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VwWhy modify gravity™?

Why modify gravity?

- cosmological constant problems,

- hon-renormalizability problem,

- benchmarks for testing General Relativity
- theoretical curiosity.

Many ways to modify gravity:
- f(R), scalar-tensor theories,
lleons, Horndeski (and beyond) theory, KGB, Fab-four,

iIgher-dimensions,
D

’

Horava, Khronometric
- massive gravity

- Most general scalar-tensor theory leading to equations of motions
with no more than 2 derivatives;
- Cancellation of Lambda (Fab-Four), Self-tuning, Self-acceleration;
- Vainshtein mechanism




inear theory

P
Canonical kinetic term + quadratic mass:

S = /d% (-% L POt — %m2¢2>

= [ GNNLG + mPe =0

Linear partial differential equation of second order (one degree of freedom).
Need to specify two conditions, ¢ and ¢

1+1 case, no mass: general solution:

¢ =0 6= Fi(t—2)+ folt +)




inear theory

causal structure

_é 1 gb” — —mqu 1+1 case

- All characteristics are straight lines (45 degrees)

; - Characteristics are determined by the kinetic part
uture cone

wave front
past cone - N

- Perturbations propagate along characteristics
- Signals (wave fronts) propagate along characteristics
- Cones of influence are defined by characteristics




Non-linearity (mild)

Non-linear potential term

Canonical Kinetic term + arbitrary potential:

1
S = /d% (-5(%53% - V(¢)>
dV (¢)

—  V,V"0A o =0

Non-linear partial differential equation of second order (inflationary models,
guintessence).

However, because the kinetic term is canonical, the characteristic structure
IS the same.




Non-linearity

Non-linear kinetic term

Non-linear kinetic term?

- General Relativity
-QCD
- Hydrodynamics

X =3 (0,90"9)

1
2

k-essence: S

Armendariz-Picon, Damour, Mukhanov’'99

example:
canonical scalar:

Sz/d4a:X




K-essence

equations of motion & causal structure

Se = /d4$\/—g£ (X, o) X = %g’wvuqbvuqb

\_

Variation with respect to the scalar field gives:
- quasi-linear equations
- second order in derivatives

7/ 17/

1 5S¢ - future
=GV NV, o+ 2XL x4 — L4=0 cone
V—g 0¢ H X P

NN
G" (¢, V) = L xg" + L xxV'pV" ¢ N é/ N

N
Cones of influence for the scalar field do \\\\%/// ‘

not coincide with those of the photons past

and gravitons. k\ /C%




K-essence

causal structure

Two scalar fields:

e




FPure k-essence

k-essence as perfect fluid

-

5, — / T/ ~gp(X)

\_

Definitions:

V (gradient of o
= Mgb scalar field is g(X) o
V2X  timelike)

Uy

p
Stress tensor:

— (6 + p) UyUy — GuvpP

pure kinetic k-essence is perfect fluid !




Even more Nnon-linear™

Nonge-Ampere equaiton

Monge-Ampeéere equation
AUz Uy — u? ) + Bug, C'ugy + Duyy,, + E =0

LY

- to find a surface with a prescribed Gaussian curvature
- optimizing transportation costs

Monge'1784, Ampere'1820

\

uxa; Uyy — U,?By first galileon in history




Even more Nnon-linear™

g3alileons, Horndeski

-

The most generic scalar-tensor theory in 4D, whose equations of
motion contain no more than second derivatives

S = /d%F 9,0g,0%g, @, 0, 0%p)
* fp Horndeski theory

Elg,0g,0%, p,0p,8%p] =0

Horndeski‘1974

~

Why no more than 2 derivatives in EOMs?




Osirogradski ghost

Ostrogradski‘1850

dL _ ddL _
dg dtdq

S = /L(q,d)dt e

dL.  ddL = d®dL

0

- Generically Hamiltonian is unbounded from below.
- New propagating degree of freedom appear. It is a ghost.

- Avoiding the theorem ?




Even more Nnon-linear™

Universal equations

“Universal field equations”

£'n, — Fn(ﬁga)Wn_l, W() =3
W, =€&L,

Elz(agp)Q%Wl: QY —

Ly = (0p)’

90%8,62:(

Fairlie et al“1991

p)? — (VVy)?




Galileons: flat case

first non-standard term

DGP: brane model of gravity

Dvali et al'00

-

Particular limit of the theory (decoupling limit) gives scalar field Lagrangian,

M2
Loep =~ L1 (ED),,, —3(0r)

(

!

p)’ — (VVp)’

Monge-Ampére type

~

Luty et al'03

1
T
Mp

1 14
S T

direct coupling to
matter




Galileons: flat case

generalisation

Generalization of DGP scalar:

- direct coupling to matter

- Galilean symmetry

- up to second order derivatives in EOM

Nicolis et al'09

w0, O, OO T 4 ...

7)20, 70, mO* O T + ...




Galileons: flat case

equations of motion

Equations of motion (in flat space-time)

T

(Or)* = (9,0,7)°
(Or)? — 3 W(@M@VW)Q + 2(8M(9,/7T)3
7t — 6(0m)2(8,0,7)% + 8O (8,8,7)% + 3[(0,0,7)%]” — 6(8,0,7)*

Nonlinear second-order equations of motion !
No additional degree of freedom => no Ostrogradski ghost




Galileons: flat case

generalisation

Naive covariantization leads to higher order
derivatives in EOMs




Galileons: covariant case

Covariant Galileon: adding non-minimal scalar-matter coupling to flat Galileon.

Deffayet et al'09
+ many other works

Most general galileon Shift-symmetric action:

Lo =K (X)
L3 =G® (X)
Ly =GY(X)

(
L5 =GR (xX) |(

¥

0)° = (VV@)*| + RGW(X),

0)° —3

0 (VVp)* +2(VVp)’| —6G ., V"V oG (X)




VWaves: canonical scalar




VWaves: non-linear example

hydrodynamics




Waves INn k-essence

fFlat metric

EB, Mukhanov, Vikman'’07




Waves INn k-essence

fFlat metric

EB, Mukhanov, Vikman et al’07

Fixed metric!

1
“pure” k-essence L =K (X), X = 5 (Op,,00")

assuming that solution depends on 6 = x + vt

EOM : L,Xgﬁﬁg (”02 — 1) + L,XXSO,QQSO?Q (112 — 1)2 =0

any ¢ (t = x) is a solution




VWaves INn simplest galileon

fFlat metric

Evslin’1ll
2D case: 82 — Masoumi&Xiao’1l2

Es

easy to see that any 7 (t 4+ x) is a solution of &, + &3 =0

moreover £4 = &5 = 0 in 2D case




Waves INn generalized galileon

Dynamical metric

(X)

(

3 (X)
LX) [(Op)? — (VVe)’] + RGYW (X)
LX) [(Op)* - 30¢ (VVe)® +2(VVe)’] - 6G,, V"V G® (X)

J

K.G® GW GO are arbitrary functions of the canonical kinetic term X

only shift-symmetric Lagrangians!
The full theory is more general

Second-order derivative EOMs:
“generalized” Galileons
or
Horndeski theory




ANsatzZ for metric

ds* = —F(7,y)dr* — 2drdx + dy* + dz°

1
Ro202 = Rao20 = —Ropgo2 = —Ro220 = iF Yy




AnNsatz for scalar field

. EB’12
plane-wave solution :  © = (7).

JP ={Ky¢',0,0,0},J% =0, JV =0, J =0.

T = Kx(0)¢?, other components = 0
T =0

1%

1
T\ = —2G"(0) (RW — §ng) = —2GYW(0)G

T =0

1%




Solution

EB’'12

scalar field equation: eom is satisfied automatically, VNJ(‘;) =0

non-trivial component of the Einstein equations : G®(0)F,, = Kx(0) ()’

F(ry) =n (L) v + Fi(n)y + Fo(7), 1= Kx(0)/GY(0)

appropriate coordinate transformation => eliminate Fy and F}

75\ 2
ds® = —n (d_90> yidr? — 2drdx + dy?® + d2?,
T

= (7).




Causality™

problems with superiuminal propagsation™

% The theorem on stable causality: A spacetime (M, g,.,,) is stably

causal if and only if there exists a differentiable function f on M
such that V*f is a future directed timelike vector field.

% The scalar field ¢ itself serves as such a global time function.




Causality™
Cauchy problem

A) Good initial surface
B) Bad initial surface

EB, Mukhanov, Vikman’07




Causality™

Time machine (closed time-like curves for non- Adams et al’06
homogeneous backgrounds) ?




Causality™

Chronology protection? Hawking’ 92

- wormholes

- Goedel cosmological solution

- Stockum’s rotating dust cylinders

- Gott’s solution for two infinitely long cosmic strings
- Ori’s time machine

Chronology protection conjecture:
Laws of physics must prohibit appearance of closed
causal curves




Causality™

Chronology protection for k-
essence?

EB, Mukhanov, Vikman'’07

Chronology protection for
galileons?

Burrage et al’ll




Further study™

@ More general solutions of k-essence and galileons.
& Formation of caustics in k-essence and galileons.

# Chronology protection.




