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Motivation for studying gravity in 2 and 3 dimensions

I Quantum gravity
I Address conceptual issues of quantum gravity
I Black hole evaporation, information loss, black hole microstate

counting, virtual black hole production, ...
I Technically much simpler than 4D or higher D gravity
I Integrable models: powerful tools in physics
I Models should be as simple as possible, but not simpler

I Gauge/gravity duality + indirect physics applications
I Deeper understanding of black hole holography
I AdS3/CFT2 correspondence best understood
I Quantum gravity via AdS/CFT
I Applications to 2D condensed matter systems
I Gauge gravity duality beyond standard AdS/CFT: warped AdS, Lifshitz,

Schrödinger, non-relativistic or log CFTs, higher spin holography ...
I Flat space holography

I Direct physics applications
I Cosmic strings
I Black hole analog systems in condensed matter physics
I Effective theory for gravity at large distances
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Why particularly three dimensions?

I Simple
I Riemann ∼ Ricci, only 6 independent components
I can linearly combine Cartan variables,
Aa = αεabcωbc + βea = αωa + βea

I Einstein–Hilbert gravity is topological field theory

I Not too simple
I Holographic correspondences easier to establish (e.g. AdS3/CFT2)
I Can build topological models (Chern–Simons)
I Can build non-topological models (massive gravity, see lectures by de

Rahm, Townsend, Tolley, Volkov, Babichev and Spindel)
I Some recent breakthroughs: chiral gravity, AdS/log CFT

correspondence (see talk by Zojer), new massive gravity theories (see
lectures by Townsend, Bergshoeff and Merbis), higher spin gravity
(see lectures by Vasiliev and Troncoso), non-AdS holography, flat
space holography (see talk by Matulich), to be discovered...

Three dimensional gravity models
continue to surprise and teach us!
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Chern–Simons and gravity in 3 dimensions
Chern–Simons summary (see lectures by Jorge Zanelli!)

Reminder: A is some connection 1-form, e.g. sl(N)k⊕ sl(N)−k connection
Chern–Simons (CS) 3-form CS(A) = AdA+ 2

3A ∧A ∧A
Variation: δCS(A) = 2F + d(A ∧ δA)

Action (M is topologically a cylinder):

I[A] =
k

4π

∫
M

Tr CS(A) +
k

4π

∫
∂M

Tr
(
A+ dx+A− dx−

)
EOM:

F = 0

Boundary conditions:

δA−|∂M = 0 or A+|∂M = 0

Gauge transformations:

δεA = dε+ [A, ε] ↔ δεA
a
µ = ∂µε

a + fabcA
b
µε
c

Number of local physical degrees of freedom: 0
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Chern–Simons and gravity in 3 dimensions
Gravity as Chern–Simons theory

Einstein–Hilbert action:

IEH = − 1

16πGN

∫
d3x
√
|g|
(
R+

2

`2
)

Negative cosmological constant: Λ = − 1
`2

where ` = AdS radius

Cartan formulation:

IEH ∼
∫ (

ea ∧Ra +
1

`2
εabce

a ∧ eb ∧ ec
)

with
Ra = dωa + εabcω

b ∧ ωc

Achucarro, Townsend ’86, Witten ’88: define

A = ω + 1
` e Ā = ω − 1

` e ⇒ gµν = 1
2 Tr

(
(A− Ā)µ(A− Ā)ν

)
Einstein–Hilbert action in Cartan formulation equivalent to [k = `/(8GN )]

IEH =
k

4π

∫
CS(A)− k

4π

∫
CS(Ā) = sl(2)k ⊕ sl(2)−k CS theory
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Chern–Simons and gravity in 3 dimensions
Topologically massive gravity (see lectures by Paul Townsend and Eric Bergshoeff)

Deser, Jackiw, Templeton ’82: Topologically Massive Gravity

ITMG = IEH +
1

32πGµ

∫
d3x
√
−g ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)
EOM:

Rαβ − 1
2 gαβR−

1
`2
gαβ +

1

µ
Cαβ = 0

Some features:

I Local physical degree of freedom (massive graviton)

I AdS solutions like BTZ black holes

I non-AdS solutions (warped, Lifshitz, Schrödinger)

I chiral gravity (Li, Song, Strominger ’08)

I AdS/log CFT correspondence (Grumiller, Johansson ’08)

I interesting flat space holography (Bagchi et al. ’12, ’13)
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Chern–Simons and gravity in 3 dimensions
Conformal gravity (see talk by Xavier Bekaert)

Conformal Gravity:

ICSG =
k

4π

∫
CS(Γ) =

k

4π

∫
d3x
√
−g ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)
EOM:

Cµν = 0

Some features:

I No local physical degree of freedom (partial masslessness)

I Weyl symmetry g → ge2Ω

I AdS solutions like BTZ black holes

I rich AdS holography depending Weyl factor bc’s (Afshar et al ’11)

I non-AdS solutions (Lobachevsky, flat, dS)

I flat space chiral gravity (Bagchi, Detournay, Grumiller ’12)
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Holographic algorithm from gravity point of view

Universal recipe & Outline of lectures:

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory

8. If unhappy with result go back to previous items and modify

Apply algorithm above to holographically describe CS theories

Goal of these lectures:

includes gravity and higher spin gravity; AdS, non-AdS and flat space holography
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Bulk theory and variational principle

CS theory with some gauge algebra; typically contains sl(2)× sl(2)

I = ICS[A]− ICS[Ā]

with

ICS[A] =
k

4π

∫
M

Tr(A ∧ dA+ 2
3A ∧A ∧A) +B[A]

and

B[A] =
k

4π

∫
∂M

Tr(A+ dx+A− dx−)

Gauge invariant if infinitesimal gauge parameter obeys boundary condition

∂−ε
∣∣
∂M = 0

Variational principle consistent for

δA−
∣∣
∂M = 0 or A+

∣∣
∂M = 0

Bar-sector works similarly, exchanging ±
Daniel Grumiller — Holographic Chern–Simons Theories 11/32
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Background and fluctuations

Take suitable group element b (often: b = eρL0) and make Ansatz for
connection

A = b−1
(
â(0) + a(0) + a(1)

)
b

I â(0) ∼ O(1): determines asymptotic background

I a(0) ∼ O(1): determines state-dependent fluctuations

I a(1) ∼ o(1): sub-leading fluctuations

Bar-sector is analog
Boundary-condition preserving gauge transformations generated by ε

ε = b−1
(
ε(0) + ε(1)

)
b

with ε(0) ∼ O(1) (subject to constraints) and ε(1) ∼ o(1)
Metric is then determined from

gµν =
1

2
Tr
[
(A− Ā)µ(A− Ā)ν

]
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Example: Lobachevsky holography in sl(3) gravity

Lobachevsky plane
times time:

Lobachevsky background (x+ = t, x− = ϕ):

ds2 = dt2 + dρ2 + sinh2ρ dϕ2
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Lobachevsky plane
times time:

Lobachevsky background (x+ = t, x− = ϕ):

ds2 = dt2 + dρ2 + sinh2ρ dϕ2

sl(3) with sl(2) non-principally embedded:

L0 =
1

2

 1 0 0
0 0 0
0 0 −1

 L1 =

 0 0 0
0 0 0
1 0 0

 L−1 =

 0 0 −1
0 0 0
0 0 0



singlet:

S =
1

3

 −1 0 0
0 2 0
0 0 −1

 .

plus four more doublet generators ψ+
± 1

2

, ψ−± 1
2

sl(2) weights:

[L±1, L0] = ±L±1 [S, L0] = 0 [ψ± 1
2
, L0] = ±1

2 ψ± 1
2
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Lobachevsky plane
times time:

Lobachevsky background (x+ = t, x− = ϕ):

ds2 = dt2 + dρ2 + sinh2ρ dϕ2

Connections in n-p embedding of spin-3 gravity:

Aρ = L0 Āρ = − L0

Aϕ = − 1

4
eρL1 Āϕ = − eρL−1

At = 0 Āt =
√

3S

Indeed â(0) is ρ-independent for b = eρL0
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Indeed â(0) is ρ-independent for b = eρL0

Fluctuations:

a(0)
ϕ =

2π

k

(
3
2W0(ϕ)S +W+

1
2

(ϕ)ψ+
− 1

2

−W−1
2

(ϕ)ψ−− 1
2

− L(ϕ)L−1

)
a(1)
µ = O(e−2ρ)

Bar-sector is similarDaniel Grumiller — Holographic Chern–Simons Theories 14/32



Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Canonical analysis and boundary charges

Story a la Brown–Henneaux: bulk generators of gauge transformations
acquire boundary pieces, the canonical boundary charges Q[ε]

Background independent result:

δQ[ε] =
k

2π

∮
Tr (ε(0) δa(0)

ϕ dϕ)

I Manifestly finite!

I Non-trivial?

I Integrable?

I Conserved?

If any of these is answered with ‘no’
then back to square one in algorithm!
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Example: Lobachevsky holography

Split boundary preserving gauge trafos into components:

ε(0) = ε1 L1 +ε+1
2

ψ+
1
2

+ε−1
2

ψ−1
2

+εL0 L0 +εS0 S+ε+− 1
2

ψ+
− 1

2

+ε−− 1
2

ψ−− 1
2

+ε−1 L−1

Solving constraint that gauge trafos generated by ε(0) preserve boundary
conditions

∂µε
(0) a + fabc

(
â(0)
µ + a(0)

µ

)b
ε(0) c = O(a(0)

µ )a

yields results for components of ε(0)

ε1 = ε(ϕ) ε±1
2

= ε±1
2

(ϕ) εL0 = 4ε′(ϕ) εS0 = ε0(ϕ)

ε±− 1
2

= 4ε±1
2

′
(ϕ)∓ 4π

k

(
2W±1

2

(ϕ)ε(ϕ)− 3W0(ϕ)ε±1
2

(ϕ)
)

ε−1 = 8ε′′(ϕ) +
4π

k

(
2L(ϕ)ε(ϕ) +W−1

2

(ϕ)ε+1
2

(ϕ) +W+
1
2

(ϕ)ε−1
2

(ϕ)
)

Canonical charges:

Q[ε(0)] =

∮
dϕ
(
Lε+W0ε0 +W+

1
2

ε−1
2

+W−1
2

ε+1
2

)
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Classical asymptotic symmetry algebra

Dirac bracket algebra of canonical boundary charges:

{Q[ε1], Q[ε2]} = δε2 Q[ε1]

I Either evaluate left hand side directly (Dirac brackets)

I Or evaluate right hand side (usually easier)

Exactly like in seminal Brown–Henneaux work!
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Example: Lobachevsky holography

Dirac bracket algebra of canonical boundary charges:

{L(ϕ),L(ϕ̄)} = −4
(
2Lδ′(ϕ− ϕ̄)− L′δ(ϕ− ϕ̄)

)
− 4k

π
δ′′′(ϕ− ϕ̄)

{L(ϕ),W0(ϕ̄)} = 0

{L(ϕ),W±1
2

(ϕ̄)} = −4
(3

2
W±1

2

δ′(ϕ− ϕ̄)−
(
W±1

2

′ ± 3π

k
W±1

2

W0

)
δ(ϕ− ϕ̄)

)
{W0(ϕ),W0(ϕ̄)} =

k

3π
δ′(ϕ− ϕ̄)

{W0(ϕ),W±1
2

(ϕ̄)} = ±W±1
2

δ(ϕ− ϕ̄)

{W+
1
2

(ϕ),W−1
2

(ϕ̄)} = Lδ(ϕ− ϕ̄)− 4
(
− 3W0δ

′(ϕ− ϕ̄) +
(3

2
W0
′

− 9π

2k
W0W0

)
δ(ϕ− ϕ̄)− k

2π
δ′′(ϕ− ϕ̄)

)
Note: second and third line require Sugawara-shift

L → L− 6π

k
W0W0 ≡ L̂
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... continued

Replace Dirac brackets by commutators and make Fourier expansions

[Jn, Jm] = −2k

3
nδn+m,0

[Jn, L̂m] = nJn+m

[Jn, G
±
m] = ±G±m+n

[L̂n, L̂m] = (n−m)L̂m+n +
c

12
n
(
n2 − 1

)
δn+m,0

[L̂n, G
±
m] =

(n
2
−m

)
G±n+m

[G+
n , G

−
m] = L̂m+n +

3

2
(m− n)Jm+n +

3

k

∑
p∈Z

Jm+n−pJp + k
(
n2 − 1

4

)
δm+n,0

Semi-classical (large k) Polyakov–Bershadsky algebra W
(2)
3

Note: resembles N = 2 superconformal algebra
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Quantum asymptotic symmetry algebra

Introducing normal ordering in expressions like∑
p∈Z

: Jn−pJp :=
∑
p≥0

Jn−pJp +
∑
p<0

JpJn−p

can make semi-classical algebra inconsistent

First example I am aware of: Henneaux–Rey 2010 in spin-3 AdS gravity

Quantum violations of Jacobi-identities possible!

Resolution: deform suitable structure constants/functions and demand
validity of Jacobi identities

Daniel Grumiller — Holographic Chern–Simons Theories 23/32



Example: Lobachevsky holography

Five deformation parameters in [J, J ] and [G+, G−]
Solving Jacobi identities yields (quantum) Polyakov–Bershadsky algebra

[Jn, Jm] =
2k̂ + 3

3
nδn+m,0

[Jn, L̂m] = nJn+m

[Jn, Ĝ
±
m] = ±G±m+n

[L̂n, L̂m] = (n−m)L̂m+n +
ĉ

12
n(n2 − 1)δn+m,0

[L̂n, Ĝ
±
m] =

(n
2
−m

)
Ĝ±n+m

[Ĝ+
n , Ĝ

−
m] = −(k̂ + 3)L̂m+n +

3

2
(k̂ + 1)(n−m)Jm+n + 3

∑
p∈Z

: Jm+n−pJp :

+
(k̂ + 1)(2k̂ + 3)

2
(n2 − 1

4
)δm+n,0

with central charge ĉ = −(2k̂ + 3)(3k̂ + 1)/(k̂ + 3) = −6k̂ +O(1)
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Unitary representations of quantum asymptotic symmetry algebra

Standard questions:

I Is û(1) level non-negative?

I Is central charge non-negative?

I Are there any negative norm states?

I Are there null states?

To be decided on case-by-case basis!
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Example: Lobachevsky holography

Non-negativity of û(1) level:

k̂ ≥ −3

2
Non-negativity of central charge:

−1

3
≥ k̂ ≥ −3

2

Norm of vacuum descendants at level 3
2 :

K( 3
2

) = (k̂ + 1)(2k̂ + 3)

(
−1 0
0 1

)
Positive and negative norm states, unless pre-factor vanishes

Only two possible values of level k̂ compatible with unitarity:

k̂ = −1 or k̂ = −3

2
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Identify or at least constrain dual field theory

Collect all clues and make reasonable guess!
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Example: Lobachevsky holography

Unitary case k̂ = −3
2 has vanishing central charge, ĉ = 0:

Only state in theory is vacuum!

Unitary case k̂ = −1:

I Unity central charge, ĉ = 1

I All half-integer states are null states

I Virasoro generators determined from current generators:

L̂−n|0〉 =
3

2

∑
p∈Z

: J−pJ−n+p : |0〉

I Positive norm states:
Jm1
−n1

. . . JmN
−nN
|0〉

I Bar-sector: only affine û(1) algebra with positive level

I Dual CFT: free boson
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To-do list (including partly done topics)

I Flat-space spin-2 holography

I Flat-space higher spin holography

I Lobachevsky higher-spin holography

I Lifshitz higher-spin holography

I Schrödinger higher-spin holography

I warped (A)dS higher-spin holography

I unitarity

I exhaustive scans/classification

I non-AdS higher spin black holes

I generalizations: SUSY, conformal, (topologically) massive, ...

I tough questions (e.g. where does 22/5 come from on CS side?)

Chern–Simons holography provides many avenues for
future research — also many projects for students...
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Thanks for your attention!

Thanks to Bob McNees for providing the LATEX beamerclass!
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