Introduction to the Vainshtein mechanism

Eugeny Babichev LPT, Orsay

School Paros 23-28 September 2013

> based on arXiv:1107.1569 with C.Deffayet

- Introduction and motivation
- ✤ k-mouflage
- ✦ Galileons
- Non-linear massive gravity
- de Rham-Gabadadze-Tolley massive gravity
- Other examples
- Problems

Introduction and motivations: modifying graivity

- Modifying gravity - explain Dark energy, cosmological constant problem, to cure non-renormalizability problem, theoretical curiosity etc.

- There are many ways to modify gravity: f(R), scalar-tensor theories, Galileons, Horndeski theory, KGB, Fab-four, higher-dimensions, DGP, massive gravity...

We want to recover General Relativity at short distances

When modifying gravity, extra degrees of freedom appear, which alter gravitational interaction between bodies

A trick to comply with both requirements is needed !

Introduction and motivations:

how to recover GR at small distances

Mechanisms to recover General Relativity:

- Chameleon (<u>non-linear potential</u> for a canonical extra propagating scalar) scalar-tensor theories, f(R)
- Symmetron (coupling to matter depends of the environment)
- Vainshtein mechanism (<u>nonlinear kinetic term</u> effectively hides extra degree(s) of freedom) - k-essence, DGP, Galileon, Horndeski theory, massive gravity

Introduction and motivations:

Linearized massive graviton

Equations of motion:

$$-\frac{1}{2}\left(\Box - m^{2}\right)h_{\mu\nu} = \frac{1}{M_{P}^{2}}\left(T_{\mu\nu} - \frac{1}{3}T\eta_{\mu\nu}\right) + \frac{1}{3}\frac{\partial_{\mu}\partial_{\nu}T}{m^{2}M_{P}^{2}}$$

To be compared with linearized GR:

$$-\frac{1}{2}\Box h_{\mu\nu} = \frac{1}{M_P^2} \left(T_{\mu\nu} - \frac{1}{2}T\eta_{\mu\nu} \right)$$

Introduction and motivations: vDVZ discontinuity

Solution for a point-like source in GR:

$$h_{tt} = \frac{M}{M_P} \frac{1}{4\pi r}$$
$$h_{ij} = \frac{M}{M_P} \frac{1}{4\pi r} \delta_{ij}$$

<u>Λ</u>

1

Solution for a point-like source in massive gravity:

$$h_{tt} = \frac{4}{3} \frac{M}{M_P} \frac{1}{4\pi r}$$
$$h_{ij} = \frac{2}{3} \frac{M}{M_P} \frac{1}{4\pi r} \delta_{ij}$$

Tested with high precision !

van Dam-Veltman-Zakharov discontinuity ! (vanDam&Veltman'70&Zakharov'70) How to fit observation in MG?

Introduction and motivations: Vainshtein's idea

Vainshtein'72: In non-linear massive gravity GR can be restored!

The linear approximation breaks down at the Vainshtein radius $\,r_V = \left(rac{r_S}{m^4}
ight)^{1/5}$

Inside the Vainshtein radius GR is restored, outside -- linear MG

k-mouflage

simple way to understand the Vainshtein mechanism

<u>k-mouflage</u> (EB, Deffayet, Ziour'09)

For the Vainshtein mechanism it is (generically) sufficient to have a non-linear (non-canonical) kinetic term.

- There are two scales in the action: m and the Planck mass
- Composite scales
- Nonlinear regimes happen for different scales

k-mouflage

simple way to understand the Vainshtein mechanism

Expanded action
$$S_{k-mouflage} \sim M_P^2 \int h \,\partial^2 h + \varphi \partial^2 h + m^2 K_{NL} + hT$$

$$\begin{aligned} \mathcal{E}_{\varphi} &= \frac{\delta K_{NL}}{\delta \varphi} \\ \text{Variation wrt } h_{\mu\nu} : \\ \text{Variation wrt } \varphi : \\ \end{aligned} \\ \begin{aligned} \partial^2 h + \partial^2 \varphi &= \frac{T}{M_P^2} \\ \partial^2 h + m^2 \mathcal{E}_{\varphi} &= 0 \end{aligned} \\ \begin{aligned} \partial^2 \varphi + \mathcal{E}_{\varphi} &= \frac{T}{M_P^2} \end{aligned}$$

Two regimes:

$$\partial^2 \varphi = M_{\rm P}^{-2} T$$

 $h \neq h_{\rm GR}$

$$\partial^2 \varphi \ll \mathcal{E}_{\varphi} = M_{\rm P}^{-2} T$$

 $h \approx h_{\rm GR}$

k-mouflage simple explanation 2

Demix kinetic terms for φ and $h: h \to \hat{h} + \varphi$

$$S_{k-mouflage} \sim M_P^2 \int h \,\partial^2 h + \varphi \partial^2 \varphi + m^2 K_{NL} + hT + \varphi T$$

Variation wrt
$$h_{\mu\nu}$$
: $\partial^2 \hat{h} = T/M_P^2$
Variation wrt $\varphi: \partial^2 \varphi + m^2 \mathcal{E}_{\varphi} = T/M_P^2$

$$\partial^2 \varphi = M_{\rm P}^{-2} T$$
$$h \neq h_{\rm GR}$$

$$\partial^2 \varphi \ll \mathcal{E}_{\varphi} = M_{\rm P}^{-2} T$$
$$h \approx h_{\rm GR}$$

k-mouflage action

$$S_{k-mouflage} = M_P^2 \int d^4x \sqrt{-g} \left[R + \frac{\varphi}{2M_P} R + m^2 K_{NL}(\partial\varphi, \partial^2\varphi, ...) \right] + S_m[g]$$

Expand in perturbations $h_{\mu\nu}$ around Minkowski:

- keep the Einstein-Hilbert term up to h^2 ,

- keep only the first order in h in the mixing term $\sim \varphi R$ (because φ/M_P will be of order of h or of higher order as we will verify later),

- do not expand K_{NL} , because the Vainshtein mechanism relies precisely on the non-linearity of this term,

- normalize the spin-2 perturbations as $h_{\mu\nu} \to \hat{h}_{\mu\nu}/M_P$.

k-mouflage expanded action

$$S_{k-m} = \int d^4x \left\{ -\frac{1}{2} \hat{h}^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} \hat{h}_{\alpha\beta} + \hat{h}^{\mu\nu} \varphi_{,\mu\nu} - \hat{h} \Box \varphi + M_P^2 m^2 K_{NL} + T_{\mu\nu} \hat{h}^{\mu\nu} \right\}$$

$$\mathcal{E}^{\alpha\beta}_{\mu\nu}h_{\alpha\beta} = -\frac{1}{2}\partial_{\mu}\partial_{\nu}h - \frac{1}{2}\Box h_{\mu\nu} + \frac{1}{2}\partial_{\rho}\partial_{\mu}h^{\rho}_{\nu} + \frac{1}{2}\partial_{\rho}\partial_{\nu}h^{\rho}_{\mu} - \frac{1}{2}\eta_{\mu\nu}(\partial^{\rho}\partial^{\sigma}h_{\rho\sigma} - \Box h)$$

redefine the spin-2 mode as $\hat{h}_{\mu\nu} = \tilde{h}_{\mu\nu} - \eta_{\mu\nu}\phi$

$$S_{k-m} = \int d^4x \left\{ -\frac{1}{2} \tilde{h}^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} \tilde{h}_{\alpha\beta} + \frac{3}{2} \varphi \Box \varphi + M_P^2 m^2 K_{NL} + \frac{1}{M_P} \left(T_{\mu\nu} \tilde{h}^{\mu\nu} - T\varphi \right) \right\}$$

k-mouflage expanded action

$$S_{k-m} = \int d^4x \left\{ -\frac{1}{2} \hat{h}^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} \hat{h}_{\alpha\beta} + \hat{h}^{\mu\nu} \varphi_{,\mu\nu} - \hat{h} \Box \varphi + M_P^2 m^2 K_{NL} + T_{\mu\nu} \hat{h}^{\mu\nu} \right\}$$

$$\mathcal{E}^{\alpha\beta}_{\mu\nu}h_{\alpha\beta} = -\frac{1}{2}\partial_{\mu}\partial_{\nu}h - \frac{1}{2}\Box h_{\mu\nu} + \frac{1}{2}\partial_{\rho}\partial_{\mu}h^{\rho}_{\nu} + \frac{1}{2}\partial_{\rho}\partial_{\nu}h^{\rho}_{\mu} - \frac{1}{2}\eta_{\mu\nu}(\partial^{\rho}\partial^{\sigma}h_{\rho\sigma} - \Box h)$$

redefine the spin-2 mode as $\hat{h}_{\mu\nu} = \tilde{h}_{\mu\nu} - \eta_{\mu\nu}\phi$

$$S_{k-m} = \int d^4x \left\{ -\frac{1}{2} \tilde{h}^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} \tilde{h}_{\alpha\beta} + \frac{3}{2} \varphi \Box \varphi + M_P^2 m^2 K_{NL} + \frac{1}{M_P} \left(T_{\mu\nu} \tilde{h}^{\mu\nu} - T\varphi \right) \right\}$$

- the spin-0 and spin-2 modes decouple
- a non-minimal scalar-matter coupling appears

k-mouflage

two regimes

$$\mathcal{E}^{\alpha\beta}_{\mu\nu}\tilde{h}_{\alpha\beta} = \frac{T_{\mu\nu}}{M_P}$$
$$3\Box\varphi + \mathcal{E}_{\varphi} = \frac{T}{M_P}$$

where
$$\mathcal{E}_{\varphi} \equiv M_P^2 m^2 \frac{\delta K_{NL}}{\delta \varphi}$$

Linear regime

$$\left. \begin{array}{c} \mathcal{E}^{\alpha\beta}_{\mu\nu}\tilde{h}_{\alpha\beta} = T_{\mu\nu}/M_P \\ 3\Box\varphi = T/M_P \end{array} \right\} \varphi \sim \tilde{h}$$

the (normalized) physical metric $\hat{h} \sim \tilde{h} + \tilde{\phi}$ receives corrections $\mathcal{O}(1)$

$$\begin{cases} \mathcal{E}^{\alpha\beta}_{\mu\nu}\tilde{h}_{\alpha\beta} = T_{\mu\nu}/M_P\\ \mathcal{E}_{\varphi} = T/M_P \end{cases}\\ \partial^2\varphi \ll \mathcal{E}_{\varphi} = M_P^{-1}T\\ h \approx h_{\rm GR} \end{cases}$$

GR is restored

Non-linear regime

non-GR

k-mouflage scalings

$$\mathcal{E}_{\varphi} \sim \partial^{n-k+3} \varphi^k / \Lambda_n^n$$

- Schematic form of kinetic self-interacting

Spherical symmetry:
$$\partial \to 1/r \longrightarrow \mathcal{E}_{\varphi} \sim (\Lambda_n)^{-n} r^{k-n-3} \varphi^k$$

 $\Lambda_n^n = M_P m^{n-1}$ - strong coupling scale

$$\varphi \sim \frac{M_P r_S}{r}, \ r > r_V$$

$$\varphi \sim \frac{1}{r} (M_P r_S)^{1/k} (\Lambda_n r)^{n/k}, \ r < r_V$$

$$r_V = \frac{1}{\Lambda_n} (M_P r_S)^{(k-1)/n}$$

k-essence

$$\mathcal{L} = \frac{1}{m^3 M_P} \left(\partial\varphi\right)^4$$
$$r_V = \frac{1}{\Lambda_4} \left(M_P r_S\right)^{1/2}$$

$$k = 3, n = 4, \Lambda_4 = \left(M_P m^3\right)^{1/4}$$

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -e^{\nu(R)}dt^{2} + e^{\lambda(R)}dR^{2} + R^{2}d\Omega^{2}$$

Galileons

cubic galileon

$$S_{k-m} = \int d^4x \left\{ -\frac{1}{2} \tilde{h}^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} \tilde{h}_{\alpha\beta} + \frac{1}{2} \varphi \Box \varphi + M_P^2 m^2 K_{NL} + \frac{1}{M_P} \left(T_{\mu\nu} \tilde{h}^{\mu\nu} - T \varphi \right) \right\}$$
$$M_P^2 m^2 K_{NL} = \frac{1}{2m^2 M_P} (\partial \varphi)^2 \Box \varphi \qquad \rightarrow \qquad \Lambda_3 = \left(m^2 M_P \right)^{1/3}, \ r_V = \left(\frac{r_S}{m^2} \right)^{1/3}$$

$$\begin{array}{ll} \text{current:} & J^{\mu} = \partial^{\mu}\varphi - \frac{1}{M^{2}}\Box\varphi\partial^{\mu}\varphi + \frac{1}{2M^{2}}\nabla^{\mu}\left((\partial_{\lambda}\varphi)^{2}\right)\\ \text{EOM:} & \nabla_{\mu}J^{\mu} = \frac{T}{M_{P}} \quad \rightarrow \quad \frac{1}{r^{2}}\partial_{r}\left(r^{2}J^{r}\right) = \frac{T}{M_{P}}\\ \varphi' = \frac{m^{2}M_{P}r}{4}\left(1 \pm \sqrt{1 + \frac{8r_{S}}{m^{2}r^{3}}}\right) = \left\{\begin{array}{l} \varphi' = -\frac{M_{P}r_{S}}{r^{2}}, \ r > r_{V}\\ \varphi' = -\frac{M_{P}m}{\sqrt{2}}\left(\frac{r_{S}}{r}\right)^{1/2}, \ r < r_{V}\\ |\varphi| \ll |h|, \ \text{for } r > r_{V}\\ |\varphi| \ll |h|, \ \text{for } r < r_{V}\end{array}\right.\end{array}$$

Galileons

other galileons

$$S_g = \int d^4x \left\{ \frac{1}{2} \varphi \Box \varphi + M_P^2 m^2 K_{NL} - \frac{1}{M_P} T\varphi \right\}$$

Galileon Lagrangians (Horndeski'74, Fairlie et al'92, Nicolis'09, Deffayet et al'09+many others)

$$\mathcal{L}_{2} = K(X), \qquad X = \frac{1}{2} (\partial \varphi)^{2}$$

$$\mathcal{L}_{3} = G^{(3)}(X) \Box \varphi$$

$$\mathcal{L}_{4} = G^{(4)}_{,X}(X) \left[(\Box \varphi)^{2} - (\nabla \nabla \varphi)^{2} \right] + R G^{(4)}(X),$$

$$\mathcal{L}_{5} = G^{(5)}_{,X}(X) \left[(\Box \varphi)^{3} - 3 \Box \varphi (\nabla \nabla \varphi)^{2} + 2 (\nabla \nabla \varphi)^{3} \right] - 6 G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \varphi G^{(5)}(X)$$

The Vainshtein mechanism works for a generic galileon:

- non-covariant galileons (Nicolis'09)
- ➡ ...

Horndeski model (Koyama et al'13, Kase&Tsujikawa'13)

Calileons induced coupling

The Vainshtein mechanism with time dependent boundary conditions (EB&Esposito-Fasere'12)

$$S = 2M_P^2 \int d^4x \sqrt{-g} \left\{ \frac{R}{4} - \frac{k_2}{2} (\partial_\mu \varphi)^2 - \frac{k_3}{2M^2} \Box \varphi (\partial_\mu \varphi)^2 \right\} + S_{\rm m} \left[\psi_{\rm m}; \tilde{g}_{\mu\nu} \right]$$

 $\varphi = \phi(r) + \dot{\varphi}_c t + \varphi_0$

- because of cosmological evolution (e.g. in KGB, *deffayet et al'10*)

Solution for a spherically symmetric source

$$\begin{split} \varphi' &= -\frac{k_2 M^2 r}{4k_3} \left(1 \pm \sqrt{1 + \frac{4k_3 r_S}{k_2^2 M^2 r^3}} \,\alpha_{\text{eff}} \right) \\ \alpha_{\text{eff}} &\equiv \alpha + \frac{k_3 \dot{\varphi}_c^2}{M^2} \\ \alpha_{\text{eff}} &= \alpha + \frac{k_3 \dot{\varphi}_c^2}{M^2} \end{split} \quad \begin{array}{l} \text{Naturally} \quad \varphi \sim H \sim M \Rightarrow \text{ the induced} \\ \text{coupling is of the order of 1 } ! \end{split}$$

Non-linear massive gravity potential for metric

Need to construct a mass term -> introduce an extra metric

 $g_{\mu\nu}$:physical metric, matter couples to it

 $f_{\mu\nu}$:an extra metric (may be dynamical or fixed)

Construct a potential, following the rules:

- general covariance under diffeomorphisms (common to the two metrics)
- has flat spacetime as solution for physical metric

- when expanding around flat metric the potential takes a specific form, the Pauli-Fierz form

building block: $\mathbf{g}^{-1}\mathbf{f}$

$$S_{int}^{(2)} \equiv -\frac{1}{8}m^2 M_P^2 \int d^4x \ \sqrt{-f} \ H_{\mu\nu} H_{\sigma\tau} \left(f^{\mu\sigma} f^{\nu\tau} - f^{\mu\nu} f^{\sigma\tau} \right)$$
(Boulware & Deser'72)
$$S_{int}^{(3)} \equiv -\frac{1}{8}m^2 M_P^2 \int d^4x \ \sqrt{-g} \ H_{\mu\nu} H_{\sigma\tau} \left(g^{\mu\sigma} g^{\nu\tau} - g^{\mu\nu} g^{\sigma\tau} \right)$$
(Arkani-Hamed et al'03)

where $H_{\mu\nu} = g_{\mu\nu} - f_{\mu\nu}$

Boulware-Deser ghost

There are two propagating scalars: one is a ghost ! (Boulware & Deser'72)

The presence of ghosts is not connected to the Vainshtein mechanism.

equations of motion

EOMS
$$M_P^2 G_{\mu\nu} = \left(T_{\mu\nu} + T_{\mu\nu}^g\right)$$

 $T_{\mu\nu}^g(x) = -\frac{2}{\sqrt{-g}} \frac{\delta}{\delta g^{\mu\nu}(x)} S_{int}(f,g)$

ansatz

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -e^{\nu(R)}dt^{2} + e^{\lambda(R)}dR^{2} + R^{2}d\Omega^{2} ,$$

$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + \left(1 - \frac{R\mu'(R)}{2}\right)^{2}e^{-\mu(R)}dR^{2} + e^{-\mu(R)}R^{2}d\Omega^{2}$$
$$\prod_{i=1}^{N}$$

 $T_{tt}^g = m^2 M_P^2 f_t, \quad T_{RR}^g = m^2 M_P^2 f_R, \quad \nabla^\mu T_{\mu R}^g = -m^2 M_P^2 f_g,$

equations of motion

EOMs
$$M_P^2 G_{\mu\nu} = \left(T_{\mu\nu} + T_{\mu\nu}^g\right)$$

 $T_{\mu\nu}^g(x) = -\frac{2}{\sqrt{-g}} \frac{\delta}{\delta g^{\mu\nu}(x)} S_{int}(f,g)$

Non-linear massive gravity Stuckelberg approach

Stuckelberg approach (Arkani-Hamed et al'03)

 $X^A \to x^\mu$ $f_{AB}(X) \to f_{\mu\nu}(x) = \partial_\mu X^A(x) \partial_\nu X^B(x) f_{AB}(X(x))$ consider X^A as 4 dynamical fields

Unitary gauge: $f_{AB} = \eta_{AB} = diag(-1, 1, 1, 1)$ in non-unitary gauge $g_{\mu\nu}$ and X^A

expansion around unitary gauge: $X_0^A(x) \equiv \delta^A_\mu x^\mu$ "pion" fields, $X^A(x) = X_0^A(x) + \pi^A(x)$ $\pi^A(x) = \delta^A_\mu \left(A^\mu(x) + \eta^{\mu\nu}\partial_\nu\phi\right).$

Stuckelberg approach

$$\begin{split} H_{\mu\nu} &= h_{\mu\nu} - \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - 2\partial_{\mu}\partial_{\nu}\phi - \partial_{\mu}A_{\sigma}\partial_{\nu}A^{\sigma} \\ &- \partial_{\mu}\partial_{\sigma}\phi \ \partial_{\nu}\partial^{\sigma}\phi - \partial_{\nu}A^{\sigma}\partial_{\mu}\partial_{\sigma}\phi - \partial_{\mu}A^{\sigma}\partial_{\nu}\partial_{\sigma}\phi \\ \hat{h}_{\mu\nu} &= M_{P}h_{\mu\nu}, \ \tilde{A}^{\mu} = M_{P}mA^{\mu}, \ \tilde{\phi} = M_{P}m^{2}\phi \\ \hat{h}_{\mu\nu} &= \tilde{h}_{\mu\nu} - \eta_{\mu\nu}\tilde{\phi} \end{split}$$

$$S = \frac{1}{8} \int d^4x \Big\{ 2\tilde{h}^{\mu\nu}\partial_{\mu}\partial_{\nu}\tilde{h} - 2\tilde{h}^{\mu\nu}\partial_{\nu}\partial_{\sigma}\tilde{h}^{\sigma}_{\mu} + \tilde{h}^{\mu\nu}\Box\tilde{h}_{\mu\nu} - \tilde{h}\Box\tilde{h} \\ + m^2 \left(\tilde{h}^2 - \tilde{h}_{\mu\nu}\tilde{h}^{\mu\nu}\right) - \tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu} - 4m \left(\tilde{h}\partial\tilde{A} - \tilde{h}_{\mu\nu}\partial^{\mu}\tilde{A}^{\nu}\right) \\ + 6\tilde{\phi}(\Box + 2m^2)\tilde{\phi} - m^2\tilde{h}\phi + 2m\tilde{\phi}\partial\tilde{A} \Big\} + \frac{1}{2}\frac{T_{\mu\nu}}{M_P}\tilde{h}^{\mu\nu} - \frac{1}{2}\frac{T}{M_P}\tilde{\phi}$$

Expand the action in $\tilde{\phi}$, \tilde{A} and $\tilde{h}_{\mu\nu}$ to next orders, cubic self-interactions suppressed by Λ_5 , the strongest interactions:

 $\Lambda_5 = \left(m^4 M_P\right)^{1/5}$

Non-linear massive gravity action and EOM in decoupling limit

Vainshtein mechanism in decoupling limit of massive gravity (*EB*, *Deffayet*, *Ziour'09*)

Decoupling limit

 $M_P \to \infty, \ m \to 0, \ \Lambda_5 \sim \text{constant}, \ T_{\mu\nu}/M_P \sim \text{constant}$

$$S = \frac{1}{2} \int d^4x \left\{ \frac{3}{2} \tilde{\phi} \Box \tilde{\phi} + \frac{1}{\Lambda_5^5} \left[\alpha \left(\Box \tilde{\phi} \right)^3 + \beta \left(\Box \tilde{\phi} \, \tilde{\phi}_{,\mu\nu} \, \tilde{\phi}^{,\mu\nu} \right) \right] - \frac{1}{M_P} T \tilde{\phi} \right\}$$

k-mouflage: $S_{km} = \int d^4x \left\{ \frac{1}{2} \varphi \Box \varphi + \frac{M_P^2 m^2 K_{NL}}{M_P m^2 K_{NL}} - \frac{1}{M_P} T \varphi \right\}$
$$3 \Box \tilde{\phi} + \frac{1}{\Lambda^5} \left[3 \alpha \Box \left(\Box \tilde{\phi} \right)^2 + \beta \Box \left(\tilde{\phi}_{,\mu\nu} \, \tilde{\phi}^{,\mu\nu} \right) + 2\beta \, \partial_\mu \partial_\nu \left(\Box \tilde{\phi} \, \tilde{\phi}^{,\mu\nu} \right) \right] = \frac{1}{M_P} T$$

EOM - spherical symmetry

$$\frac{2}{\Lambda_5^5}Q(\tilde{\mu}) + \frac{3}{2} \tilde{\mu} = \frac{M_P r_S}{r^3}, \quad \tilde{\mu} = -\frac{2}{r}\tilde{\phi}'$$

Q is a non-linear function

$$\begin{aligned} Q(\mu) &= -\frac{1}{2R} \left\{ 3\alpha \left(6\mu\mu' + 2R\mu'^2 + \frac{3}{2}R\mu\mu'' + \frac{1}{2}R^2\mu'\mu'' \right) \right. \\ &\left. +\beta \left(10\mu\mu' + 5R\mu'^2 + \frac{5}{2}R\mu\mu'' + \frac{3}{2}R^2\mu'\mu'' \right) \right\} \end{aligned}$$

$$\begin{split} S_{int}^{(2)} &\equiv -\frac{1}{8}m^2 M_P^2 \int d^4 x \, \sqrt{-f} \, H_{\mu\nu} H_{\sigma\tau} \left(f^{\mu\sigma} f^{\nu\tau} - f^{\mu\nu} f^{\sigma\tau} \right) \qquad Q(\tilde{\mu}) = \frac{\tilde{\mu}'^2}{4} + \frac{\tilde{\mu} \tilde{\mu}''}{2} + \frac{2\tilde{\mu} \tilde{\mu}'}{r} \\ S_{int}^{(3)} &\equiv -\frac{1}{8}m^2 M_P^2 \int d^4 x \, \sqrt{-g} \, H_{\mu\nu} H_{\sigma\tau} \left(g^{\mu\sigma} g^{\nu\tau} - g^{\mu\nu} g^{\sigma\tau} \right) \qquad Q(\tilde{\mu}) = -\frac{\tilde{\mu}'^2}{4} - \frac{\tilde{\mu} \tilde{\mu}''}{2} - \frac{2\tilde{\mu} \tilde{\mu}'}{r} \end{split}$$

solutions in decoupling limit

$$\frac{2}{\Lambda_5^5}Q(\tilde{\mu}) + \frac{3}{2} \tilde{\mu} = \frac{M_P r_S}{r^3}, \quad Q(\tilde{\mu}) = -\frac{\tilde{\mu}'^2}{4} - \frac{\tilde{\mu}\tilde{\mu}''}{2} - \frac{2\tilde{\mu}\tilde{\mu}'}{r}$$

Newtonian gauge:

$$ds^{2} = -(1 + \Psi/M_{P})dt^{2} + (1 - \Phi/M_{P})(dr^{2} + r^{2}d\Omega^{2})$$

$$\begin{split} \Psi &= -\frac{4M_P}{3} \frac{r_S}{r} \left[1 + \mathcal{O} \left(\frac{r_V}{r} \right)^5 \right], \\ \Phi &= -\frac{2M_P}{3} \frac{r_S}{r} \left[1 + \mathcal{O} \left(\frac{r_V}{r} \right)^5 \right], \\ \tilde{\phi} &= \frac{M_P}{3} \frac{r_S}{r} \left[1 + \mathcal{O} \left(\frac{r_V}{r} \right)^5 \right], \end{split}$$

$$\Psi = -\frac{M_P r_S}{r} + \frac{M_P r_S}{r} \times \mathcal{O}\left(\frac{r}{r_V}\right)^{5/2}$$
$$\Phi = \Psi$$
$$\tilde{\phi} = -\frac{2\sqrt{2}M_P r_S}{9} \frac{r_S}{r} \left(\frac{r}{r_V}\right)^{5/2}$$

solutions in decoupling limit

$$\frac{2}{\Lambda_5^5}Q(\tilde{\mu}) + \frac{3}{2} \ \tilde{\mu} = \frac{M_P r_S}{r^3}, \quad Q(\tilde{\mu}) = -\frac{\tilde{\mu}'^2}{4} - \frac{\tilde{\mu}\tilde{\mu}''}{2} - \frac{2\tilde{\mu}\tilde{\mu}'}{r}$$

Massive gravity without Boulware-Deser ghost (de Rham-Gabadabze-Tolley'10)

$$\mathcal{K} = \mathbb{I} - \sqrt{\mathbf{g}^{-1}\mathbf{f}}.$$

$$S = M_P^2 \int d^4x \sqrt{-g} \left[R + 2m^2 \left(e_2 \left(\mathcal{K} \right) + \alpha_3 e_3 \left(\mathcal{K} \right) + \alpha_4 e_4 \left(\mathcal{K} \right) \right) \right]$$

$$e_{2}(\mathcal{K}) = \frac{1}{2} \left([\mathcal{K}]^{2} - [\mathcal{K}^{2}] \right)$$

$$e_{3}(\mathcal{K}) = \frac{1}{6} \left([\mathcal{K}]^{3} - 3[\mathcal{K}][\mathcal{K}^{2}] + 2[\mathcal{K}^{3}] \right)$$

$$e_{4}(\mathcal{K}) = \frac{1}{24} \left([\mathcal{K}]^{4} - 6[\mathcal{K}]^{2}[\mathcal{K}^{2}] + 3[\mathcal{K}^{2}]^{2} + 8[\mathcal{K}][\mathcal{K}^{3}] - 6[\mathcal{K}^{4}] \right)$$

decoupling limit

$$\begin{aligned} \mathcal{K}^{\mu}_{\nu} &= \delta^{\mu}_{\nu} - \sqrt{\delta^{\mu}_{\nu} - g^{\mu\alpha}} H_{\alpha\nu} \\ \text{Expand action in powers of } \hat{H} &\equiv H^{\mu}_{\nu} = (g^{-1}H) \\ H_{\mu\nu} &= h_{\mu\nu} - \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - 2\partial_{\mu}\partial_{\nu}\phi - \partial_{\mu}A_{\sigma}\partial_{\nu}A^{\sigma} \\ &- \partial_{\mu}\partial_{\sigma}\phi \ \partial_{\nu}\partial^{\sigma}\phi - \partial_{\nu}A^{\sigma}\partial_{\mu}\partial_{\sigma}\phi - \partial_{\mu}A^{\sigma}\partial_{\nu}\partial_{\sigma}\phi \\ \hat{h}_{\mu\nu} &= M_{P}h_{\mu\nu}, \ \tilde{A}^{\mu} = M_{P}mA^{\mu}, \ \tilde{\phi} = M_{P}m^{2}\phi \\ \hat{h}_{\mu\nu} &= \tilde{h}_{\mu\nu} - \eta_{\mu\nu}\tilde{\phi} \end{aligned}$$

The same procedure as in case of NLMG

 $\sim (\partial \tilde{\phi})^3 / (M_P m^4)$ cancel out $\Lambda_3 = (m^2 M_P)^{1/3}$

Decoupling limit :

 $M_P \to \infty, \ m \to 0, \ \Lambda_3 \sim \text{const}, \ T_{\mu\nu}/M_P \sim \text{const}$

$$S = \int d^4x \Big\{ -\frac{1}{2} \hat{h}^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} \hat{h}_{\alpha\beta} + \hat{h}^{\mu\nu} X^{(1)}_{\mu\nu} + \frac{\tilde{\alpha}}{\Lambda_3^3} \hat{h}^{\mu\nu} X^{(2)}_{\mu\nu} + \frac{\tilde{\beta}}{\Lambda_3^6} \hat{h}^{\mu\nu} X^{(3)}_{\mu\nu} + T_{\mu\nu} \hat{h}^{\mu\nu} \Big\}$$

$$\begin{split} X^{(1)}_{\mu\nu} &= \frac{1}{2} \epsilon_{\mu}{}^{\alpha\rho\sigma} \epsilon_{\nu}{}^{\beta}{}_{\rho\sigma} \Phi_{\alpha\beta}, \\ X^{(2)}_{\mu\nu} &= -\frac{1}{2} \epsilon_{\mu}{}^{\alpha\rho\gamma} \epsilon_{\nu}{}^{\beta\sigma}{}_{\gamma} \Phi_{\alpha\beta} \Phi_{\rho\sigma}, \\ X^{(3)}_{\mu\nu} &= \frac{1}{6} \epsilon_{\mu}{}^{\alpha\rho\gamma} \epsilon_{\nu}{}^{\beta\sigma\delta} \Phi_{\alpha\beta} \Phi_{\rho\sigma} \Phi_{\gamma\delta} \end{split}$$

$$\Phi_{\alpha\beta} \equiv \varphi_{,\alpha\beta}$$

$$S_{k-m} = \int d^4x \left\{ -\frac{1}{2} \hat{h}^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} \hat{h}_{\alpha\beta} + \hat{h}^{\mu\nu} \varphi_{,\mu\nu} - \hat{h} \Box \varphi + M_P^2 m^2 K_{NL} + T_{\mu\nu} \hat{h}^{\mu\nu} \right\}$$

Nonlinear field redefinition:

$$\hat{h}_{\mu\nu} = \tilde{h}_{\mu\nu} - \eta_{\mu\nu}\tilde{\phi} - \tilde{\alpha}\frac{\partial_{\mu}\tilde{\phi}\partial_{\nu}\tilde{\phi}}{\Lambda_3^3},$$

$$S = \int d^4x \left\{ -\frac{1}{2} \tilde{h}^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} \tilde{h}_{\alpha\beta} + \frac{3}{2} \tilde{\phi} \Box \tilde{\phi} - \frac{\tilde{\alpha}}{\Lambda_3^3} \tilde{\phi}^{,\mu} \tilde{\phi}^{,\nu} X^{(1)}_{\mu\nu} - \frac{1}{\Lambda_3^6} \left(\frac{\tilde{\alpha}^2}{2} + \frac{\tilde{\beta}}{3} \right) \tilde{\phi}^{,\mu} \tilde{\phi}^{,\nu} X^{(2)}_{\mu\nu} + \frac{\tilde{\beta}}{\Lambda_3^6} \left(h^{\mu\nu} - \frac{\tilde{\alpha}}{\Lambda_3^3} \tilde{\phi}^{,\mu} \tilde{\phi}^{,\nu} \right) X^{(3)}_{\mu\nu} + \frac{1}{M_P} \left(T_{\mu\nu} \tilde{h}^{\mu\nu} - T \tilde{\phi} - \frac{\tilde{\alpha}}{\Lambda_3^3} T_{\mu\nu} \partial^{\mu} \tilde{\phi} \partial^{\nu} \tilde{\phi} \right) \right\}.$$

Additional constraint because of stability (Berezhiani et al'13)

decoupling limit - special case

$$\frac{3}{2}\tilde{\mu} + \frac{3\tilde{\alpha}}{2\Lambda_3^3}\tilde{\mu}^2 + \frac{\tilde{\alpha}^2}{4\Lambda_3^6}\tilde{\mu}^3 = \frac{M_P r_S}{r^3}, \quad \tilde{\mu} = -\frac{2}{r}\tilde{\phi}'$$
$$r_V = \left(r_S/m^2\right)^{1/3}$$

Solution inside the Vainshtein radius

$$\begin{split} \Psi &= -\frac{M_P r_S}{r} + \frac{M_P r_S}{r} \times \mathcal{O}\left(\frac{r}{r_V}\right)^2, \ \Phi &= -\frac{M_P r_S}{r} + \frac{M_P r_S}{r} \times \mathcal{O}\left(\frac{r}{r_V}\right), \\ \tilde{\phi} &= -\frac{M_P r_S}{(2\tilde{\alpha}^2)^{1/3} r} \left(\frac{r}{r_V}\right)^2 \end{split}$$

decoupling limit - general case

EOMs:

$$\begin{aligned} \mathcal{E}^{\alpha\beta}_{\mu\nu}\tilde{h}_{\alpha\beta} &- \frac{\tilde{\beta}}{\Lambda_3^6} X^{(3)}_{\mu\nu} = \frac{T_{\mu\nu}}{M_P}, \\ 3\Box\tilde{\phi} &+ \frac{3\tilde{\alpha}}{\Lambda_3^3} \Phi^{\mu\nu} X^{(1)}_{\mu\nu} + \frac{4}{\Lambda_3^6} \left(\frac{\tilde{\alpha}^2}{2} + \frac{\tilde{\beta}}{3}\right) \Phi^{\mu\nu} X^{(2)}_{\mu\nu} + \frac{5\alpha\beta}{\Lambda_3^3} \Phi^{\mu\nu} X^{(3)}_{\mu\nu} \\ &+ \frac{\tilde{\beta}}{2\Lambda_3^6} \partial_\alpha \partial_\beta \tilde{h}^{\mu\nu} \epsilon_{\mu}{}^{\alpha\rho\gamma} \epsilon_{\nu}{}^{\beta\sigma\delta} \Phi_{\rho\sigma} \Phi_{\gamma\delta} = \frac{T}{M_P} - \frac{2\tilde{\alpha}}{M_P \Lambda_3^3} \Phi^{\mu\nu} T_{\mu\nu} \end{aligned}$$

decoupling limit - general case

Solution inside the Vainshtein radius

$$\Psi = \Phi = -\frac{M_P r_S}{r} + \frac{M_P r_S}{r} \times \mathcal{O}\left(\frac{r}{r_V}\right)^3, \, \tilde{\phi} = -\frac{M_P m^2}{\sqrt{\tilde{\beta}}}r^2$$

$$\frac{3}{2}\tilde{\mu} + \frac{3\tilde{\alpha}}{2\Lambda_3^3}\tilde{\mu}^2 + \left(\frac{\tilde{\alpha}^2}{2} + \frac{\tilde{\beta}}{3}\right)\frac{\tilde{\mu}^3}{2\Lambda_3^3} - \frac{\tilde{\beta}^2\tilde{\mu}^5}{96\Lambda_3^3} = \frac{M_P r_S}{r^3}\left(1 - \frac{\tilde{\beta}\mu^2}{4\Lambda_3^3}\right)$$

Vainshtein mechanism in bi-gravity

Action for bi-gravity (Hassan&Rosen'11)

$$S = M_P^2 \int d^4x \sqrt{-g} \left(\frac{R[g]}{2} + m^2 \mathcal{U}[g, f]\right) + S_m[g] + \frac{\kappa M_P^2}{2} \int d^4x \sqrt{-f} \mathcal{R}[f]$$

Decoupling limit?

Weak-field approximation *(EB,Deffayet,Ziour'10)* Vainshtein mechanism in bi-gravity *(EB,Crisostomi'13)*

$$\begin{split} ds^2 &= -e^{\nu} dt^2 + e^{\lambda} dr^2 + r^2 d\Omega^2, \\ df^2 &= -e^n dt^2 + e^l \left(r + r\mu \right)'^2 dr^2 + (r + r\mu)^2 d\Omega^2 \\ \{\lambda, \nu, l, n\} \ll 1, \quad \{r \lambda', r \nu', r l', r n'\} \ll 1 \end{split}$$

see talk by Marco Crisostomi

Vainshtein mechanism in full NLMG

Numerical solution for the full system of equations (EB, Deffayet, Ziour'09)

Vainshtein mechanism in full dRGT

Numerical solution for the full system of equations (Volkov'12, Gruzinov& Mirbabayi'12)

Also in bi-gravity (Volkov'12)

The Vainshtein mechanism does work !

Super-Vainshtein mechanism and MOND

Improving MOND (EB, Deffayet, Esposito-Farese'11)

CONCLUSIONS

The Vainshtein mechanism as k-mouflage

- k-essence
- galileons
- The Vainshtein mechanism in the decoupling limit of the nonlinear massive gravity
- The Vainshtein mechanism in the decoupling limit of the dRGT theory
- Other examples: bi-gravity, full NLMG and full dRGT
- Stability of solutions (ghosts, Laplace instabilities?)
- Strong coupling and problems on quantum level ?
- Superluminality
- Very compact stars (no solutions for far) ?