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Why modify gravity?

Why modify gravity? 
- cosmological constant problems,
- non-renormalizability problem,
- benchmarks for testing General Relativity
- theoretical curiosity.

Many ways to modify gravity: 
- f(R), scalar-tensor theories,
- Galileons, Horndeski (and beyond) theory, KGB, Fab-four, 
- higher-dimensions, 
- DGP, 
- Horava, Khronometric
- massive gravity

- Most general scalar-tensor theory leading to equations of motions 
with no more than 2 derivatives;

- Cancellation of Lambda (Fab-Four), Self-tuning, Self-acceleration;
- Vainshtein mechanism
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Canonical kinetic term + quadratic mass:

1+1 case, no mass:

Linear partial differential equation of second order (one degree of freedom).  
Need to specify two conditions, � and �̇

general solution:



Linear theory

��̈+ �00 = �m2� 1+1 case

- All characteristics are straight lines (45 degrees)
- Characteristics are determined by the kinetic part

x

t
future cone

past cone

- Perturbations propagate along characteristics
- Signals (wave fronts) propagate along characteristics
- Cones of influence are defined by characteristics

causal structure
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wavefront



Non-linearity (mild)
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Canonical kinetic term + arbitrary potential:

Non-linear partial differential equation of second order (inflationary models, 
quintessence). 
However, because the kinetic term is canonical, the characteristic structure 
is the same.

Non-linear potential term



Non-linearity
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Non-linear kinetic term?

Non-linear kinetic term

- General Relativity
- QCD
- Hydrodynamics
- ...

S =

Z
d

4
x K(X)k-essence:

example: 
canonical scalar:

Armendariz-Picon, Damour, Mukhanov’99



k-essence
equations of motion & causal structure
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that no causal paradoxes arise in the cases studied in our previous works [27, 28, 26]

and [29].

Section 4 is devoted to the Cauchy problem for k-essence equation of motion. We

investigate under which restrictions on the initial conditions the Cauchy problem is well

posed.

In section 5 we study the Cauchy problem for small perturbations in the “ new aether”

rest frame and in the fast moving spacecraft.

Section 6 is devoted to the Chronology Protection Conjecture, which is used to avoid

the CCCs in gedanken experiments considered in [8].

In section 7 we discuss the universal role of the gravitational metric. Namely, we show

that for the physically justified k-essence theories the boundary of the smooth field config-

uration localized in Minkowski vacuum, can propagate only with the speed not exceeding

the speed of light. In agreement with this result we derive that exact solitary waves in

purely kinetic k-essence propagate in vacuum with the speed of light.

Our main conclusions are summarized in section 8.

All derivations of more technical nature the reader can find in appendices. In ap-

pendix A we derive characteristics of the equation of motion and discuss local causality.

Appendices B and C are devoted to the derivation of the generally covariant action for

perturbations. In appendix D we show how the action derived in appendix B is related

to the action for cosmological perturbations from [28, 34]. In appendix E we consider the

connection between k-essence and hydrodynamics. The derivation of Green functions is

given in appendix F.

2. Equations of motion and emergent geometry

Let us consider the k-essence scalar field φ with the action:

Sφ =

∫

d4x
√
−gL (X,φ) , (2.1)

where

X =
1

2
gµν∇µφ∇νφ,

is the canonical kinetic term and by ∇µ we always denote the covariant derivative associated

with metric gµν . We would like to stress that this action is explicitly generally covariant and

Lorentz invariant. The variation of action (2.1) with respect to gµν gives us the following

energy-momentum tensor for the scalar field:

Tµν ≡
2√
−g

δSφ

δgµν
= L,X∇µφ∇νφ− gµνL, (2.2)

where (. . .),X is the partial derivative with respect to X. The Null Energy Condition

(NEC) Tµνnµnν ≥ 0 (where nµ is a null vector: gµνnµnν = 0) is satisfied provided L,X ≥ 0.

Because violation of this condition would imply the unbounded from below Hamiltonian

and hence signifies the inherent instability of the system [35] we consider only the theories

with L,X ≥ 0.
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The equation of motion for the scalar field is obtained by variation of action (2.1) with

respect to φ,

−
1√
−g

δSφ

δφ
= G̃µν∇µ∇νφ + 2XL,Xφ − L,φ = 0, (2.3)

where the “ effective” metric is given by

G̃µν (φ,∇φ) ≡ L,Xgµν + L,XX∇µφ∇νφ. (2.4)

This second order differential equation is hyperbolic (that is, G̃µν has the Lorentzian sig-

nature) and hence describes the time evolution of the system provided [6, 36, 33]

1 + 2X
L,XX

L,X
> 0. (2.5)

When this condition holds everywhere the effective metric G̃µν determines the characteris-

tics (cone of influence) for k-essence, see e.g. [36, 33, 37, 38]. For nontrivial configurations

of k-essence field ∂µφ ̸= 0 and the metric G̃µν is generally not conformally equivalent to

gµν ; hence in this case the characteristics do not coincide with those ones for canonical

scalar field the Lagrangian of which depends linearly on the kinetic term X. In turn, the

characteristics determine the local causal structure of the space time in every point of the

manifold. Hence, the local causal structure for the k-essence field is generically different

from those one defined by metric gµν (see appendix A for details). For the coupled system

of equations for the gravitational field and k-essence the Cauchy problem is well posed

only if the initial conditions are posed on the hypersurface which is spacelike with respect

to both metrics: gµν and G̃µν (see P. 251 of ref. [39] and refs. [40, 36, 41] for details).

We postpone the detailed discussion of this issue until section 4 and now we turn to the

behavior of small perturbations on a given background. With this purpose it is convenient

to introduce the function

c2
s ≡

(

1 + 2X
L,XX

L,X

)−1

, (2.6)

which for the case X > 0 plays the role of “ speed of sound” for small perturbations [28]

propagating in the preferred reference frame, where the background is at rest. It is well

known that in the case under consideration there exists an equivalent hydrodynamic de-

scription of the system (see appendix E) and the hyperbolicity condition (2.5) is equivalent

to the requirement of the hydrodynamic stability c2
s > 0.

The Leray’s theorem (see P. 251 of ref. [39] and ref. [40] ) states that the perturbations

π on given background φ0 (x) propagate causally in metric G̃µν (φ0,∇φ0). In appendix B

we show that neglecting the metric perturbations δgµν , induced by π, one can rewrite the

equation of motion for the scalar field perturbations in the following form

1√
−G

∂µ

(√
−GGµν∂νπ

)

+ M2
effπ = 0, (2.7)

here we denote

Gµν ≡
cs

L2
,X

G̃µν ,
√
−G ≡

√

−detG−1
µν where G−1

µλGλν = δν
µ, (2.8)
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Variation with respect to the scalar field gives:
- quasi-linear equations
- second order in derivatives

future 
cone

past
cone

Cones of influence for the scalar field do 
not coincide with those of the photons 
and gravitons.



k-essence
causal structure

Two scalar fields:



Pure k-essence
k-essence as perfect fluid
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2. Model

Let us consider a scalar field with the action

Sφ =

∫
d4x

√
−gp(X), (2.1)

where the Lagrangian density is given by

p(X) = α2

[√
1 +

2X

α2
− 1

]
− Λ. (2.2)

It depends only on X ≡ 1
2∇µφ∇µφ, and α and Λ are free parameters of the theory.

Throughout the paper ∇µ denotes the covariant derivative and we use the natural units in

which G = ! = c = 1. The kinetic part of the action is the same as in [7] and for small

derivatives, that is, in the limit 2X ≪ α2, it describes the usual massless free scalar field.

One can prove that the theory, described by (2.2) is ghost-free.

The equation of motion for the scalar field is

Gµν∇µ∇νφ = 0, (2.3)

where the induced metric Gµν is given by

Gµν ≡ p,Xgµν + p,XX∇µφ∇νφ, (2.4)

and p,X ≡ ∂p/∂X. This equation is hyperbolic and its solutions are stable with respect to

high frequency perturbations provided (1+ 2Xp,XX/p,X) > 0 [6, 10, 11]. This condition is

always satisfied in the model under consideration. It is well known that, if ∇νφ is timelike

(that is, X > 0 in our convention), then the field described by (2.2) is formally equivalent

to a perfect fluid with the energy density ε(X) = 2Xp,X(X)−p(X), the pressure p = p(X)

and the four-velocity

uµ =
∇µφ√

2X
. (2.5)

The effective sound speed of perturbations is given by

c2
s ≡ ∂p

∂ε
= 1 +

2X

α2
. (2.6)

and for X > 0 it always exceeds the speed of light. For the further considerations it occurs

to be convenient to express the energy density and pressure in terms of this speed of sound,

namely,

ε = α2(1 − c−1
s ) + Λ, p = α2(cs − 1) − Λ. (2.7)

It is easy to see that the Null Energy Condition is valid and hence the black hole area

theorem [15] holds.
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pure kinetic k-essence is perfect fluid !

Definitions:

Stress tensor:

(gradient of 
scalar field is 
timelike)



Even more non-linear?

u
xx

u
yy

� u2
xy

Monge-Ampere equaiton

Monge-Ampère equation

- to find a surface with a prescribed Gaussian curvature 
- optimizing transportation costs
-...

Monge‘1784, Ampère‘1820

first galileon in history



Even more non-linear?
galileons, Horndeski

The most generic scalar-tensor theory in 4D, whose equations of 
motion contain no more than second derivatives 

Horndeski‘1974

? Horndeski theory

Why no more than 2 derivatives in EOMs?



Ostrogradski ghost

S =

Z
L(q, q̇)dt ! dL

dq
� d

dt

dL

dq̇
= 0

S =

Z
L(q, q̇, q̈)dt ! dL

dq
� d

dt

dL

dq̇
+

d2

dt2
dL

dq̈
= 0

- Generically Hamiltonian is unbounded from below.

- New propagating degree of freedom appear. It is a ghost. 

- Avoiding the theorem ?

Ostrogradski‘1850



Even more non-linear?
Universal equations

“Universal field equations” Fairlie et al‘1991



Galileons: flat case
first non-standard term

DGP: brane model of gravity

Particular limit of the theory (decoupling limit) gives scalar field Lagrangian,

Monge-Ampère type 

direct coupling to 
matter

Luty et al’03

Dvali et al’00



Galileons: flat case
generalisation

Generalization of DGP scalar: 
- direct coupling to matter
- Galilean symmetry
- up to second order derivatives in EOM

Nicolis et al’09



Galileons: flat case
equations of motion

Equations of motion (in flat space-time)

E1 = 1

E2 = ��

E3 = (��)2 � (⇥µ⇥��)
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Nonlinear second-order equations of motion !
No additional degree of freedom => no Ostrogradski ghost



Galileons: flat case
generalisation

Naive covariantization leads to higher order 
derivatives in EOMs 



Galileons: covariant case

Deffayet et al’09
+ many other works

Covariant Galileon: adding non-minimal scalar-matter coupling to flat Galileon.

Most general galileon Shift-symmetric action:



Waves: canonical scalar
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Waves: non-linear example
hydrodynamics
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Waves in k-essence

EB, Mukhanov, Vikman’07
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Figure 5: The figure shows that the gravitational metric gµν keeps its universal meaning even if
the small perturbations on the non-trivial backgrounds propagate superluminally. If in the initial
moment of time the non-trivial configuration of the field φ is localized in the finite region R on a
spacelike in gµν hypersurface Σ, and beyond this region the field φ is in its vacuum state φ = const,
then the front of the solution always propagates with the speed of light. The blue lines correspond
to the light rays. The pink cones represent the influence cones for k-essence. On the boundary of
R the influence cones are equal to light cones.

of propagation never exceeds the speed of light and the causality is entirely determined by

the usual gravitational metric only.

If we abandon the condition of the regularity of the emergent geometry G−1
µν , but still

require that the Lagrangian is analytic function of X in the neighborhood of X = 0, then

the speed of propagation in vacuum is always smaller than the speed of light. Indeed in

this case the speed of sound cs is:

c2
s =

1

(1 + 2 (n − 1))
< 1,

where n is the power of the first non-zero kinetic term in (7.1).

To demonstrate explicitly the points stated above we will find now exact solitonic

solutions in the purely kinetic k-essence theories with Lagrangian L (X) and verify that

these solitons propagate in the Minkowski spacetime with the speed of light. Assuming

that the scalar field depends only on θ ≡ x+vt and substituting φ = ϕ (θ) in equation (2.3)

we find that this equation reduces to

L,Xϕ,θθ
(

v2 − 1
)

+ L,XXϕ,θθϕ
2
,θ

(

v2 − 1
)2

= 0, (7.2)

This equation is trivially satisfied for v = ±1, that is, there exist solitary waves ϕ (x ± t)

propagating with the speed of light. They are solutions corresponding to rather special

initial conditions φ0 (x) = ϕ (x) and φ̇0 (x) = ±ϕ (x). Note that the general solutions are

not a superposition of these solitonic solutions because the equation of motion is nonlinear.

Assuming that v ̸= ±1 we find that (7.2) is satisfied by either nonlocalized solution φ =

x ± vt + const, or it reduces to:

L,X + L,XXϕ2
,θ

(

v2 − 1
)

= L,X + 2XL,XX = 0, (7.3)
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flat metric



Waves in k-essence

EB, Mukhanov, Vikman et al’07

Fixed metric!

“pure” k-essence L = K (X) , X ⌘ 1

2
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assuming that solution depends on ✓ ⌘ x+ vt

EOM : L,X',✓✓
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any ' (t± x) is a solution

flat metric



Waves in simplest galileon
flat metric

2D case: E2 = �(⇡
tt
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easy to see that any ⇡(t± x) is a solution of E2 + E3 = 0

moreover E4 = E5 = 0 in 2D case

Evslin’11
Masoumi&Xiao’12



Waves in generalized galileon

L(2) = K (X)

L(3) = G(3) (X)⇤'

L(4) = G(4)
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K,G(3), G(4), G(5)
are arbitrary functions of the canonical kinetic term X

only shift-symmetric Lagrangians!
The full theory is more general

Second-order derivative EOMs: 
“generalized” Galileons

or
Horndeski theory

Dynamical metric EB’12



Ansatz for metric
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EB’12



Ansatz for scalar field

plane-wave solution : ' = '(⌧).
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EB’12



Solution

eom is satisfied automatically, rµJ
µ
(n) = 0

non-trivial component of the Einstein equations : G(4)
(0)Fyy = KX(0) ('
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scalar field equation:

EB’12



Causality?
problems with superluminal propagation?

Non-linear scalar fields, superluminal propagation and black holes

Causality, stability, thermodynamics...

For the case of BH the answer is again NO

The theorem on stable causality: A spacetime (M, gµν ) is stably
causal if and only if there exists a differentiable function f on M
such that ∇µf is a future directed timelike vector field.
The scalar field φ itself serves as such a global time function.Monday 15 June 15

 

Monday 15 June 15

 



Causality?
Cauchy problem

Non-linear scalar fields, superluminal propagation and black holes

Causality, stability, thermodynamics...

Cauchy problem
EOM are hyperbolic provided

1+ 2X p,XX

p,X
> 0

“Good” initial hypersurface and initial data:
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A) Good initial surface
B) Bad initial surface

EB, Mukhanov, Vikman’07



Causality?
Non-linear scalar fields, superluminal propagation and black holes

Causality, stability, thermodynamics...

Time machines — closed causal curves for inhomogeneous backgrounds?

y
x

t

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi’06 ]

Time machine (closed time-like curves for non-
homogeneous backgrounds) ?

Adams et al’06



Causality?

Chronology protection? Hawking’92

- wormholes
- Goedel cosmological solution
- Stockum’s rotating dust cylinders 
- Gott’s solution for two infinitely long cosmic strings 
- Ori’s time machine
- ...

Chronology protection conjecture: 
Laws of physics must prohibit appearance of closed 
causal curves



Causality?

Chronology protection for k-
essence? 

EB, Mukhanov, Vikman’07

Chronology protection for 
galileons? 

Burrage et al’11



Further study?

Monday 15 June 15

More general solutions of k-essence and galileons.

Monday 15 June 15

Formation of caustics in k-essence and galileons.

Monday 15 June 15

Chronology protection.


