent analysis
 - Posterior probability skymap from Bayesian full-scale parameter estimation obtained within hours
 - Fast reconstruction from simplified model within minutes

Error on sky localization

• Reconstructed sky regions are large!

- Assuming pretty loud event with SNR = 12, FAR ~ 10^{-2} /yr
- Credible region at 90 % level is 500 square degrees with 2 LIGO
- Reduces to 200 square degrees with Virgo
- Multi-modal posterior distribution ("banana" islands)
- Coverage of GW error box is challenging!

Singer et al., ApJ795, 105 (2014) arXiv:1404.5623 http://www.ligo.org/scientists/first2years

Discovery & redshift of a GBM GRB in 71 deg²

=SN2013dx

Singer et al.(2013, 2013, ApJL 776:34) http://dx.doi.org/10.1088/2041-8205/776/2/L34

LIGO-Virgo EM follow-up program

- Plan for public release after first 4 detections
- Two open calls for partnerships for early period
 - Alerts will be sent through private GCN network
 - Signed agreements with 70 groups worldwide
 - ~500 astronomers, 150 instruments, 10 space observatories
 - From radio to gamma-rays

Enabling EM follow-up (1)

GraceDB – Gravitational Wave Candidate Event DB

UID Labels Grou	p Pipeline Sea	rch Instruments	GPS Time 🔻 Event Time	FAR (Hz)	Links	UTC - Submitted	
G158249 CBC	MBTAOnline	H1,L1	1117621400.2060	1.372e-06	<u>Data</u>	2015-06-06 10:24:49 UTC	
oine Tables		Single Inchira	Tables				
Joine rables		single inspira	1 ables	111			
End Time	1117621400 2060	Channel		11			
End fille	1117621400.2060	End Time	1117621400.219121	1932 111762	1400.20	6010103	
Total Mass		Template Duration	None	None	None		
	9.2271	Effective Distance	177.7525	459.68	459.68568		
	5.2271	COA Phase	-0.2746053	-1.082	-1.0825006		
Chirp Mass		Mass 1	7.365417	7.3654	7.365417		
	3.0849	Mass 2	1.861673	1.8616	1.861673		
		η	0.16105389	0.1610	0.16105389		
SNR	13.6718	F Final	None	None	None		
		SNR	12.637432	5.2167	5.2167654		
		X ²	None	None	None		
False Alarm Probability		χ ² DOF	None	None			
		spin1z	-0.2383012	-0.238	3012		
		spin2z	0.0005419254	0.0005	419254		

Low latency analysis Preliminary alert <u>in 3-5 mins</u>

Rapid preliminary sky position Initial alert<u>issued in 5-10 mins</u>

Detailed analysis: Bayesian parameter estimation Alert updates or retraction <u>within hours</u>

Coincident astrophysical event or EM follow-up observations

Enabling EM follow-up (2)

Skymap Viewer

A sky atlas for understanding LIGO-Virgo skymaps. Help here, and skymaps here. If you do not see the big dark sky map, look below and widen your browser. Zoom with the + and - at the right of the sky.

Enabling EM follow-up (3)

Tools which allow cooperation to maximize error box coverage

- Don't observe what is already covered → collect footprints of the observed fields
- Hierarchical follow-up: shallow wide-field to deep narrow-field telescopes
 - → share candidates

Summary

- Advanced detectors close to first light
- Synergy between GW observations and high-energy astrophysics
 - Potential for a wealth of new science!
 - GW are crucial for GRB science
 - Association between short GRB and BNS/BH-NS
 - **Beaming** (ratio of GW events observed vs non-observed in γ -rays)
 - GRB may impact GW science
 - Deeper searches (+50 % observable volume)
 - Speed of GWs relative to c with 10⁻¹⁶ accuracy (10 s over 1.2 Gyr travel time)
 - In the longer term
 - Cosmography with "standard sirens"?
 - D_{L} from GW, *z* from EM (host identification)
 - \rightarrow H₀ to 10-30 % with ~10 short GRBs [Nissanke et al, 1307.2638]