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This work, ... grew out of an attempt to derive a purely 
combinatorial formula for the Pontrjagin number of a 4-
manifold...  
This process got stuck by the emergence of a boundary 
term which did not yield to a simple combinatorial 
analysis. The boundary term seemed interesting in its 
own right and it and its generalization are the subject of 
this paper.  



1. Topological invariants 



Euler characteristic 

V=4 
E=6 
F=4 

V=8 
E=12 
F=6 

V=6 
E=12 
F=8 

…… 

  Independent of REGULARITY 
  Independent of SIZE  
  Independent of SHAPE 
  Independent of NUMBER OF ELEMENTS 

   = V – E + F = 2 χ 

The Euler characteristic,   , is unchanged under continuous 
deformations of the surface:  

      is a topological (homotopic) invariant.    

χ 

χ 



Euler characteristic 

…… 

   remains unchanged so long as the topology remains the same. 
V, E, F can be as large as we wish...   
χ 

In the continuum limit,    has an integral expression for any closed 
2-dimensional M:   	



χ 

€ 

χ(M ) =
1

2π
 R
M∫  dΩ= 2− 2g

χ 

χ =0 



The Euler characteristic belongs to a family of famous 
invariants:  

All of these examples involve topological invariants called 
the Chern characteristic classes and Chern-Simons forms.  	



  Sum of exterior angles of a polygon 
   Residue theorem in complex analysis 
   Winding number of a map  
   Poincaré-Hopff theorem (“one cannot comb a sphere”) 
   Atiyah-Singer index theorem 
   Witten index 
   Dirac’s monopole quantization 
   Aharonov-Bohm effect  
   Gauss’ law  
   Bohr-Sommerfeld quantization 
   Soliton/Instanton topologically conserved charges 
   etc… 



2. Minimal coupling 



This coupling is invariant under gauge transformations 
Aµ(x) →Aµ(x)+∂µ Ω(x)  

provided the current is conserved,  
∂µ jµ =0. 

€ 

I[A,z]= jµAµM∫ d 4x

Electromagnetic coupling 

Gauge
invariance 

Current  
conservation        

Lesson 1. Consistent (gauge invariant) minimal coupling 
between a gauge potential and a charged source is 
possible only if the source satisfies a conservation law. 



Minimal coupling for a point charge  

€ 

I[A,z]= jµAµM∫ d 4x

Is this gauge-invariant?  (A is not ) 

€ 

= * j∧A
M∫   

€ 

 * j = eδ(Γ )dξ 1 ∧dξ 2 ∧dξ 3

Transverse directions 

ξ2 

ξ1 

ξ3 
z 

e 

Γ 

dz 

A(x) →A(x)+dΩ(x) I[A] →I[A] +Ω| -∞	


+∞	



PBCs: Ω(+∞)=Ω(-∞) guarantee gauge invariance 
€ 

I[A,z] = e A
Γ
∫  ,   (A ≡ Aµ (z)dzµ )



€ 

δI = e δA
Γ
∫ = e dΩ

Γ
∫ = 0

In other words, 

can vanish under physically reasonable boundary conditions. 

Lesson 2. A gauge non-invariant integrand can define a 
gauge-invariant integral, provided the right boundary 
conditions are satisfied (e.g., periodic b. c.). 

Generalization to higher-dimensional sources: 

Chern-Simons forms 



3. Chern-Simons forms 



All four basic forces of nature share 
the same  mathematical structure 

Fiber bundle (F ):  
locally F =M x G   

 Gauge theories 

Fibers (group G) 

Connection (Lie-algebra valued 1-form)        

€ 

Aµ = Aµ
aJa

Lie alg. generator  Interaction Field 



Electrodynamics 

€ 

F = dA = 1
2 (∂µAν − ∂νAµ )dx

µ ∧dxν
where 

Field strength (curvature) 

Action functional 

Yang-Mills (electro-weak and strong interactions)  

Action 

€ 

I[A]= Tr[ 12M∫ F∧*F − j∧A]

where A takes values in a nonabelian Lie algebra, and  

€ 

F = dA+ A∧A = [∂µAν
a + fbc

a Aµ
bAν

c ]Jadx
µ ∧dxν = FaJa



What is a Chern-Simons action? 

€ 

I[A]= 1
4κ ggµαgνβγ abF

a
µνFb

αβ

M D
∫ dDx

Y-M / EM action [any D]: 

€ 

I[A]= κ A∧dA+ 2
3 A∧A∧A

M 3
∫

Chern-Simons action [3dim]: 

€ 

I[A]= κ A∧ (dA)n +α1A
3 ∧ (dA)n−1 + ⋅ ⋅ ⋅+αnA

2n+1

M 2 n+1
∫

and in general [(2n+1)-dim.]: 

Fixed rational numbers 



What is a Chern-Simons action? 

€ 

I[A]= 1
4κ ggµαgνβγ abF

a
µνFb

αβ

M D
∫ dDx

€ 

I[A]= κ A∧dA+ 2
3 A∧A∧A

M 3
∫

Chern-Simons action [3dim]: 

€ 

I[A]= κ A∧ (dA)n +α1A
3 ∧ (dA)n−1 + ⋅ ⋅ ⋅+αnA

2n+1

M 2n+1
∫

and in general [(2n+1)-dim.]: Invariant symmetric 
trace in the Lie algebra  

Y-M / EM action [any D]: 



Their exterior derivatives are invariant polynomials 

(characteristic classes) 

€ 

dC2n−1(A) = P2n (F)

Chern-Simons forms 

No dimensionful constants: αk= fixed rational numbers 

No adjustable coefficients: αk cannot get renormalized 
No metric needed; scale invariant 
Entirely determined by the Lie algebra and the dimension 

  Only defined in odd dimensions 
Unique gauge quasi-invariants: 
Related to the Chern characteristic classes 

€ 

C2n+1 = A∧ (dA)n +α1A
3 ∧ (dA)n−1 + ⋅ ⋅ ⋅+αn A2n+1 ≡ ˜ C 2n+1

€ 

δC2 p+1 = dΩ2 p Physics 

Mathematics 



the  polynomial                                is invariant 

Characteristic classes: Given A = connection , for a certain 
Lie algebra. Then, under gauge transformations,  

€ 

P2n (F) = Fn
A A’ =g-1Ag +g-1dg ,   F  F ’ =g-1Fg 

These invariants have an additional remarkable property. For 
a suitable normalization ( # ),  

just like the Euler characteristic.  

€ 

# P2n (F)M 2n∫ =∈ Z

€ 

P2n (F' ) = P2n (F)

and closed:                                                     [Chern-Weil Theorem] 

€ 

dP2n (F) = 0.



What makes the CS forms useful in physics is that under gauge 
transformations, they change like an abelian connection: 

CS forms provide a generalization of the coupling (between point 
charges and the e-m field) to higher dimensional objects –branes- 
and nonabelian gauge fields. 

The e-m potential is the simplest example of a CS form 

€ 

C0+1(A) = A = A

€ 

δC2n+1(A) = dΩ2n

€ 

dC2n−1(A) = P2n (F)

€ 

C2n+1 = A∧ (dA)n +α1A
3 ∧ (dA)n−1 + ⋅ ⋅ ⋅+αnA

2n+1

for n = 0 

Physicists have been playing with CS forms for 200 years! 



€ 

I = AµΓ
∫ (z)dzµ  ,   zµ = (z0 = t, zi )

Classical mechanics 
Consider the trajectory of a point in a 2s+1 dimensional 
space. The projection on the 2s dimensional spatial section 
can be identified with the position on a phase space. 

€ 

= (A0Γ
∫ dt + Aidz

i ),  i = 1,..., 2s

z 

Γ z0=t 

zi 

zj 

Identifying                                                                                      ,  
and                      , one finds the action of a mechanical system of 
finite number of degrees of freedom, 

€ 

  zi ≡ (q1,...,qs, p1,..., ps);  Ai = (p1,.., ps , 0,...,0)

€ 

A0 = −H (z)

€ 

I[q, p]= [pidq
i −H (p,q)dt]

Γ
∫



€ 

 Fij ˙ z j = Ei  ,

Dynamical equations 
The equations read 

€ 

Fij = ∂iAj −∂ jAi , Ei = −∂iA0where                                                                         . Which  

can be checked to be Hamilton’s equations,  

z 

Γ z0=t 

zi 

zj 

=  € 

˙ q i =
∂H
∂pi

,  ˙ p i =
∂H
∂qi .

Gauge invariance 
of CS action  

Invariance of mechanical 
system under canonical 

transformations  

Also, 

A good part of classical physics is described by CS forms. 



4. Chern-Simons couplings 



   Generalization to higher dimensions  

Natural Ansatz: 
Replace 1-forms by p-forms 

(D-p)-form that projects on 
the p-dimensional history 

Aµ       Aµνλ… 
1-form  p-form 

This works fine for an abelian field: A           A’ =A+dΩ 

but not for nonabelian one:  A           A’=g-1Ag + g-1dg

then…   

€ 

I[A,z]= A
Γ p∫

€ 

I[A,z]= jµ1µ2 ...µ p
Aµ1µ2 ...µ p

M∫



  There is no obvious analog of 

  for a p-form: 

€ 

Aµ → A'µ = g−1(Aµ +∂µ )g,   g∈G

€ 

Aµ1µ2 ...µ p
→ A'µ1µ2 ...µ p

= g−1(Aµ1µ2 ...µ p
+?µ1µ2 ...µ p

)g

This p-form does not define a natural connection 
  (covariant derivative) 

Nonabelian curvature:                               ? 

•  There is no clear relation between current conservation     
  and (nonabelian) gauge transformation. 

There is no consistent Hamiltonian evolution  € 

F = dA+ A∧A



A consistent (gauge invariant) coupling for any group G 
and for higher dimensional Γs is provided by a Chern-
Simons form C2n-1(A): 

   Chern-Simons forms 

€ 

⇒δC = dΩ Locally exact ✔ 

Then, under a gauge transformation,                 changes by 
a closed form: 

€ 

C2n−1(A)

€ 

dC2n−1(A) = P2n (F)

€ 

0 = δdC = dδC



The minimal coupling between a particle and electromagnetism is 
generalized by the formula 

(where we have defined                                         ). 

The Chern-Simons coupling 

  

€ 

I[A] = * j2 p+1
˜ C 2 p+1(A)

M∫

  As in electrodynamics, this coupling is invariant under gauge 
transformations provided  *j2p+1 is conserved, D*j2p+1 =0. 

 This describes the coupling between an extended object, a 2p-
dimensional (mem)brane and a nonabelian connection. 

  

€ 

C2 p+1(A) = ˜ C 2 p+1(A)



2p-brane in D dimensions: 

€ 

* j2 p+1 = qδ(Σ)dΩΣ [S
a1a2 ⋅⋅⋅am  Ja1

⋅ ⋅ ⋅ Jam ]

Source: 

This is a D-(2p+1)-form that couples to a 2p+1-form 

Source with support 
at the center of 

Generators 

Γ2p+1  

Brane history 

ΣD-(2p+1) 

Transverse space 



 The Chern-Simons coupling 

  

€ 

I[A] = * j2 p+1
˜ C 2 p+1(A)

M∫ ,
Lemma: 

Proof: This can be explicitly verified. //  

is invariant under gauge transformations, provided  j2p+1 is 
conserved, d*j2p+1 + [A, *j2p+1]=D*j2p+1 = 0. 

N.B.: If the current is produced by particles or fields that 
are dynamically governed by an action principle, 
invariant under the same gauge symmetry, then Noether 
theorem guarantees that such conserved current can 
always be explicitly written out. //  



5. Examples of branes 



•  An m-brane is a localized (m+1)-dimensional 	


  manifold,  embedded in spacetime.	



•  They disrupt the homogeneity of 	


   spacetime (impurities) 	



•  They are obstructions that change the 	


   topology of spacetime(topological defects)	



•  Examples:	

point particle (m=0), 	


  	

 	

domain wall   (m=2),	



	

 	

 	

2p-brane    (m=2p) 	

	



Γ 

Branes are defects 



•  If not wrapped by a horizon, branes are 	


  naked singularities (NS).	



•  Near naked singularities the energy grows infinitely, 	


  the laws of physics break down	


   “Green slime, lost socks and TV sets could 	


     emerge from them”                 (J. Earman)	



•  They better not exist (Cosmic Censorship)	



Branes are naked singularities 

But  sometimes  they  do  exist  and  nothing 
terrible happens...	





0-brane [point charge]: 

€ 

* j = eδ(Γ)dΩD−1

0- and 2- brane sources in EM (4D) 

  

€ 

↔ jµ = e˙ z µδ(3)(  x −  z )dτ ✔          

2-brane [interface between two regions in 3-space]: 

€ 

* j = −θδ(Σ)dn

€ 

↔ jµνλ = −θεµνλ⊥δ(x⊥ )d 3x(Σ)

n 
θin≠0 

This brane is the 2D surface Σ of a solid volume in 3D,  
whose history is a 2+1 worldsheet         .  

θout=0 

€ 

Σ×R



Calling the brane charge –θ,  

 The full Maxwell + brane action is  

which describes a topological insulator: 
€ 

* j∧C3(A)∫ = −θ C3(A)
Σ×R∫

                   = −θ 1
4 ε

µνλρFµνV×R∫ Fλρd
4x

€ 

I[A]= 1
2 F∧*F

M 4∫ − θ
2 F

V×R∫ ∧F

  

€ 

∇ ⋅
 
E =θδ(Σ) ˆ n ⋅

 
B 

∇×
 
B −∂t

 
E =θδ(Σ) ˆ n ×

 
E 

θ-vacuum 



0-brane  in  GR   = conical defect ~ point particle  

Brane sources in gravity 

€ 

* ja = 1
2 mδ(Γ)dΩ2ε

abcJbc

In 2+1 dimensions, 

                                                             , 

  Jbc = Isometry generator that produced the conical defect. 

          ~ black hole with M<0, M < |J|, M < |Q|  ✔          

Ok in 2+1 dimensions; serious problem for D>3 

Ok in D>3 for codimension 2 branes 

Ok for higher codimensions and commuting generators. ✔          

✔          



6. Quantization 



€ 

I[A,z]= e A
Γ
∫

Quantum mechanics 
Consider 

where       is a loop. Γ  

Γ 

Quantum mechanics is the requirement that this integral 
take integer values (maximum constructive interference): 

€ 

e Α
Γ
∫ = nh

Dirac’s monopole 
quantization  

Aharonov-Bohm 
effect 

Bohr-Sommerfeld 
quantization  



€ 

A
Γ
∫ = AµΓ

∫ (z)dzµ  ,   zµ = (z0 = t, zi )

Bohr-Sommerfeld quantization 
Consider a mechanical system described by a CS 
lagrangian in a 2s+1 dimensional space.  

€ 

= (A0Γ
∫ dt + Aidz

i ),  i = 1,..., 2s

If the orbit is periodic, one finds the B-S quantization 
condition 

€ 

A
Γ
∫ = [pidq

i
Γ
∫ −H (p,q)dt] 

  

€ 

= 2nπ = nh

Γ 



€ 

e A
Γ 1∫ − e A

Γ 2∫ = e F
M∫

Aharonov-Bohm effect 

By Stoke’s theorem, 

where                                 .   

€ 

Γ 1 (−Γ 2 ) = ∂M

Hence, for two paths enclosing a quantum of flux,                               

B 

€ 

Γ 2

€ 

Γ 1

  

€ 

e F
M∫ = 2nπ

there is constructive interference (maximum). 



Monopole quantization 
Γ 

€ 

e A
Γ
∫ = e F

M∫
By Stoke’s theorem, 

where                , and                . 

€ 

Γ = ∂M

€ 

F = dA

For a Dirac monopole,                    , and therefore                    

€ 

F =
g
r2
d2x

  

€ 

eg = 2nπ



7. Summary 



Summary 

•   CS forms generalize the coupling between a point 
charge and the electromagnetic field, providing a natural 
gauge-invariant way to couple gauge fields (abelian or 
not) to extended sources: 2p-branes. 

•   The simplest CS action can also describe an arbitrary 
classical mechanical system of finite degrees of freedom. 

•  Path integral quantization yields the Bohr-Sommerfeld 
quantum postulate, Dirac’s monopole quantization and 
the Aharonov-Bohm effect. 

•   Mathematically, CS forms are related to topological 
invariants, the Chern characteristic classes. 
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... 
We do not see how this helps to settle the Poincaré 
conjecture. 


