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Motivation

• Fermions are ubiquitous in description of the ’real’ world;
conceptually they are nicely incorporated via supersymmetry

• Most physics (for all practical purposes)
is best described non-relativistically, e.g. Newtonian gravity
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Motivation

• Fermions are ubiquitous in description of the ’real’ world;
conceptually they are nicely incorporated via supersymmetry

• Most physics (for all practical purposes)
is best described non-relativistically, e.g. Newtonian gravity

Our goal:

• we want to study non-relativistic supergravity/-particles

A simplification:

• to make our task easier we start with lower-dimensional 3D toy
models
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Diagrammatic motivation

General relativity non − rel // Newtonian gravity

SUSY

��

SUSY

��

Supergravity non − rel // ??
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Outline

• Motivation

• Our setup:
◦ Gauge the super-Bargmann algebra
◦ Impose contraints to obtain

Newton–Cartan super-gravity [Andringa,Bergshoeff,Rosseel,Sezgin ’13]

◦ Fix Stückelberg symmetries to obtain supergravity for the Galilean
observer

• Results obtained so far

• Future directions
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The setup

• Gauge the N = 2 super-Bargmann algebra.

• Impose contraints, e.g. to convert time- and space-translations
into general coordinate transformations

• At this point we have Newton–Cartan supergravity

• The constraints turn some fields into pure Stückelberg fields
that can be gauged away

• Doing so will lead to supergravity for the Galilean observer, thus to
a supersymmetric version of Newtonian gravity
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Gauging the N = 2 super-Bargmann algebra

• Bargmann algebra in 3D:(
H,Pa,Ga, Jab,Z ,Q

+
α ,Q

−
α

)

Why N = 2 : {Q+
α ,Q

+
β } = 2δαβH ,

{Q+
α ,Q

−
β } = −[γa0]αβPa .

• Gauged algebra: for each generator (e.g. Z ) we have associated
– gauge fields (mµ),
– gauge parameters (δmµ = ∂µσ + λaeµa+fermionic) and
– curvatures (R̂µν(Z ) = 2∂[µmν] − 2ω[µ

aeν]a+fermionic).
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From Bargmann to Newton–Cartan to Galileo

• Gauged algebra: gauge fields, gauge parameters and curvatures.

• Impose constraints: R̂µν
a(P) = 0, R̂µν

ab(J) = 0, R̂µν(H) = 0,
R̂µν(Z ) = 0 and ψ̂µν+ = 0.

• This allows us to convert H- and Pa-transformations into general
coordinate transformations.

• Setting some of the gauge fields to zero, while fixing constant
values for others we can remove all residual gauge freedom.

• The only fields left are the Newton force Φi = ∂iΦ = ∂im∅ and its
supersymmetric partner Ψ = ψ∅−.

• It is not possible to write down a closed algebra in terms of Φ and
Ψ!
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Results obtained so far

• We know the supersymmetric partner of the Newton force Φi .

• We found a representation of the N = 2 super-Bargmann algebra
realized on the “Newton potentials” Φi and Ψ:

δΦi = . . .− λmnx
n∂mΦi + ε̄−(t)γ0∂iΨ +

1

2
ε̄+γiΨ

δΨ = . . .− λi jx j∂iΨ +
1

4
λabγabΨ + ε̇(t)− 1

2
Φkγk0ε+

• We can write the algebra in terms of Φ thereby introducing the
dual potentials χ and Ξ: Ψ = (1/2)γ i∂iχ and ∂iΦ = εij∂

jΞ.

• Ξ is a bosonic dual to Φ that is needed to close the algebra.
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Future directions

• Repeat the analysis in 4D, i.e. find the supersymmetric partner(s)
of Φ at the level of the algebra.

• Find other ’multiplets’ in 3D.

• Find an action for a (3D) superparticle:

I =
m

2

∫
dt {ẋ i ẋ i + 2Φ + SUSY extension}
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Summary

GR non − rel // Newtonian gravity,Φ

SUSY

��

SUSY

��

SUGRA non − rel // Φ, χ,Ξ (algebra) particle?
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