Gravitational waves and tests of general relativity

Mostly based on arXiv:1501.07274

Special thanks: E. Barausse, V. Cardoso, L. Gualtieri, P. Pani, U. Sperhake, L. Stein, N. Wex, K. Yagi

See also: Gair+, 1212.5575; Yunes-Siemens, 1304.3473

Emanuele Berti, Mississippi/IST Lisbon/Caltech 8th Aegean Summer School, Rethymno, June 29 2015

INVESTIGADOR FCT

Not in this talk:

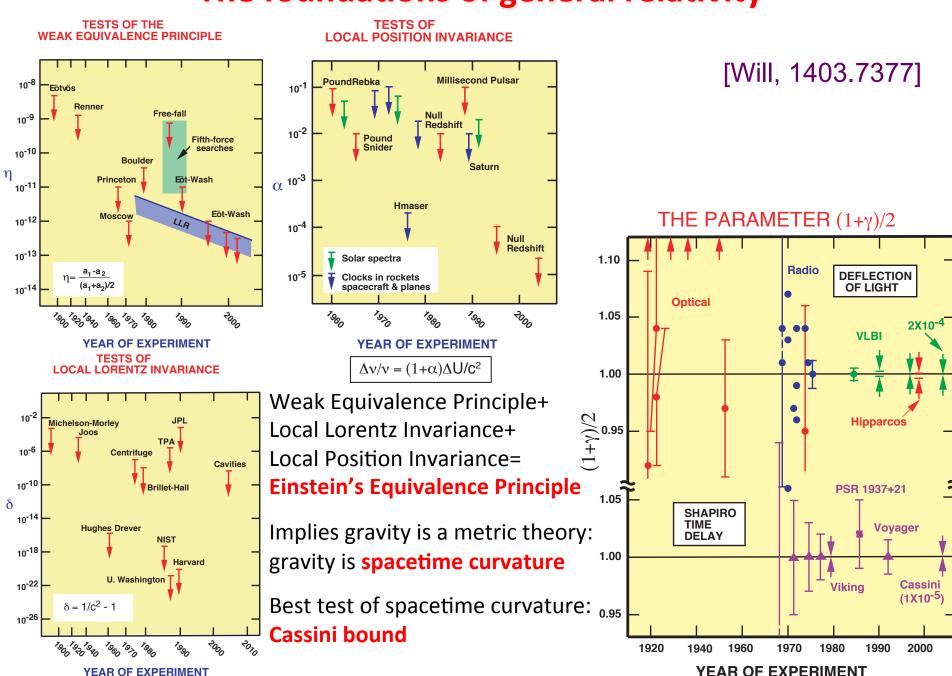
- Intro to GWs [van Holten]
- Binary pulsars [Kramer]
- GW sources [Glampedakis, Laguna, Shoemaker, Rezzolla, Stergioulas...]
- GW data analysis [Agathos, Shoemaker, Binetruy, Barsuglia...]
- Massive gravity [Bergshoeff, Babichev, Tsoukalas, Saridakis...]
- Primordial GWs/dark matter [Maggiore, Silk, Kuroyanagi...]

Outline:

- 1) Weak- vs strong-field tests of GR
- 2) Black holes in GR and beyond
- 3) Compact stars in GR and beyond
- 4) Compact binaries in GR and beyond: signs of new gravitational physics?

Weak-field tests vs strong-field tests

The foundations of general relativity



Modifications of GR: why bother?

(Circa 1919)

Journalist: "Herr Einstein, what if the theory turned out to be wrong?"

Einstein: "I would feel sorry for the dear Lord. The theory is correct."

(Circa 1970)

Chandrasekhar to his postdoc Clifford Will:

"Why do you spend so much time testing GR? We know the theory is right."

- 1) Theory: GR is not renormalizable
 Becomes renormalizable by adding
 higher-order curvature terms to the action
- 2) Experiments: dark matter, dark energy Due to modified gravity?

Problem: GR is extremely well tested "in between" these two regimes

"Short blanket problem!"

Tests of general relativity – against what?

- Action principle
- Well-posed
- Testable predictions
- Cosmologically viable; allows for black holes, neutron stars

$$\mathcal{L} = f_0(\phi)R$$

$$-\omega(\phi)\partial_a\phi\partial^a\phi - M(\phi) + \mathcal{L}_{\mathrm{mat}}\left[\Psi, A^2(\phi)g_{ab}\right]$$

$$+f_1(\phi)(R^2 - 4R_{ab}R^{ab} + R_{abcd}R^{abcd})$$

$$+f_2(\phi)R_{abcd} * R^{abcd} + \text{Lorentz violation, massive gravity...}$$

Alternative theories usually:

Introduce more fields (scalars, vectors) or higher-curvature terms

Need strong-field tests! Challenge pillars of general relativity:

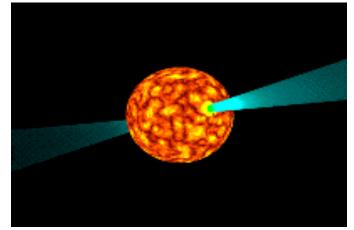
- Equivalence principle
- Lorentz invariance (Einstein-aether, TeVeS...)
- Parity conservation...

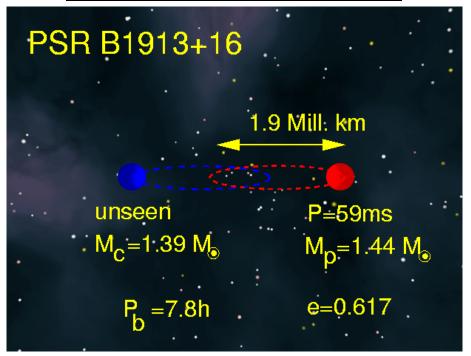
[Gair+,1212.5575; Clifton+, 1106.2476]

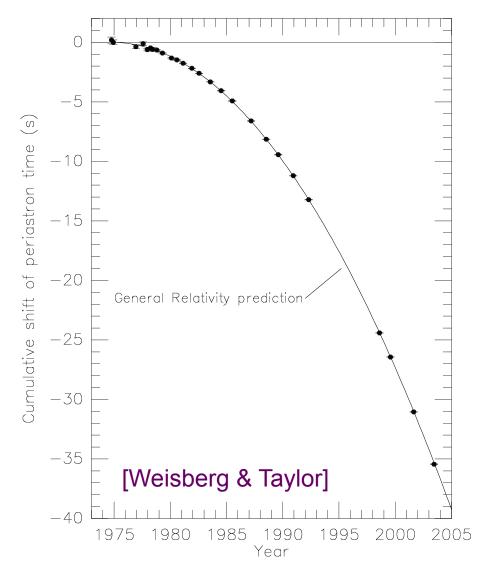
What is "strong" gravity?

Indirect detection of gravitational waves: binary pulsars

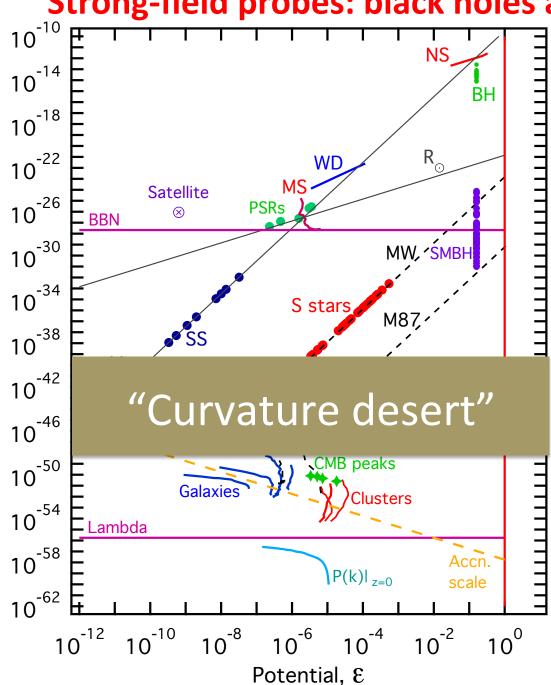
1993 Nobel Prize to Hulse and Taylor: discovery of the binary pulsar 1913+16 Strongest test of GR: PSR J0348+0432, P=2.46hr, v/c=2x10⁻³ [Antoniadis+, 1304.6875]







Strong-field probes: black holes and neutron stars



 (cm^{-2})

 \mathfrak{m}

Curvature,

Gravitational field

$$\epsilon \equiv \frac{GM}{rc^2}$$

Curvature (Kretschmann scalar)

$$\xi = \left(R^{\alpha\beta\gamma\delta}R_{\alpha\beta\gamma\delta}\right)^{1/2} = \sqrt{48} \frac{GM}{r^3c^2}$$

 $\ell_{\rm Planck}$ =1.6x10⁻³³cm $(\ell_{\rm Planck})^{-2}$ = 10⁶⁶cm Stellar mass black holes, neutron stars:

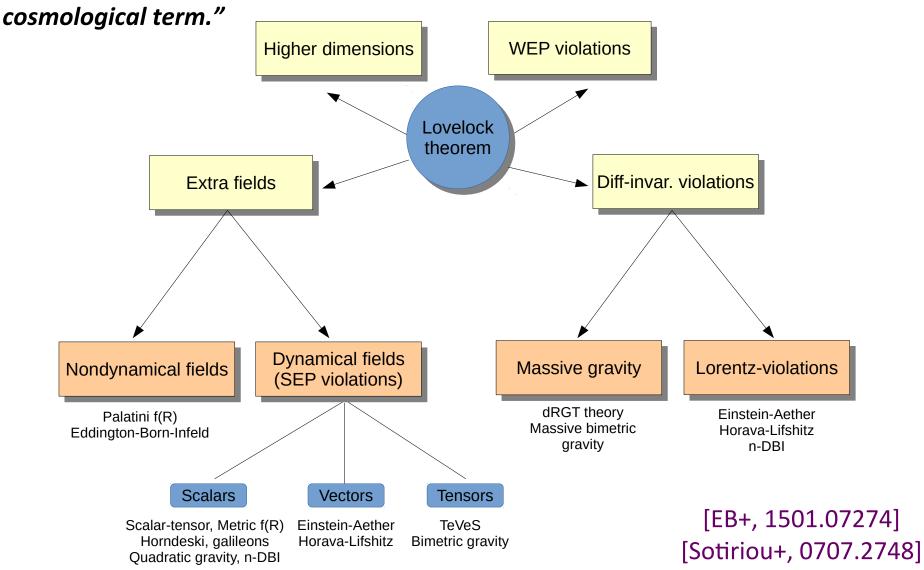
$$\ell_{\rm BH} = 10 \, \rm km = 10^6 \, cm$$
 $(\ell_{\rm Planck} / \ell_{\rm BH})^2 = 10^{-78} \dots$
but:

- * Modifications may not be Planck-suppressed;
- * Untested extrapolations are always dangerous!

Figure: [Baker+, 1412.3455]

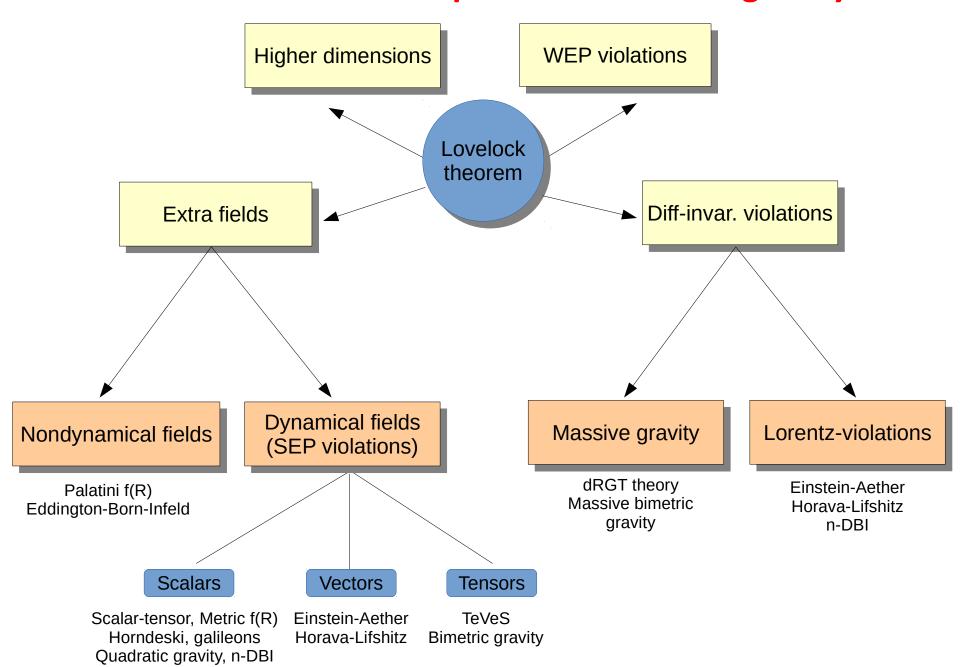
A guiding principle to modify GR: Lovelock's theorem

"In four spacetime dimensions the only divergence-free symmetric rank-2 tensor constructed solely from the metric and its derivatives up to second differential order, and preserving diffeomorphism invariance, is the Einstein tensor plus a cosmological term."



...and about what?

Lovelock theorem as a map for the modified gravity zoo

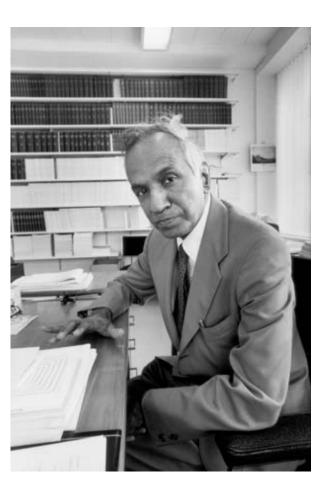


Properties of (some) modified gravity theories

Theory	Field content	Strong EP	Massless graviton	Lorentz Linear symmetry $T_{\mu\nu}$		Weak EP	Well-posed?	Weak-field constraints	
Extra scalar field									
Scalar-tensor	\mathbf{S}	X	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ [34]	[35-37]	
Multiscalar	\mathbf{S}	X	\checkmark	\checkmark	\checkmark	\checkmark	√ [38]	[39]	
Metric $f(R)$	${f S}$	X	\checkmark	\checkmark	\checkmark	\checkmark	√ [40,41]	[42]	
Quadratic gravity		I					, , ,	. ,	
Gauss-Bonnet	${f S}$	X	\checkmark	\checkmark	\checkmark	\checkmark	√?	[43]	
Chern-Simons	Р	X	\checkmark	\checkmark	\checkmark	\checkmark	X √? [44]	[45]	
Generic	$\mathrm{S/P}$	X	\checkmark	\checkmark	\checkmark	\checkmark	?	. ,	
Horndeski	$\mathbf{\hat{S}}$	X	\checkmark	\checkmark	\checkmark	\checkmark	√?		
Lorentz-violating		I					1		
Æ-gravity	SV	X	\checkmark	X	\checkmark	\checkmark	√?	[46-49]	
$\operatorname{Khronometric}/$									
Hořava-Lifshitz	${f S}$	X	\checkmark	X	\checkmark	\checkmark	√?	[48-51]	
n-DBI	\mathbf{S}	X	\checkmark	X	\checkmark	\checkmark	?	none (52)	
Massive gravity		I					1	(1)	
$\mathrm{dRGT/Bimetric}$	SVT	X	×	\checkmark	\checkmark	\checkmark	?	[17]	
Galileon	${f S}$	X	\checkmark	\checkmark	\checkmark	\checkmark	√?	[17, 53]	
Nondynamical fields		I					1		
Palatini $f(R)$	_	√	\checkmark	\checkmark	X	\checkmark	 	none	
Eddington-Born-Infeld	_	√	\checkmark	\checkmark	X	\checkmark	?	none	
Others, not covered here							1		
${ m TeVeS}$	SVT	X	\checkmark	\checkmark	\checkmark	\checkmark	?	[37]	
$f(R)\mathcal{L}_m$?	X	\checkmark	\checkmark	\checkmark	X	?		
f(T)	?	X	✓	X	√	✓	?	[54]	

[EB+, arXiv:1501.07274]

Black holes in GR and beyond



No-hair theorems

Black holes in GR are uniquely described by only two parameters – mass and spin

[Carter, Israel, Hawking, Robinson, 1970s]

"In my entire scientific life, extending over forty-five years, the most shattering experience has been the realization that an exact solution of Einstein's equations of general relativity, discovered by the New Zealand mathematician, Roy Kerr, provides the absolutely exact representation of untold numbers of massive black holes that populate the universe."

(S. Chandrasekhar)

Similar "no hair" theorems apply to modified gravity

- ✓ Brans-Dicke [Hawking, Thorne & Dykla, Chase, Bekenstein]
- ✓ Multiple scalars [Heusler, gr-qc/9503053]
- ✓ Bergmann-Wagoner, f(R) [Sotiriou & Faraoni, 1109.6324]
- ✓ Higher-order curvature [Psaltis+, 0710.4564]

...but beware: same metric does not mean same dynamics!

Black holes in (some) modified gravity theories

Theory	Solutions	Stability	Geodesics	Quadrupole	
Extra scalar field					
Scalar-tensor	\equiv GR [50–55]	[56-62]	_	_	
Multiscalar/Complex scalar	\supset GR [51, 63, 64]	?	?	[63, 64]	
Metric $f(R)$	\supset GR [53, 54]	[65, 66]	?	?	
Quadratic gravity					
Gauss-Bonnet	NR [67–69]; SR [70,71]; FR [72]	[73, 74]	SR [70, 75, 76]; FR [72]	[71, 77]	
Chern-Simons	SR [78–80]; FR [81]	NR [82–85]; SR [74]	[69, 86]	[80]	
$\operatorname{Generic}$	SR [75]	?	[75]	Eq. (3.12)	
Horndeski	[87–89]	? [90, 91]	?	?	
Lorentz-violating					
Æ-gravity	NR [92–94]	?	[93, 94]	?	
${ m Khronometric}/$					
Hořava-Lifshitz	NR, SR [93–96]	? [97]	[93, 94]	?	
n-DBI	NR [98,99]	?	?	?	
Massive gravity					
${ m dRGT/Bimetric}$	⊃GR, NR [100–103]	[104-107]	?	?	
Galileon	[108]	?	?	?	
Nondynamical fields					
Palatini $f(R)$	≡GR	_	_	_	
Eddington-Born-Infeld	≡GR	_	_	_	

Black hole solutions

Most interesting targets for strong-gravity modifications? Maybe not!

Observations probe at most the horizon scale – curvatures not so large!

Scalar fields:

Tensor-(multi)scalar and f(R) theories:

black holes **same as in GR**...unless boundary conditions are nontrivial Quadratic gravity:

Horndeski (nonrotating) BHs **same as in GR** [Hui-Nicolis, 1202.1296] Hairy solutions known numerically (EdGB), for slow rotation (dCS) Corrections suppressed by small coupling...but effective field theory?

Auxiliary fields:

Black holes same as in GR

Lorentz-violating theories:

"Universal horizons" with unclear stability properties...testable?

Massive gravity:

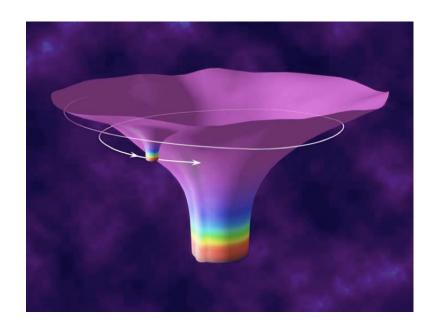
Schwarzschild (and Kerr) solutions **unstable** for all (astrophysical) masses End-state of instability unclear...testable?

Extreme mass-ratio inspirals

No-hair theorem: for black holes, (mass and current) multipoles depend only on mass and spin:

$$M_l+iS_l=(ia)^lM^{l+1}$$

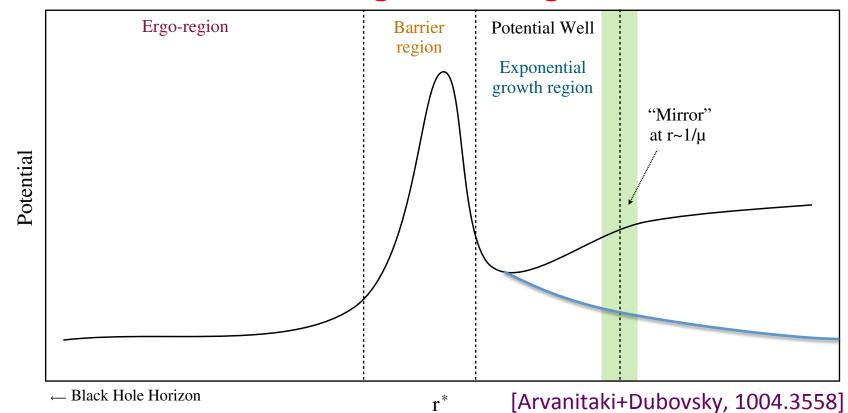
eLISA-like detectors may observe \sim tens of 1-10M_{sun} BHs (or NSs) spiralling into \sim 10⁶M_{sun} BHs.



~10⁴-10⁵ cycles, periapsis/orbital plane precession. Payoff:

- ✓ map Kerr spacetime, probe nature of central object
- ✓ measure masses of stellar-mass BHs/SMBHs
- ✓ test GR (NS inspirals emit dipole radiation in scalar-tensor theories)
- ✓ smoking gun of alternative theories?

Wave scattering in rotating black holes



Quasinormal modes:

- ☐ Ingoing waves at the horizon, outgoing waves at infinity
- ☐ Discrete spectrum of damped exponentials ("ringdown")
 [EB++, 0905.2975]

Massive scalar field:

- □ Superradiance: black hole bomb when $0 < ω < mΩ_H$
- ☐ Hydrogen-like, unstable bound states [Detweiler, Zouros+Eardley...]

Massive black hole mergers: black hole spectroscopy [Visualization: NASA Goddard]

☐ In GR, black holes oscillations are a set of complex-frequency modes determined only by mass and spin

☐ One mode: (M,a)
Any other mode frequency:
No-hair theorem test

Relative mode amplitudes: pre-merger parameters [Kamaretsos+,Gossan+]

☐ Feasibility depends on SNR:

Need SNR>30 [EB+, 2005/07]

- 1) Noise S(f_{ONM})
- 2) Signal h~ $E^{1/2}$, $E=\varepsilon_{rd}M$

 $f = 1.2 \times 10^{-2} (10^6 M_{sun})/M Hz$ $\tau = 55 M/(10^6 M_{sun}) s$

 $\epsilon_{rd} \sim 0.01(4\eta)^2$ for comparable-mass mergers, $\eta = m_1 m_2/(m_1 + m_2)^2$

(e)LISA vs. (Ad)LIGO $f = 1.2 \times 10^{-2} (10^6 M_{sun})/M Hz$ 10⁻¹⁸ $\tau = 55 \text{ M/}(10^6 \text{M}_{sun}) \text{ s}$ Gravitational Wave Amplitude Coalescence of NS-NS and BH-BH Massive Black Holes Coalescence 10⁻²⁰ Resolved **Galactic Binaries** 10^{-22} SN Core Collapse Unresolved Galactic **Binaries LISA LIGO** 10^{-24} 10^{-2} 10^{-4} 10⁰ 10^{2} 10^{4} [Schutz] Frequency [Hz]

SNR=h/S: S comparable, $h\sim \eta M^{1/2}$

Compact stars in GR and beyond

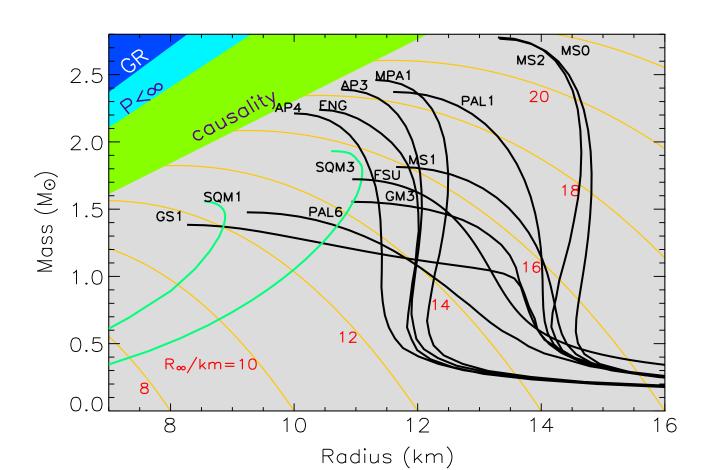
"Internal" tests: neutron stars

Strong-field signatures:

high curvatures in interior, spontaneous scalarization...

Observables? Consider the Hartle-Thorne expansion in $W/(M/R^3)^{1/2}$

Zero order in rotation: M(R) - mass-radius relation Radii hard to measure, both in binaries and in isolated systems



Neutron stars as EOS probes

Strong-field signatures:

high curvatures in interior, spontaneous scalarization...

Observables? Consider the Hartle-Thorne expansion in $\Omega/(M/R^3)^{1/2}$

Zero order in rotation: M(R) - mass-radius relation Radii hard to measure, both in binaries and in isolated systems

Corrections:

Moment of inertia I may be measurable in binary pulsars [Lattimer-Schutz, Kramer, Wex...]

Tidal "Love number" may be measurable in binary inspirals [Mora-Will, Berti-Iyer-Will, Read, Hinderer, Lang, Binnington, Poisson, Vines, Damour, Nagar, Bernuzzi, Villain, Favata, Yagi, Yunes...]

Quadrupole Q or higher-order moments: light curves or QPOs [Laarakkers-Poisson, Berti-Stergioulas, BWMB, Baubock+, Pappas...]

Stellar oscillations

Neutron stars in (some) modified gravity theories

Theory		Structure		Collapse	Sensitivities	Stability	Geodesics
Ü	NR	SR	FR	•		v	
Extra scalar field							
Scalar-Tensor	[109–114]	[112, 115, 116]	[117-119]	[120-127]	[128]	[129-139]	[118, 140]
Multiscalar	?	?	?	?	?	?	?
Metric $f(R)$	[141–153]	[154]	[155]	[156, 157]	?	[158, 159]	?
Quadratic gravity							
Gauss-Bonnet	[160]	[160]	[77]	?	?	?	?
Chern-Simons	$\equiv GR$	[25, 40, 161 - 163]	?	?	[162]	?	?
Horndeski	?	?	?	?	?	?	?
Lorentz-violating							
Æ-gravity	[164, 165]	?	?	[166]	[43, 44]	[158]	?
${ m Khronometric}/$							
Hořava-Lifshitz	[167]	?	?	?	[43, 44]	?	?
n-DBI	?	?	?	?	?	?	?
Massive gravity							
${ m dRGT/Bimetric}$	[168, 169]	?	?	?	?	?	?
Galileon	[170]	[170]	?	[171, 172]	?	?	?
Nondynamical fields							
Palatini $f(R)$	[173–177]	?	?	?	_	?	?
Eddington-Born-Infeld	[178–184]	[178, 179]	?	[179]	_	[185, 186]	?

A "theory of theories" of sufficient generality

$$\mathcal{L} = f_0(|\phi|)R - \gamma(|\phi|)\partial_a \phi^* \partial^a \phi - V(|\phi|) + f_1(|\phi|)R^2
+ f_2(|\phi|)R_{ab}R^{ab} + f_3(|\phi|)R_{abcd}R^{abcd}
+ f_4(|\phi|)R_{abcd}^* R^{abcd} + \mathcal{L}_{mat}[\Psi, A^2(|\phi|)g_{ab}],$$

	f_0	f_1	f_2	f_3	f_4	ω	V	γ	A	\mathcal{L}_{mat}
General relativity	κ	0	0	0	0	0	0	1	1	perfect fluid
Scalar-tensor (Jordan frame) [24]	$F(\phi)$	0	0	0	0	0	$V(oldsymbol{\phi})$	$\gamma(\phi)$	1	perfect fluid
Scalar-tensor (Einstein frame) [23]	κ	0	0	0	0	0	$V(\boldsymbol{\phi})$	2κ	$A(oldsymbol{\phi})$	perfect fluid
f(R) [36]	κ	0	0	0	0	0	$\kappa \frac{\kappa f_{,R} - f}{16\pi \bar{G} f_{,R}^2}$	2κ	$f_0^{-1/2} = f_{.R}^{-1/2}$	perfect fluid
Quadratic gravity [47]	κ	$lpha_1 \phi$	$lpha_2 \phi$	$lpha_3 \phi$	$lpha_4 \phi$	0	$0^{IONOJ_{R}}$	1	1	perfect fluid
EDGB [48]	κ	$e^{eta\phi}$	$-4f_{1}$	f_1	0	0	0	1	1	perfect fluid
Dynamical Chern-Simons [59]	κ	0	0	0	$eta \phi$	0	0	I	I	perfect fluid
Boson stars [71]	κ	0	0	0	0	ω	$\frac{m^2}{2} \phi ^2$	1	1	0

[Yunes & Stein, 1101.2921] [Pani+, 1109.0928]

Scalar-tensor theory and spontaneous scalarization

Action (in the Einstein frame):

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g^{\star}} \left[R^{\star} - 2g^{\star\mu\nu} \left(\partial_{\mu} \varphi \right) \left(\partial_{\nu} \varphi \right) - V(\varphi) \right] + S_M[\Psi, A^2(\varphi) g_{\mu\nu}^{\star}]$$

Gravity-matter coupling:

$$\alpha(\varphi) \equiv d(\ln A(\varphi))/d\varphi$$
$$\alpha(\varphi) = \alpha_0 + \beta_0(\varphi - \varphi_0) + \dots$$

Field equations:

$$G_{\mu\nu}^{\star} = 2\left(\partial_{\mu}\varphi\partial_{\nu}\varphi - \frac{1}{2}g_{\mu\nu}^{\star}\partial_{\sigma}\varphi\partial^{\sigma}\varphi\right) - \frac{1}{2}g_{\mu\nu}^{\star}V(\varphi) + 8\pi T_{\mu\nu}^{\star},$$
$$\Box_{g^{\star}}\varphi = -4\pi\alpha(\varphi)T^{\star} + \frac{1}{4}\frac{dV}{d\varphi},$$

[Damour+Esposito-Farese, PRL 70, 2220 (1993); PRD 54, 1474 (1996)]

Scalarization threshold: a back-of-the-envelope derivation

$$\Box_{g^*} \varphi = -4\pi \alpha(\varphi) T^*$$

$$\alpha(\varphi) = \beta_0 \varphi$$

$$-T^* = A^4 (\epsilon^* - 3p^*) \sim \frac{3}{4\pi R^2} \frac{m}{R} \quad \text{for} \quad r < R$$

$$\nabla^2 \varphi = \text{sign}(\beta_0) \left[\frac{3|\beta_0|(m/R)}{R^2} \right] \varphi = \text{sign}(\beta_0) \kappa^2 \varphi$$

$$\beta_0 < 0 \Longrightarrow \varphi_{\text{inside}} = \varphi_c \frac{\sin(\kappa r)}{\kappa r}$$

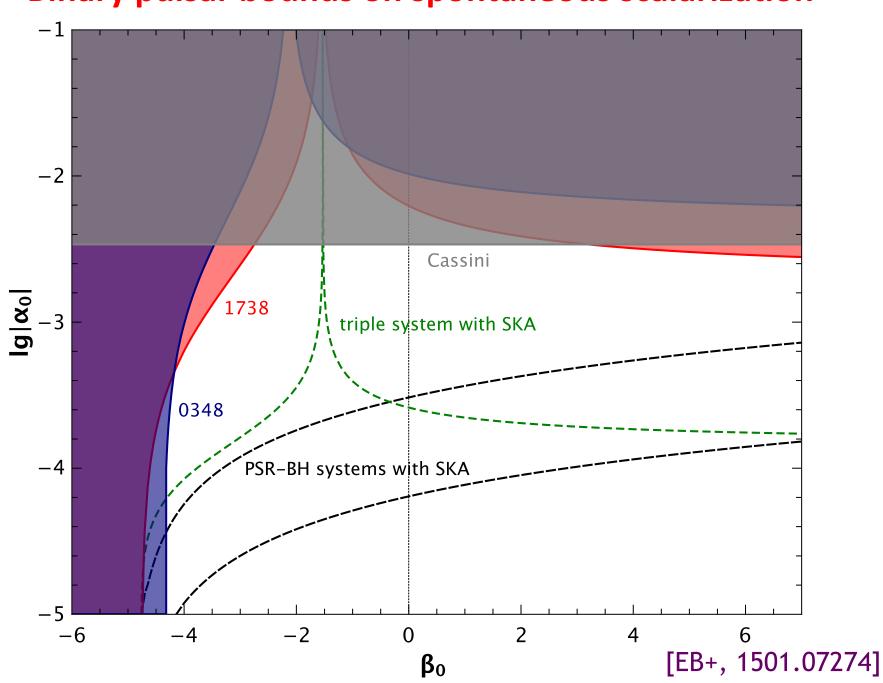
$$\varphi_{\rm c} = \frac{\varphi_0}{\cos(\kappa R)} \gg \varphi_0 \quad \kappa R \sim \pi/2$$

$$m/R \sim 0.2 \Longrightarrow \beta \sim -4$$

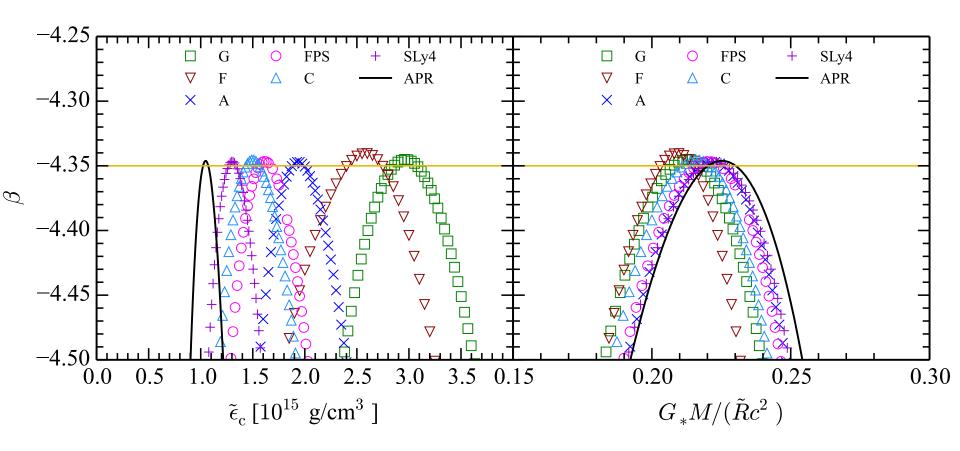
[Damour+Esposito-Farese, PRL 70, 2220 (1993)]

Scalar-tensor theory: spontaneous scalarization 0.10 3.0 2.0 0.3 2.5 ©2.0[↑] ₩ ₩ APR MS1 1.5 1.0 0.1 0.5 APR 0.5 14 R/km 2.0 M/M_o 3.0 1.0 ${\rm M/M}_{\odot}$ ${\rm M/M}_{\odot}$ [Pani+EB, 1405.4547] 50 10 40 $\tilde{\lambda} [10^{36} \text{ g cm}^2 \text{s}^2]$ 2 $[10^{45} \text{ g cm}^2]$ 10 3 2 3 2 3 3 $\mathrm{M/M}_{\odot}$ ${\rm M/M}_{\odot}$ ${\rm M/M}_{\odot}$ ${\rm M/M}_{\odot}$

Binary pulsar bounds on spontaneous scalarization

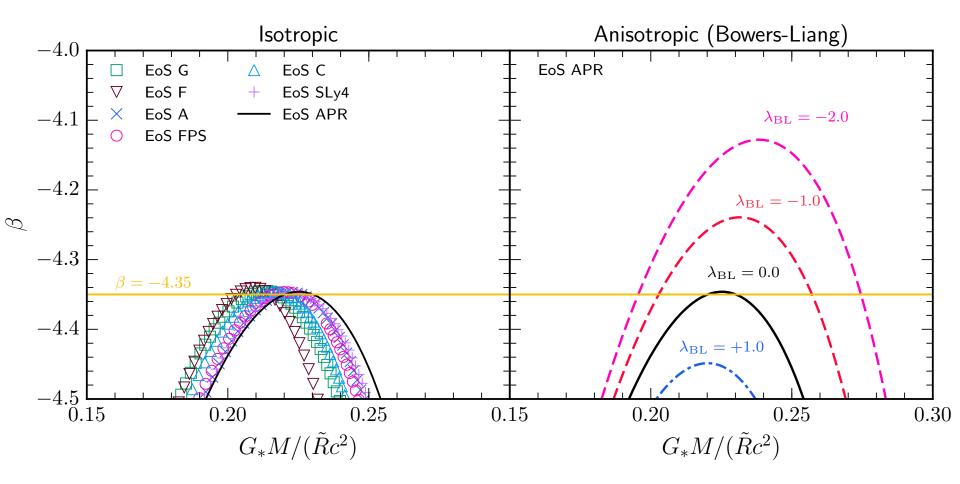


EOS dependence of scalarization threshold



Dependence of β on EOS is too mild for ordinary models of high-density nuclear matter

Anisotropy dependence of scalarization threshold



λ = degree of anisotropy

Aside: in the limit λ =-2 π the Bowers-Liang model for constant-density stars has R=2M – and the low-order multipole moments also tend to those of Kerr!

[Yagi-Yunes+, 1502.04131]

Multiscalarization?

Damour/Esposito-Farese, CQG 9, 2093 (1992)

$$S = \frac{1}{4\pi G_{\star}} \int d^4x \sqrt{-g} \left(\frac{R}{4} - \frac{1}{2} g^{\mu\nu} \gamma_{AB}(\phi) \partial_{\mu} \phi^A \partial_{\nu} \phi^B - B(\phi) \right)$$
$$+ S_{\rm m} [A^2(\phi) g_{\mu\nu}; \Psi] ,$$

Two-scalar model:

$$S = \frac{1}{4\pi G_{\star}} \int d^4x \sqrt{-g} \left(\frac{R}{4} - g^{\mu\nu} \gamma(\varphi, \bar{\varphi}) \nabla_{\mu} \bar{\varphi} \nabla_{\nu} \varphi - B(\varphi, \bar{\varphi}) \right) + S_{\rm m} [A^2(\varphi, \bar{\varphi}) g_{\mu\nu}; \Psi] ,$$

$$\gamma(\varphi,\bar{\varphi}) = \frac{1}{2} \left(1 + \frac{\bar{\varphi}\varphi}{4\mathbf{r}^2} \right)^{-2} \qquad \psi = \varphi e^{i\theta_1/2}$$

$$\log A(\psi, \bar{\psi}) = \alpha \psi + \bar{\alpha} \bar{\psi} + \frac{1}{2} \beta_0 \psi \bar{\psi} + \frac{1}{4} \beta_1 \psi^2 + \frac{1}{4} \beta_1 \bar{\psi}^2 + \dots$$

α =0: symmetry breaking

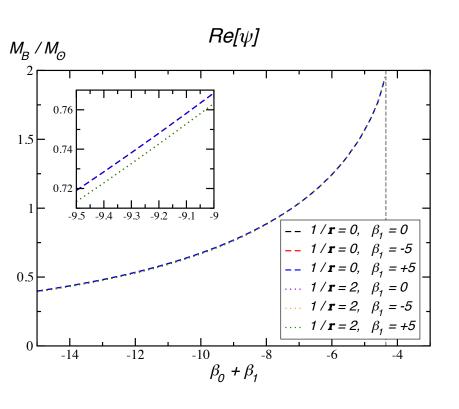
$$\log A(\psi, \bar{\psi}) = \alpha \psi + \bar{\alpha} \bar{\psi} + \frac{1}{2} \beta_0 \psi \bar{\psi} + \frac{1}{4} \beta_1 \psi^2 + \frac{1}{4} \beta_1 \bar{\psi}^2 + \dots$$

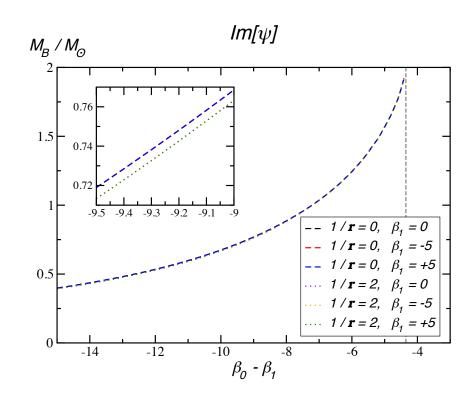
$$A(\psi, \bar{\psi}) = \exp\left(\frac{1}{2}\beta_0 \psi \bar{\psi}\right)$$

$$\log A(\psi, \bar{\psi}) = \frac{1}{2} \left[(\beta_0 + \beta_1) \operatorname{Re}[\psi]^2 + (\beta_0 - \beta_1) \operatorname{Im}[\psi]^2 \right]$$

"Independent" biscalarization

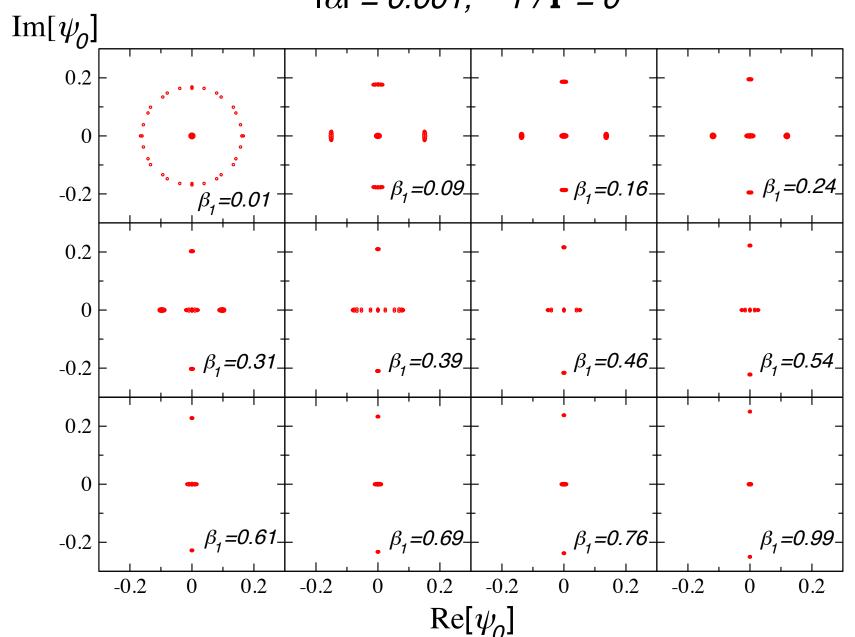
$$\log A(\psi, \bar{\psi}) = \frac{1}{2} \left[(\beta_0 + \beta_1) \operatorname{Re}[\psi]^2 + (\beta_0 - \beta_1) \operatorname{Im}[\psi]^2 \right]$$





"True" biscalarization

 $|\alpha| = 0.001, \quad 1/\mathbf{r} = 0$



More neutron star solutions in modified gravity

Main advantage over BHs: NSs probe how matter couples to gravity Curvatures can be very large inside neutron stars

Scalar fields:

Scalarization tightly constrained by binary pulsars

Torsional oscillations (flares) would not yield new constraints

...but anisotropic matter or multiscalarization

f(R) theories: do compact stars even exist? Dynamical studies?

Quadratic gravity:

In EdGB, NS constraints already tighter than BH constraints!

Auxiliary fields:

Surface singularities may rule out theory! degeneracy with EOS

Lorentz-violating theories:

Only nonrotating stars

Massive gravity:

Maybe no solutions? [Damour+, hep-th/0212155]

A "theory of theories" of sufficient generality

$$\mathcal{L} = f_{0}(|\phi|)R - \gamma(|\phi|)\partial_{a}\phi^{*}\partial^{a}\phi - V(|\phi|) + f_{1}(|\phi|)R^{2}$$

$$+ f_{2}(|\phi|)R_{ab}R^{ab} + f_{3}(|\phi|)R_{abcd}R^{abcd}$$

$$+ f_{4}(|\phi|)R_{abcd}^{*}R^{abcd} + \mathcal{L}_{mat}[\Psi, A^{2}(|\phi|)g_{ab}], \qquad (2)$$

[Yunes & Stein, 1101.2921] [Pani+, 1109.0928]

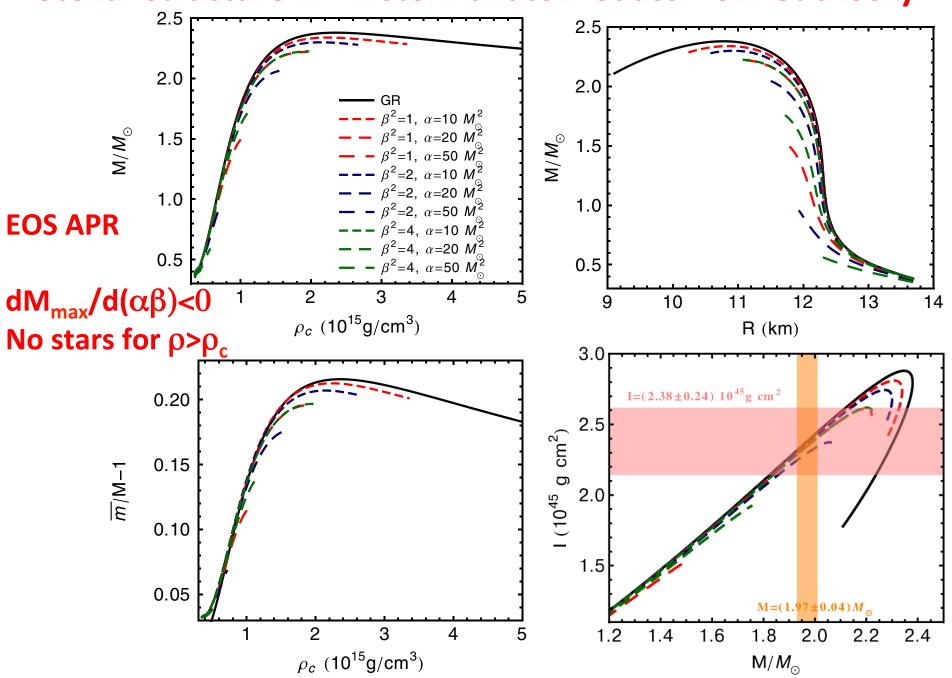
	-							-	-	
	f_0	f_1	f_2	f_3	f_4	ω	V	γ	A	\mathcal{L}_{mat}
General relativity	К	0	0	0	0	0	0	1	1	perfect fluid
Scalar-tensor (Jordan frame) [24]	$F(\phi)$	0	0	0	0	0	$V(oldsymbol{\phi})$	$\gamma(oldsymbol{\phi})$	1	perfect fluid
Scalar-tensor (Einstein frame) [23]	κ	0	0	0	0	0	$V(\boldsymbol{\phi})$	2κ	$A(\phi)$	perfect fluid
f(R) [36]	κ	0	0	0	0	0	$\kappa \frac{Rf_{,R} - f}{16\pi \bar{G} f_{,R}^2}$	2κ	$f_0^{-1/2} = f_{,R}^{-1/2}$	perfect fluid
Quadratic gravity [47]	κ	$\alpha_1 \phi$	$lpha_2 \phi$	$\alpha_3 \phi$	$lpha_4 oldsymbol{\phi}$	0	$0^{nG_{J,R}}$	1	1	perfect fluid
EDGB [48]	К	$e^{eta\phi}$	$-4f_{1}$	f_1	0	0	0	1	1	perfect fluid
Dynamical Chern-Simons [59]	К	Ü	0	0	$eta \phi$	Ü	0	I	I	perfect fluid
Boson stars [71]	κ	0	0	0	0	ω	$\frac{m^2}{2} \phi ^2$	1	1	0

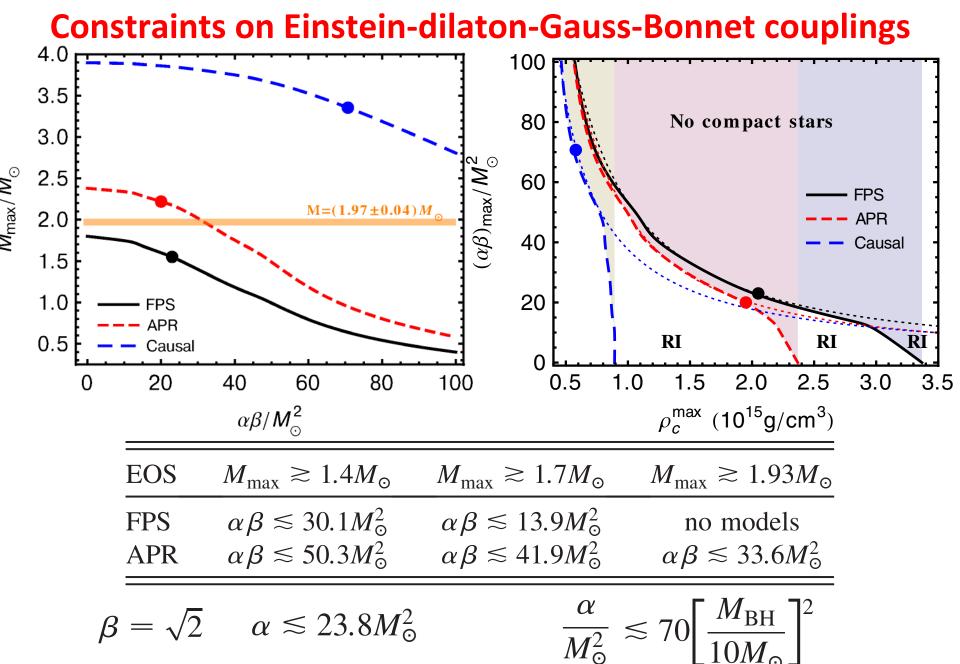
EDGB:
$$f_1 \equiv \frac{\alpha}{16\pi} e^{\beta\Phi}$$
, $16\pi f_1(\Phi) \sim \alpha + \alpha\beta\Phi$

Set $\, \alpha > 0 \,$; natural string theory choice is $\, \beta = \sqrt{2} \,$

[e.g. Kanti+, hep-th/9511071]

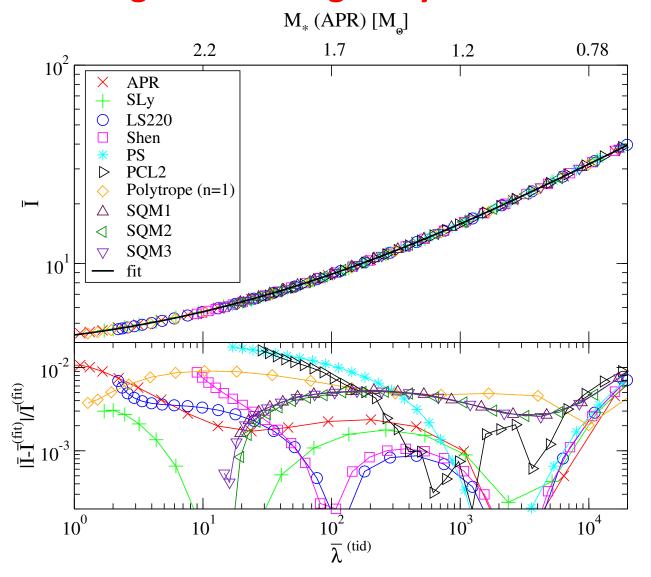
Stellar structure in Einstein-dilaton-Gauss-Bonnet theory





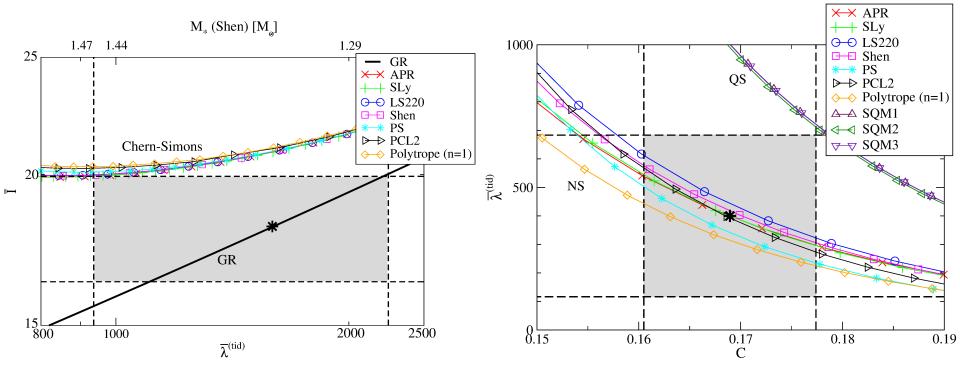
Best bound on α already comes from NSs, not BHs!

Are we testing the EOS or gravity? Universal relations



I-Love-Q and three-hair relations could help tell theories apart

Are we testing the EOS or gravity? Universal relations



Issues:

In most theories

other than dynamical Chern-Simons (e.g. scalar-tensor, Eddington-inspired gravity)

universal relations same as in GR

R², Lorentz-violating theories: universal relations not studied Massive gravity, general Horndeski: no studies of stellar structure

All theories in one sweep? post-TOV formalism

Compact binaries in modified gravity

Gravitational-wave tests

Polarization:

Up to six polarization states

Propagation:

m_g≠0 changes dispersion relation GWs travel slower than EM waves

eLISA: black hole inspirals set $m_g < 10^{-26}eV$ (10⁴-10⁶ better than Solar System)

[Will, gr-qc/9709011]

[EB+, gr-qc/0411129; 1107.3528]

AdLIGO: graviton oscillations in bigravity if m_g>10⁻²²eV [Narikawa+, 1412.8074]

Energy flux:

E.g. scalar-tensor theories predict dipole radiation because (inertial mass)≠(gravitational mass)

Gravitational-Wave Polarization

[e.g. Gair+,1212.5575]

Potential: post-Newtonian effects with a mass term

$$S = \frac{1}{16\pi} \int \left[\phi R - \frac{\omega(\phi)}{\phi} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} + M(\phi) \right] (-g)^{1/2} d^4x$$

$$+ \int \mathcal{L}_{\rm M}(g^{\mu\nu}, \Psi) d^4x, \qquad \qquad [Alsing+, 1112.4903]$$

- ✓ Shapiro time delay (Cassini)
- ✓ Nordtvedt effect (Lunar Laser Ranging)
- ✓ Orbital period derivative (binary pulsars)

$$\frac{\dot{P}}{P} = -\frac{8}{5} \frac{\mu m^2}{r^4} \kappa_1 - \frac{\mu m}{r^3} \kappa_D S^2$$

$$\kappa_1 = G^2 \left[12 - 6\xi + \xi \Gamma^2 \left(\frac{4\omega^2 - m_s^2}{4\omega^2} \right)^2 \Theta(2\omega - m_s) \right], \qquad \xi = \frac{1}{2 + \omega_{BD}},$$

$$G = 1 - \xi (s_1 + s_2 - 2s_1 s_2),$$

$$\kappa_D = 2G\xi \frac{\omega^2 - m_s^2}{\omega^2} \Theta(\omega - m_s), \qquad \Gamma = 1 - 2 \frac{s_1 m_2 + m_1 s_2}{m}.$$

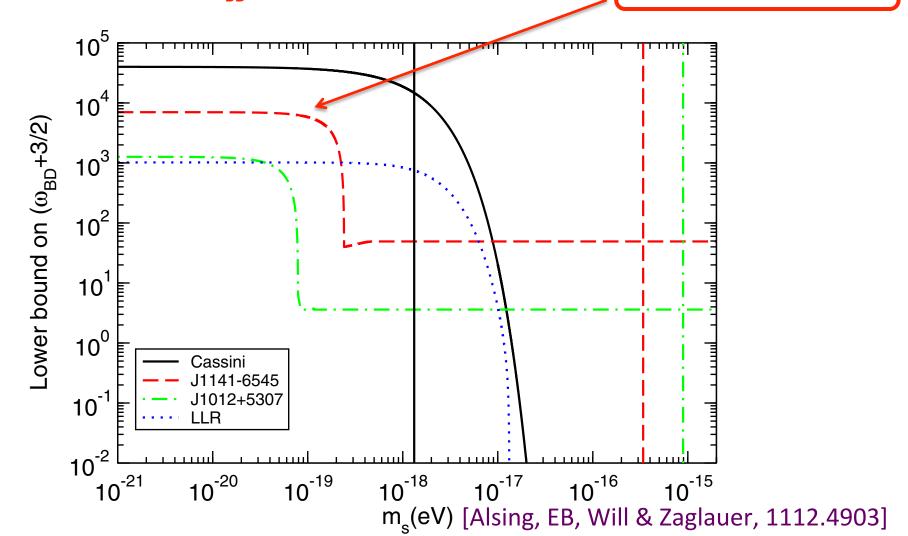
- 1) No dipole if $S=s_1-s_2=0$ (need NS-BH!)
- 2) For binary black holes $\Gamma=0$: indistinguishable from GR?

Are massive scalar fields viable?

Bounds from:

- ✓ Shapiro time delay: ω_{BD} >40,000 [Perivolaropoulos, 0911.3401]
- ✓ Lunar Laser Ranging
- ✓ Binary pulsars: ω_{BD} >**25,000** [Freire++, 1205.1450]

WD-NS with e=0.172



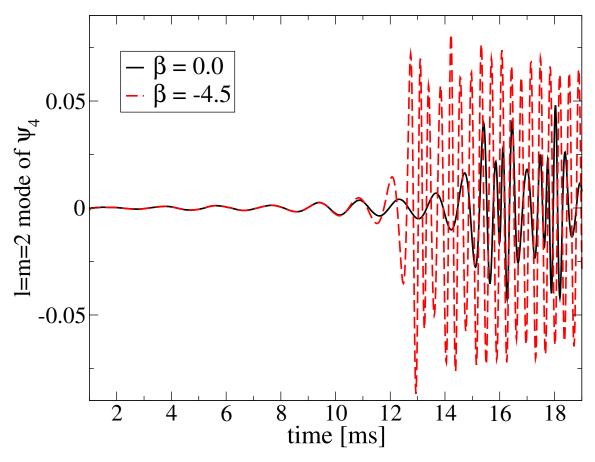
Generalized no-hair theorems for binary black holes

- ✓ To leading order [Will & Zaglauer '89]
- ✓ Equations of motion up to 2.5PN [Mirshekari & Will, 1301.4680]
- ✓ To all orders in extreme mass ratio limit [Yunes+, 1112.3351]

Key assumptions:

- No matter
 [Barausse+, 1212.5053]
- Scalar field has zero potential (e.g. no mass term)
 [Healy+, 1112.3928]
- 3) Asymptotic flatness, scalar field asymptotically constant [Horbatsch-Burgess, 1111.4009; Berti+, 1304.2836]

Matter: dynamical scalarization



[Barausse-Palenzuela+, 1212.5053; 1310.4481; Taniguchi+, 1410.0738]

Potentially detectable with Advanced LIGO?

[Sampson+, 1407.7038]

Expect the unexpected: an example Massive scalars and superradiant instabilities

Superradiance when $\omega < m\Omega_{\rm H}$

Strongest instability: µ_sM~1 [Dolan, 0705.2880]

For $\mu_s = 1eV$, $M = M_{sun} : \mu_s M \sim 10^{10}$

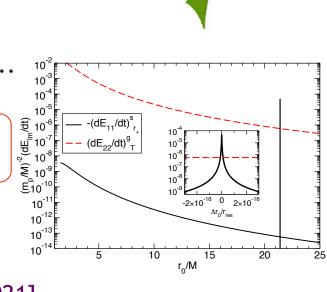
Need light scalars (or primordial black holes!)

Negative scalar flux at the horizon close to superradiant resonances at

$$\omega_{\text{res}}^2 = \mu_s^2 - \mu_s^2 \left(\frac{\mu_s M}{l+1+n} \right)^2, \quad n = 0, 1, \dots$$

"Floating orbits" when
$$\dot{E}_p + \dot{E}^g + \dot{E}^s = 0$$

Compatible with current experiments!



graviton

scalar

[Press+Teukolsky 1972, Detweiler 1980, Cardoso++ 1109.6021]

What can GWs do for strong-gravity tests?

✓ Scalar fields:

Small couplings → small deviations from GR in the dynamical regime?

- Scalar fields suggest the answer is no!
 Spontaneous/dynamical scalarization, floating orbits
 Strong constraints [talk by Kramer]...but tensor-multiscalar?
- Is nature hiding deviations from us?
 Scalarization: not a cosmological attractor [Damour-Nordtvedt 1993]
 Floating orbits: fine tuning...
- ✓ Higher-order gravity Well posed? Astrophysical corrections Planck-scale suppressed? ...not a problem? effective field theory
- ✓ Parametrized frameworks: "parametrized post-Einstein" [Yunes+] for binaries "bumpy Kerr" [Hughes, Glampedakis, Johannsen, Cardoso+...] for BHs "post-TOV" [Glampedakis+] for NSs
- ✓ Precision gravitational-wave astronomy: what control of systematics do we need to test strong-field gravity? [Agathos' talk]