THE DARK MATTER-MASSIVE
BLACK HOLE CONNECTION

Joe Silk (IAP, JHU, BIPAC)

massive black holes are potential amplifiers of dark matter signals



PREDICTING <ov>

generic WIMP <0,,,v>~ a,2/m2=a,2/1TeV?

SUSY WIMP in thermal equilibrium: relic abundance if <o, v>~3x102° cm3/s ~0.23/€2,
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Following the light Higgs discovery and the failure to find evidence for SUSY, the new frontier
for particle physics is likely to be a 100 TeV collider

The new frontier for DM detection will shift from light DM (10-100 GeV) where the
constraints are increasingly tight on heavy DM

unitarity constrains <ov>~m,2: 0.1-30 TeV is a natural window

SUSY relic one of many DM candidates...

But equally natural is asymmetric DM for which m =5 GeV
Iepton like asymmetry Pg=Mgn,Mz  P,=Mgn,m,  No annihilations!

IceCube Lab

i Mg WS s T IceTop
SUSY aside, minimal DM is attractive: m,=10 TeV
SM + quintuple: neutral, stable, thermal freeze-out to give | W
relic abundance & annihilation signatures!

Ice Cube Array




SMBH OUTFLOWS CONTROL BARYON|C FEEDBACK
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IMBH EXPEL BARYONS

Intermediate mass BH 103-10° M, predictions

0 =200 =100 0 200 300




ainst radio galaxies
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l0g,q (GeV/cm®)

CDM cusp steepens by adiabatic growth
of IMBH: poxr™7" = pocr™”, with 7/ =
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Annihilation rate is amplified within a
radius GM;/0? ~ 0.003(Mpg/10°Mg)pe

Density profile

Plateau: n (r)<ov>t;, ~ 1
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supermassive black hole at Galactic Center

prediction for CTA: superexponential signature of TeV DM annihilations
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Does cusp survive? MAYBE!

Vasiliev & Zelnikov 2008
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NEARBY AGN

M87 is an attractive target
Distance 2000 x GC but Mg, 1500 x SagA*

Flux ~ n2<ov> (2r ) ~ Mg */<ov> for low <ov>

n,(rp)<ov>ty, ~1

Dynamical heating of spike ~ 104 yr vs 10° yr (GC)



relativistic jets emanate from ergosphere, so
high energy e,p collide with DM spike particles

M87 jet




Lacroix, JS, CB 2015
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EXTRACALACTIC DIFFUSE RAY BACKGROUND
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Annihilations

In dark matter
spikes around
supermassive
black holes
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BLACK HOLES AS PARTICLE ACCELERATORS

Piran & Shaham (1977)

Upper bounds on collisional Penrose processes near rotating black-hole horizons
Banados, Silk, & West (2009)
Black Holes as Particle Accelerators to Arbitrarily High Energy

Bejger, Piran, Abramowicz, Hakansonet (2012)
Collisional Penrose process near the horizon of extreme Kerr black holes

Harada et al.(2012)

Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black

hole

Zaslavskii (2012)

Acceleration of particles by black holes as a result of deceleration: ultimate manifestation of kinematic nature of BSW
effect

Schnittman (2014, 2015)
Revised upper limit to energy extraction from a Kerr black hole

Berti, Brito, Cardoso (2015)

Energy debris from the collisional Penrose process
Zaslavskii (2014)

Unbounded energies of debris from head-on particle collisions near black



BLACK HOLES

THE ULTIMATE PARTICLE ACCELERATOR: dark matter cusp around black hole

Black | /

maximum 4.5 m

hole

Orbits of objects
near black hole







Extraction of Rotational Energy
from a Black Hole

THERE has been considerable interest recently in the question of
the gravitational collapse of a massive body and of the possible
astrophysical consequences of the existence of the *‘black Lole”
which general relativity predicts should sometimes be the result
of such a collapse. In particular, the question has arisen whether
the mass-energy content of a black hole could, under suitable
circumstances. be a source of available energy. We now
ASTROPHYSICAL JOURNAL, 191:231-233, 1974 July 1
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ENERGY LIMITS ON THE PENROSE PROCESS

RoBerT M. WALD
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ABSTRACT

If a body in the vicinity of a rotating black hole breaks apart into two or more fragments, then under
appropriate conditions the rotational energy of the black hole can be used to enhance the energy of one of the
fragments (Penrose process). Wheeler and others have suggested that the Penrose process could serve as an
energy mechanism for jets. In this paper we derive strict limits on the energies which can be achieved by the
Penrosc process. It is shown that in no case can onc obtain energies which are greater by a significant factor
than those which already could be obtained by a similar breakup process without the presence of a black hole.
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Rotating black hole can feed Penrose effect via DM particle collisions
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Neutrino spectrum at detection

Neutrino lines
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Frame dragging
generates a torus




SDSS J0936+5331, At =83 yrs
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SMBH binaries in quasars
may be common at parsec
scales from Balmer line offsets
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Kozai mechanism drives resonant infall of DM
in eccentric orbits.........operates for binary black hole
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Naoz and silk 2014 ... . Dark matter torus forms
Mutual inclination distribution
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Graviatational wave inspiral: 5yrs, eLISA

Relative error
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Black hole mass Mg, [Msun]



Black hole shadow

Event Horizon Telescope

Simulated image at 1mm
of M87 or SagA* black hole

Resolve horizon scale
GM/c? at ~5 u arcsec

M87 distance 2000 x GC
but Mg, 1500 x SagA*

Could one see a cloud of DM-generated pairs
undergoing synchrotron emission?
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