Gravity with Auxiliary Fields

Daniele Vernieri

SISSA/ISAS - International School for Advanced Studies, Trieste, Italy

In collaboration with Paolo Pani and Thomas P. Sotiriou arXiv:1306.1835v1 [gr-qc] (2013)

7th Aegean Summer School: Beyond Einstein's Theory of Gravity Parikia, Island of Paros 27 September 2013

General Relativity: Lovelock Theorem

Lovelock Theorem

- The most general 2-covariant divergence-free tensor, which is constructed solely from the metric $g_{\mu\nu}$ and its derivatives up to second differential order, is the Einstein tensor plus a cosmological constant term.
- This result suggests a natural route to Einstein's equations

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu} - \Lambda g_{\mu\nu}.$$
 (1)

Gravity with Auxiliary Fields

We assume the theory admits a manifestly covariant Lagrangian formulation and that the equivalence principle holds:

$$L = L_g[\mathbf{g}, \phi] + L_M[\mathbf{g}, \psi].$$
⁽²⁾

Field equations:

$$E_{ab}[\mathbf{g},\phi] = T_{ab}, \qquad (3)$$

$$\mathbf{\Phi}[\mathbf{g},\phi] = \mathbf{0}. \tag{4}$$

Crucial assumption: it is possible to obtain an algebraic equation for ϕ

$$\mathcal{F}[\boldsymbol{\phi}, \mathbf{g}, \mathbf{T}] = 0, \qquad (5)$$

where ϕ only appears at zeroth differential order.

 $\Rightarrow \phi$ is an auxiliary field!

Gravity with Auxiliary Fields

Trivial Case

The field equations imply an algebraic relation of the form

$$\Phi[\phi, \mathbf{g}] = \mathcal{F}[\phi, \mathbf{g}] = 0.$$
(6)

We can then eliminate the extra field from the eqs. and obtain

$$E_{ab}[\mathbf{g}] = T_{ab} \,. \tag{7}$$

Lovelock theorem guarantees that this tensor is the Einstein one plus a cosmological constant term.

\Rightarrow The gravitational theory is equivalent to GR!

Gravity with Auxiliary Fields

General Case

If an algebraic equation for ϕ exists, it must be obtained by some combination of the field equations and of their derivatives.

The implicit solution for ϕ can be schematically written as

$$\phi = \phi[\mathbf{g}, \mathbf{T}] \,. \tag{8}$$

Then we can finally write the field equations for the metric as

$$E_{ab}[\mathbf{g},\mathbf{T}] = T_{ab} \quad \Rightarrow \quad G_{ab} + \Lambda g_{ab} = T_{ab} + S_{ab}[\mathbf{g},\mathbf{T}]. \tag{9}$$

Relations Between the Coefficients General Parametrization of the Field Equations Particular Cases

Constructing S_{ab}

Properties of S_{ab}

- Depends only on **g**, **T** and their derivatives
- Vanishes in vacuum
- Divergence-free

$$S_{ab} = \alpha_1 g_{ab} T + \alpha_2 g_{ab} T^2 + \alpha_3 T T_{ab} + \alpha_4 g_{ab} T_{cd} T^{cd} + \alpha_5 T^c {}_a T_{cb} + \beta_1 \nabla_a \nabla_b T + \beta_2 g_{ab} \Box T + \beta_3 \Box T_{ab} + 2\beta_4 \nabla^c \nabla_{(a} T_{b)c} + \dots$$
(10)

P. Pani, T. P. Sotiriou and D. Vernieri, arXiv:1306.1835v1 [gr-qc] (2013)

Relations Between the Coefficients General Parametrization of the Field Equations Particular Cases

Relations Between the Coefficients

Using the derivative commutators and the eqs. at lowest order such as

$$(\Box \nabla_b - \nabla_b \Box) T = R_{ab} \nabla^a T$$

$$\sim T_{ab} \nabla^a T - \left(\alpha_1 + \frac{1}{2} \right) T \nabla_b T + \Lambda \nabla_b T + \dots,$$
 (11)

it can be shown that there is a unique choice of the coefficients α_i and β_j which makes $\nabla^a S_{ab} = 0$ identically, that is:

$$\alpha_1 = -\beta_1 \Lambda, \qquad 4\alpha_2 = (1+2\alpha_1)(\beta_1 - \beta_4),$$

$$\alpha_3 = \beta_4 (1 + 2\alpha_1) - \beta_1, \qquad 2\alpha_4 = \beta_4,$$

 $\alpha_5 = -2\beta_4, \qquad \beta_2 = -\beta_1, \qquad \beta_3 = -\beta_4. \tag{12}$

Relations Between the Coefficients General Parametrization of the Field Equations Particular Cases

General Parametrization of the Field Equations

The field equations finally read

$$\begin{aligned}
G_{ab} &= T_{ab} - \Lambda g_{ab} \\
&- \beta_1 \Lambda g_{ab} T + \frac{1}{4} (1 - 2\beta_1 \Lambda) (\beta_1 - \beta_4) g_{ab} T^2 \\
&+ [\beta_4 (1 - 2\beta_1 \Lambda) - \beta_1] T T_{ab} + \frac{1}{2} \beta_4 g_{ab} T_{cd} T^{cd} \\
&- 2\beta_4 T^c {}_a T_{cb} + \beta_1 \nabla_a \nabla_b T - \beta_1 g_{ab} \Box T \\
&- \beta_4 \Box T_{ab} + 2\beta_4 \nabla^c \nabla_{(a} T_{b)c} + \dots,
\end{aligned} \tag{13}$$

where all the coefficients have been expressed in terms of Λ , β_1 and β_4 .

Relations Between the Coefficients General Parametrization of the Field Equations Particular Cases

Particular Cases

• It is easy to show that EiBI gravity in the small coupling limit is a particular case of what derived, with

$$\beta_1 = 0, \qquad \beta_4 = -\kappa/2.$$
 (14)

- On the other hand, the case of Brans-Dicke theory with ω₀ = -3/2 simply corresponds to β₄ = 0 with Λ and β₁ being related to the model parameters.
- It is interesting to note that these two particular cases are representative of two "orthogonal" classes of corrections.

Newtonian Limit Viability Constraints

Newtonian Limit

In order to derive the Newtonian limit of the theory, for simplicity we set $\Lambda = 0$, since it is a higher post-Newtonian order contribution.

In the limit of small velocities and small matter fields we have:

$$g_{ab} = \eta_{ab} + \epsilon h_{ab} , \qquad (15)$$

$$T_{ab} = \epsilon \rho \delta^0_a \delta^0_b. \tag{16}$$

We can use the gauge freedom to impose

$$\epsilon \partial^{a} \left(h_{ab} - \frac{1}{2} \eta_{ab} h \right) = \zeta \partial_{b} T .$$
 (17)

Note that the gauges for two different matter configurations would differ from each other inside matter but different gauges are equivalent in vacuum.

Newtonian Limit Viability Constraints

Newtonian Limit

Field equations to first order in $\boldsymbol{\epsilon}$

$$-\frac{\nabla^2 h_{00}}{2} = \frac{\rho}{2} + \frac{1}{2} \beta_- \nabla^2 \rho , \qquad (18)$$

$$-\frac{\nabla^2 h_{ij}}{2} = \frac{\delta_{ij}}{2} \left[\rho - \beta_+ \nabla^2 \rho \right] - \left[\beta_1 - \zeta \right] \partial_i \partial_j \rho , \qquad (19)$$

$$\nabla^2 h_{0i} = 0, (20)$$

where $\beta_{\pm} = \beta_1 \pm \beta_4$.

In general $h_{00} \neq h_{ii}$, and there is an off-diagonal component $h_{ij} \neq 0$. However it can be set to zero by choosing $\zeta = \beta_1$ in the gauge-fixing choice (in the standard Einstein-Fock gauge $\zeta = 0$).

Newtonian Limit Viability Constraints

Newtonian Limit

Solutions in the gauge $\zeta = \beta_1$

$$p_{00}(\vec{x}) = \int d^3x' \frac{\rho(\vec{x}')}{4\pi |\vec{x} - \vec{x}'|} - \beta_- \rho(\vec{x}),$$
 (21)

$$h_{ij}(\vec{x}) = \delta_{ij} \int d^3x' \frac{\rho(\vec{x}')}{4\pi |\vec{x} - \vec{x}'|} + \beta_+ \rho(\vec{x}) \delta_{ij}, \qquad (22)$$

$$h_{0i}(\vec{x}) = 0.$$
 (23)

The only possibility to avoid second-order derivatives of ρ in the Newtonian equations (and to avoid the contributions proportional to ρ in the solutions) is setting $\beta_1 = \beta_4 = 0$, i.e. standard Newtonian gravity.

Newtonian Limit Viability Constraints

Viability Constraints

Let us compute the acceleration $\vec{a} = \nabla h_{00}$ experienced within a thin layer in the interior and close to the surface of a spherical object with Newtonian mass M and radius R_s . It reads

$$\vec{a} = \vec{a}_N - \beta_- \nabla \rho \,. \tag{24}$$

We model the density profile in the layer of width $L \ll R$, as

$$\rho(r) = \rho_0 \left(\frac{R-r}{L}\right)^n, \qquad R-L < r < R \tag{25}$$

where n parametrizes the slope of the profile.

Newtonian Limit Viability Constraints

Viability Constraints

The fact that the density can abruptly change in a region of width L produces strong extra forces in this class of theories. Using that profile, in the region R - L < r < R we find:

$$\frac{a}{a_N} = 1 + \frac{3n}{4\pi R_s L} \beta_- \left[(R_s - r)/L \right]^{n-1} \,. \tag{26}$$

In order not to affect the standard Newtonian force to measurable levels in tabletop experiments, the last term on the r.h.s. must be much smaller than unity.

Evaluating the force at $r \sim R - L$ we obtain the constraint

$$(\beta_1 - \beta_4) \ll \frac{4\pi R_s L}{3n} \,. \tag{27}$$

Newtonian Limit Viability Constraints

Viability Constraints

Similar abrupt changes in the density profile naturally occur at the interface of any macroscopic object. Assuming $R_s \sim m$ and $L \sim \mu m$, we get the following constraint for the characteristic length scale λ_{β} :

$$\lambda_{\beta} \ll n^{-1/2} \,\mathrm{mm} \,. \tag{28}$$

Consider that the Hubble radius squared is roughly $\Lambda^{-1} \sim 10^{52} m^2!$

If these theories were to pass sensible macroscopic constraints, they have to accomodate at least two typical lenght scales, λ_{β} and the effective cosmological constant scale, which differ for many orders of magnitude.

Conclusions

- Auxiliary fields in the gravitational action.
- Two possibilities: GR or higher order derivatives of the matter fields!
- General parametrization of theories with auxiliary fields: Two parameters control all of the possible theories!
- Newtonian limit and general results.
- Viability constraints: if passed, λ_{β}^2 and Λ^{-1} differ for many orders of magnitude.
- These theories are unlikely to play any role at large scales!

First Example: Brans-Dicke Theory

The action for Brans-Dicke theory with $\omega_0=-3/2$ is

$$S[g,\phi,\psi_m] = \frac{1}{2\kappa} \int d^4x \sqrt{-g} \left(\phi R + \frac{3}{2\phi} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right) + S_M(g_{\mu\nu},\psi),$$
(29)

whose independent variation with respect to the metric and the scalar yields to the field eqs.

$$G_{\mu\nu} = \frac{\kappa}{\phi} T_{\mu\nu} - \frac{3}{2\phi^2} \left(\nabla_{\mu} \phi \nabla_{\nu} \phi - \frac{1}{2} g_{\mu\nu} \nabla^{\lambda} \phi \nabla_{\lambda} \phi \right) + \frac{1}{\phi} \left(\nabla_{\mu} \nabla_{\nu} \phi - g_{\mu\nu} \Box \phi \right) - \frac{V(\phi)}{2\phi} g_{\mu\nu}, \qquad (30)$$

$$\Box \phi = \frac{\phi}{3} (R - V'(\phi)) + \frac{1}{2\phi} \nabla^{\mu} \phi \nabla_{\mu} \phi.$$
 (31)

First Example: Brans-Dicke Theory

• We can use the trace of the first eq. to eliminate R in the second one. The outcome is

$$2V(\phi) - \phi V'(\phi) = \kappa T.$$
(32)

- Once $V(\phi)$ is assigned, the scalar field can be algebraically solved as $\phi = \phi(T)$, then it is a non-dynamical field.
- Substituting it back into the field eqs. one gets

Higher order derivatives of the matter fields!

Second Example: EiBI Gravity

EiBI gravity is described by the following action

$$S[g, \Gamma, \psi_m] = \frac{1}{4\pi G\kappa} \int d^4 x \left(\sqrt{|\det \left(g_{ab} + \kappa \mathcal{R}_{(ab)} \right)|} - (1 + \kappa \Lambda) \sqrt{g} \right) + S_M [g_{ab}, \psi_M] . \quad (33)$$

Independent variation of the action with respect to the metric and the connection yields after some manipulations to

$$\Gamma^{c}_{ab} = \frac{1}{2} q^{cd} \left(\partial_{a} q_{bd} + \partial_{b} q_{ad} - \partial_{d} q_{ab} \right) , \qquad (34)$$

$$q^{ab} = \frac{(1+\kappa\Lambda)g^{ab} - \kappa T^{ab}}{\sqrt{g}\sqrt{\det\left((1+\kappa\Lambda)g^{ab} - \kappa T^{ab}\right)}},$$
(35)

where $q_{ab} \equiv g_{ab} + \kappa \mathcal{R}_{(ab)}$.

Second Example: EiBI Gravity

The connection Γ_{ab}^{c} is not a dynamical field! The field eqs. can be expanded at first order in κ by noting that

$$q^{ab} = g^{ab} - \kappa \tau^{ab} + \mathcal{O}(\kappa^2), \qquad (36)$$

where $\tau_{ab} \equiv T_{ab} - \frac{1}{2}g_{ab}T + \Lambda g_{ab}$. One finally gets a single equation for the metric g_{ab} only:

$$R_{ab} = \Lambda g_{ab} + T_{ab} - \frac{1}{2}Tg_{ab} + \kappa \left[S_{ab} - \frac{1}{4}Sg_{ab}\right] + \frac{\kappa}{2} \left[\nabla_a \nabla_b \tau - 2\nabla^c \nabla_{(a} \tau_{cb)} + \Box \tau_{ab}\right] + \mathcal{O}(\kappa^2), \quad (37)$$

where $S_{ab} = T^c_a T_{cb} - \frac{1}{2}TT_{ab}$.

M. Bañados and P. G. Ferreira, Phys. Rev. Lett. 105, 011101 (2010)
 P. Pani and T. P. Sotiriou, Phys. Rev. Lett. 109, 251102 (2012)

Constructing S_{ab}

Why not terms with Ricci or Riemann contracted with T_{ab}, like

$$R_{ab}T, RT_{ab}, R_{ac}T^{c}_{b}, \dots, R_{abcd}T^{bc}?$$

$$(38)$$

- *R*_{ab} and *R* can be calculated from the field eqs. and substitued above to give terms already present in the field eqs.
- For the term with R_{abcd} let us use the tensorial relation

$$\nabla^a \nabla_d T_{ab} = R_{ed} T^e{}_b + R_{becd} T^{ec}, \qquad (39)$$

which can be symmetrized giving

$$R_{becd} T^{ec} = \nabla^a \nabla_{(d} T_{b)a} - R_{e(d} T_{b)}^{e}.$$

$$\tag{40}$$

These terms are already present into the field eqs.!

Asking for Divergence-Free Field Equations

Then, taking the divergence of both sides of the field eqs. we get:

$$0 = \alpha_1 \nabla_b T + 2 \alpha_2 T \nabla_b T + \alpha_3 T_{ab} \nabla^a T + 2 \alpha_4 T^{cd} \nabla_b T_{cd}$$

+
$$\alpha_5 T^c_a \nabla^a T_{cb} + \beta_1 \Box \nabla_b T + \beta_2 \nabla_b \Box T$$

$$+ \quad \beta_3 \, \nabla^a \Box \, T_{ab} + 2\beta_4 \, \nabla^a \nabla^c \nabla_{(a} \, T_{b)c}. \tag{41}$$

The various terms are not independent from each others, being related through the derivative commutators!

A Few Tensorial Algebra

With a few algebra one can obtain the following tensorial relations

$$(\Box \nabla_b - \nabla_b \Box) T = R_{ab} \nabla^a T, \qquad (42)$$

$$\left(\nabla^a \,\nabla^c \,\nabla_a - \nabla^c \,\Box\right) T_{cb} = R_{abcd} \nabla^d \,T^{ca},\tag{43}$$

$$\left(\nabla_{c} \nabla_{d} - \nabla_{d} \nabla_{c}\right) T_{ab} = R_{aecd} T^{e}{}_{b} + R_{becd} T_{a}{}^{e}, \qquad (44)$$

and one can use the Bianchi identity, suitably contracted as

$$\nabla^a R_{abcd} = 2\nabla_{[c} R_{d]b}. \tag{45}$$