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Introduction

- de Rham-Gabadadze-Tolley massive gravity: 5 propagating degrees of 
freedom (no Boulware-Deser ghost)
- Many applications: cosmology, spherically symmetric solutions, black 
holes.

(talk by Mikhail Volkov on black holes)



Action for BD-ghost-free massive gravity (de Rham-Gabadabze-Tolley’10,Hassan-Rosen’11)

Action



Equations of motion

No matter action, the energy-momentum tensor from interaction term:



Equations of motion

In original dRGT model no EH term for f -> the second EOM is absent

No matter action, the energy-momentum tensor from interaction term:



Background solution

Simplest black hole solution in bigravity, bi-Schwarzschild solution



Perturbations
  

Perturbations of both metrics



Perturbations
  linearized equations

Einstein eq for g

Einstein eq for f



Perturbations
  linearized equations

Einstein eq for g

Einstein eq for f

is massive

is massless



Perturbations
  massive modes



Perturbations
  Gregory-Laflamme instability
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abstract

We investigate the evolution of small perturbations around black strings

and branes which are low energy solutions of string theory. For simplicity we

focus attention on the zero charge case and show that there are unstable modes

for a range of time frequency and wavelength in the extra 10 − D dimensions.

These perturbations can be stabililized if the extra dimensions are compactified

to a scale smaller than the minimum wavelength for which instability occurs

and thus will not affect large astrophysical black holes in four dimensions. We

comment on the implications of this result for the Cosmic Censorship Hypoth-

esis.
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R G r egor y , R. La f l amme / Nuc l ea r Phys i cs B428 (1994) 399 - 434

p l anck mass b l ack ho l e t o em i t a l l t he i n f orma t i on s t or ed i n a mac roscop i c b l ack
ho l e . The r e f or e , i n orde r t o r eso l ve t h i s t ens i on be t ween quan t um mechan i cs and
t he rmodynam i cs i t seems t ha t a sem i - c l ass i ca l ana l ys i s o f sub - P l anck s i ze b l ack
ho l es i s needed .

Mos t r ecen t l y , a t t en t i on has f ocussed on l ow ene rgy s t r i ng gr av i t y and i t s
i mp l i ca t i ons f or b l ack ho l es . Some o f t hese deve l opmen t s have been qu i t e i n t e r es t -
i ng . I n E i ns t e i n gr av i t y , cha rged b l ack ho l es ( t he Re i ssne r - Nords t r6m so l u t i ons ) ,
i n add i t i on t o hav i ng an ou t e r even t hor i zon , have an i nne r Cauchy hor i zon wh i ch
i s uns t ab l e t o ma t t e r pe r t urba t i ons i n t he ex t e r i or space t i me [3] . Howeve r , t he r e i s
no s t a t i c cha rged b l ack ho l e so l u t i on i n E i ns t e i n gr av i t y w i t h on l y one hor i zon and
a space l i ke s i ngu l a r i t y . On t he o t he r hand , a key f ea t ur e o f l ow ene rgy s t r i ng
gr av i t y i s t he pr esence o f a d i l a t on wh i ch gr ea t l y changes t he causa l s t ruc t ur e o f
cha rged b l ack ho l es mak i ng t hem l i ke Schwa r zsch i l d w i t h one even t hor i zon and a
space l i ke s i ngu l a r i t y [4] . Th i s s t ruc t ur e i s gene r i c , even i f t he d i l a t on has a mass [5] ,
as i t mus t t o keep i n l i ne w i t h t he pr i nc i p l e o f equ i va l ence .

O f cour se , mos t o f t he ana l ys i s o f s t r i ngy b l ack ho l es has been pe r f ormed i n l ow
d i mens i ons , name l y t wo or f our , whe r eas s t r i ng t heor y t e l l s us t he r e shou l d be t en
d i mens i ons ; i dea l l y t he r e f or e , one shou l d be exam i n i ng b l ack ho l es i n t en d i men -
s i ons . The r e has been wor k on b l ack ho l es i n h i ghe r d i mens i ons [6] f or a r ange o f
hor i zon t opo l og i es [7] . I n f our d i mens i ons , an even t hor i zon mus t be t opo l og i ca l l y
sphe r i ca l [8] , bu t i n h i ghe r d i mens i ons t h i s i s no t necessa r i l y t he case , we cou l d
have S2 X R6 or S3 X R5 t opo l og i es f or t he hor i zon . I n a pr ev i ous l e t t e r we po i n t ed
ou t t ha t a l a rge c l ass o f t hese b l ack ho l es a r e uns t ab l e , name l y t he uncha rged ones .
I n t h i s pape r , we pr esen t t he de t a i l s o f t h i s or i g i na l a rgumen t , as we l l as prov i d i ng
an ex t ens i on t o cove r cha rged b l ack p - br anes .

Why shou l d b l ack ho l es be s t ab l e , ye t b l ack s t r i ngs , say , uns t ab l e? Be f or e
answe r i ng t h i s ques t i on i n de t a i l , i t i s wor t h exam i n i ng a coup l e o f na i ve a rgu -
men t s . W i t hou t l oss o f gene r a l i t y , cons i de r a f i ve - d i mens i ona l b l ack s t r i ng i n
E i ns t e i n gr av i t y , Sch4 X V8 . Then t he equa t i on gove rn i ng t he me t r i c pe r t urba t i on

Saab = hab , t he L i chne row i cz equa t i on , i s essen t i a l l y a wave equa t i on

4Lhab = ( sasb ~ + 2R a `bd )h c d = 0 .

�

(1 . 1)

Because o f t he symme t r i es o f t he background Sch4 X R me t r i c , t h i s r educes t o a
f our - d i mens i ona l L i chne row i cz ope r a t or p l us a a Î p i ece . Pe r f orm i ng a Four i e r
decompos i t i on o f hab i n t he f i f t h d i mens i on y i e l ds

4Lhab - (44
_M2

)hab = 0 .

S i nce t he f our - d i mens i ona l Schwa r zsch i l d L i chne row i cz ope r a t or has no uns t ab l e
modes , add i ng a mass shou l d on l y i nc r ease s t ab i l i t y; hence i t has been con j ec t ur ed
t ha t b l ack s t r i ngs a r e s t ab l e .

On t he o t he r hand , g l i b l y speak i ng , hor i zons a r e l i ke soap bubb l es , t hey have a
sur f ace t ens i on , K - t he sur f ace gr av i t y , and soap bubb l es do no t l i ke be i ng
cy l i ndr i ca l ! Mor e f orma l l y , a por t i on o f hor i zon o f l eng t h L con t a i ns mass

. , o f = ML and has an en t ropy propor t i ona l t o ' 0 2/ L . A f i ve - d i mens i ona l b l ack ho l e
on t he o t he r hand has en t ropy propor t i ona l t o , f 3 / 2 . Thus f or l a rge l eng t hs o f



Gregory-Laflamme instability

Five-dimensional black string:

Modes regular at the future horizon, not growing at infinity

The solutions to this equations has been studied already.
In the context of Gregory-Laflamme instability.



Gregory-Laflamme instability
  a singe second-order equation 

A system of equations of second order plus 2 constraints on

In[110]:= VSmueff = HH1 - 2 * M ê Hx + 2 * MLL * Hmu^6 + H6 * mu^4 ê Hx + 2 * ML^2L * H1 - H3 * M ê Hx + 2 * MLLL -H2 * mu^2 * M ê Hx + 2 * ML^5L * H12 - H18 * M ê Hx + 2 * MLLL +H8 * M^3L ê Hx + 2 * ML^9LL ê Hmu^2 + H2 * M ê Hx + 2 * ML^3LL;
In[111]:= VSmu0eff = VSmueff ê. 8M Æ 1<;
In[112]:= VSmu01eff = VSmu0eff ê. 8mu Æ 1<;
In[125]:= Plot@8VSmu01eff<, 8x, 0, 20<, PlotRange Æ AllD

Out[125]=
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In[115]:= VSmu02eff = VSmu0eff ê. 8mu Æ 0.5<;
In[126]:= Plot@8VSmu02eff<, 8x, 0, 20<, PlotRange Æ AllD

Out[126]=
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In[134]:= VSmu03eff = VSmu0eff ê. 8mu Æ 1 ê 3<;
In[135]:= Plot@8VSmu03eff<, 8x, 0, 20<, PlotRange Æ AllD

Out[135]=
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Instability of black holes

Instability

Confirmed independently by Brito, Cardoso, Pani arXiv:1304.6725



Instability of black holes
  extended result  

Proportional metrics
By appropriate choice of the parameters of the mass term the 
extended bi-Schwarzschild solution exists.

The mass of perturbations is modified by a factor depending 
on 

The result is the same: there is instability in the range 

de Sitter: instability is still there
(Brito, Cardoso, Pani arXiv:1304.6725)
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FIG. 1. Details of the instability of Schwarzschild (de Sitter) BHs against spherically symmetric polar modes of a massive
spin-2 field. The left panel shows the inverse of the instability timescale ωI = 1/τ as a function of the graviton mass µ for
different values of the cosmological constant Λg = Λf , including the asymptotically flat case Λg = 0. Curves are truncated
when the Higuchi bound is reached µ2 = 2Λg/3 [89]. For any value of Λg , unstable modes exist in the range 0 < Mµ ! 0.47,
the upper bound being only mildly sensitive to Λg. The right panel shows some eigenfunctions in the asymptotically flat case.
The eigenfunctions decay exponentially at spatial infinity and are progressively peaked closer and closer to the BH horizon for
masses close to the threshold mass Mµ ∼ 0.43.

is affected by Gregory-Laflamme instability [60, 61] that
manifests itself in the spherically symmetric, monopole
mode. One interesting aspect of our own formulation is
that we are able to reduce this instability to the study of
a very simple wave equation, described by (30).
To summarize, in this setup Schwarzschild BHs are un-

stable. The instability timescale depends strongly on the
mass scale µ. For low masses, we find numerically that
ωI ∼ 0.7µ, in good agreement with analytic calculation
by Camps and Emparan [63].
The Gregory-Laflamme instability only affects

spherically-symmetric (l = 0) modes [61], so we expect
the rest of the sector to be stable. We confirm this result
in Sec. V below, where we derive the complete linear
dynamics on a Schwarzschild metric.
A more relevant question is related to the role of a cos-

mological constant. When the background metrics are
two copies of Schwarzschild-de Sitter solutions, the field
equations (26) do not arise from a Kaluza-Klein decom-
position of a five-dimensional black string. Thus, it is
not obvious a priori if the monopole instability discussed
above survives when Λg = Λf "= 0.
Our formalism can be immediately extended to ac-

commodate Schwarzschild-de Sitter backgrounds. In this
case, Eq. (23) is modified with new terms proportional
to Λg, see e.g. Eq. (2.1) in Ref. [93]. From the latter
equation, one obtains the same divergenceless and trace-
less conditions as in Eqs. (27) and (28). Finally, using
these conditions and the commutator of two covariant
derivatives, it turns out that the linearized field equation
is precisely as in Eq. (26). That is, terms that explicitly
depend on Λg cancel out and the only contribution of the
cosmological constant arises through background quan-
tities. From the system (26)–(28), it is straightforward
to obtain a master equation for spherical perturbations
of Schwarzschild-de Sitter BHs. Here we omit the details

and only give the final result. The monopole is described
by an equation of the same form as Eq. (30), but where
the potential now reads:

V
Λg

0 =
1− 2M/r − Λg/3 r2

r3 [2M + r3 (µ2 − 2Λg/3)]
2

×
{

8M3 + 12M2r3
(

3µ2 − 8Λg/3
)

+r7
(

µ2 − 2Λg/3
)2 [

6 + r2
(

µ2 − 2Λg/3
)]

−6Mr4
(

µ2 − 2Λg/3
) [

4 + r2
(

3µ2 − 10Λg/3
)]}

.(31)

Using the same technique as before, we have integrated
Eq. (30) with the potential (31). The results are shown
in Fig. 1 for various values of Λg = Λf . Note that mas-
sive spin-2 perturbations propagating in an asymptot-
ically de Sitter spacetime are subjected to the bound
µ2 > 2Λg/3 [89]. Below such bound, the helicity-0 com-
ponent of the massive graviton becomes a ghost. When
the bound is saturated, µ2 = 2Λg/3, the helicity-0 mode
becomes pure gauge and the instability disappears. The-
ories with such fine-tuning are called “partially massless
gravities” [94, 95] [see also Refs. [93, 96–99]] and they
are not affected by the monopole instability discussed
above. Finally, as shown in Fig. 1, the instability is even
more effective for Schwarzschild-de Sitter BHs and it ex-
ists roughly in the same range of graviton mass.
For both Schwarzschild and Schwarzschild-de Sitter

BHs, the instability timescale is of the order of the Hub-
ble time when µ ∼ 2 × 10−33eV [24]. This of course,
does not mean that the observation of compact objects
imposes constraints on the graviton mass 3. Rather, it

3 The monopole instability does not impose limits on the graviton
mass, but the observation of rotating compact BHs, discussed
later on, does impose strict limits on the graviton mass.



Instability of black holes
  rate of instability  

Rate of instability
The Gregory-Laflamme instability 11
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Figure 1.3 A plot of the eigenvalues (m,Ω), scaled by r+, for which an
instability is present.

m to check if a solution exists. Fig. 1.3 shows a plot of the frequency pairs
(m,Ω) for which a regular solution, and hence an instability, exists, and Fig.
1.4 shows the behaviour of the perturbation.
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Figure 1.4 A plot of the metric perturbation.

Having found an unstable solution to the perturbation equations, the final
step of the argument is to demonstrate that this is a physical instability of
the black string, and not just some odd gauge mode. In fact, this is easy
to demonstrate by looking at (1.18). Since both the perturbation and the
Riemann tensor vanish in the extra dimension (hza = 0 = Rzabc), the five
dimensional Lichnerowicz operator reduces to the four dimensional Lich-

Approximately linear 
dependance 

Very slow instability !



Black holes in dRDT model

Schwarzschild black hole in dRGT model (one dynamical metric, the 
fiducial metric is Minkowski): physical singularity at the horizon for 
bi-diagonal solutions (Deffayet, Jacobson’11) 

Time-dependent black hole (Mirbabayi,Gruzinov’13) 

The black hole is “discharging” by accretion of the massive hair. 
Analogous to the black hole discharge in massive electrodynamics.
The final point is Minkowski space-time.



Instability of black holes
  rate of instability  

What is the fate of such black holes? 

R G r egor y , R. La f l amme / Nuc l ea r Phys i cs B428 (1994) 399 - 434

�

41 7

F i g . 4 . Schema t i c d i agr am o f t he i ns t ab i l i t y . A l l t he d i mens i ons have been suppr essed excep t t he r and
z one . The geome t r y i s i n i t i a l l y i nva r i an t unde r a z t r ans l a t i on . The i ns t ab i l i t y i nc r eases t he s i ze o f t he
appa r en t hor i zon a t some va l ues o f z and dec r eases i t a t o t he r va l ues . I n t he cha rge l ess case i t seems
r easonab l e t ha t t he appa r en t hor i zon w i l l br eak i n t o d i f f e r en t pa r t s .

f unc t i on o f t he ex t r a d i mens i ons . The schema t i c behav i or o f t he appa r en t hor i zon
i s dep i c t ed i n F i g . 4 . Thus i t wou l d appea r t ha t t h i s pe r t urba t i on des t ab i l i zes t he
even t hor i zon caus i ng i t t o r i pp l e i n t he t r ansve r se d i mens i ons .

4 . The sma l l cha rge case

We have seen i n t he pr ev i ous sec t i on t ha t uncha rged b l ack s t r i ngs and p - br anes
a r e uns t ab l e . We now i nves t i ga t e t he ques t i on whe t he r a cha rge on t hese b l ack
ob j ec t s m i gh t s t ab i l i ze t hem . Phys i ca l l y , i t seems r easonab l e t ha t t hey w i l l a l so be
uns t ab l e a t l eas t f or sma l l cha rges; t h i s i s because f or sma l l cha rge t he me t r i c i s
essen t i a l l y t he same as t he uncha rged case . As l ong as we r ema i n ou t s i de t he even t
hor i zon ( r > r + ) , as i ndeed we do t o i nves t i ga t e t he i ns t ab i l i t y , t he e f f ec t o f t he
cha rge shou l d be neg l i g i b l e . Howeve r , a non - t r i v i a l e f f ec t o f t he cha rge i s t ha t now
t he (10 - D) - d i mens i ona l pe r t urba t i ons t ha t pr ev i ous l y van i shed become coup l ed
t o t he D- d i mens i ona l non - ze ro pe r t urba t i ons . Th i s now comp l i ca t es t he i ssue as
we can no l onge r se t t he f orme r pe r t urba t i ons t o ze ro ; a l l t he pe r t urba t i ons mus t
be so l ved s i mu l t aneous l y . An add i t i ona l comp l i ca t i on i s t ha t i t i s no t poss i b l e t o
t ake t he t r ace h =gabhab t o be ze ro , f or as we have a l r eady shown , t h i s s i mp l i f i ca -
t i on i s on l y poss i b l e i n vacuo . The pe r t urba t i on o f t he sca l a r f i e l d ¢ coup l es t o h
and pr even t s us f rom se t t i ng t ha t pa r t o f t he me t r i c t o ze ro .

I n orde r t o gu i de t he r eade r t hrough t he maze o f t hese equa t i ons we w i l l f i r s t
f ocus on t he sma l l cha rge case . I ndeed i n t h i s case t he prob l em , a l t hough mor e
comp l i ca t ed t han t he uncha rged case , i s dr as t i ca l l y s i mp l i f i ed f rom t he gene r a l
cha rged case . The s i mp l i f i ca t i on comes t hrough t he obse r va t i on t ha t t he coup l i ng
o f D- d i mens i ona l pe r t urba t i ons t o t he 10 - D ones a r e a l ways t hrough a f ac t or
propor t i ona l t o t he cha rge Qa = z r - r + . As t he (10 - D) - d i mens i ona l pe r t urba t i ons

5D Gregory-Laflamme instability

Do such black holes form during the 
gravitational collapse ?

Black holes with massive hair (Brito,Cardoso,Pani’13) ?
only very massive hairy black holes



CONCLUSIONS

✦ The simplest black holes in bi-gravity are unstable

✦ The rate of instability is extremely small

✦ The fate of black holes? The endpoint of gravitational 
collapse?


