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General Relativity: Lovelock Theorem

Lovelock Theorem

The most general 2-covariant divergence-free tensor, which is
constructed solely from the metric gµν and its derivatives up to
second differential order, is the Einstein tensor plus a cosmological
constant term.

This result suggests a natural route to Einstein’s equations

Gµν ≡ Rµν −
1

2
gµνR = Tµν − Λgµν . (1)
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Gravity with Auxiliary Fields

We assume the theory admits a manifestly covariant Lagrangian
formulation and that the equivalence principle holds:

L = Lg [g,φ] + LM [g, ψ] . (2)

Field equations:

Eab[g,φ] = Tab , (3)

Φ[g,φ] = 0 . (4)

Crucial assumption: it is possible to obtain an algebraic equation for φ

F [φ, g,T] = 0 , (5)

where φ only appears at zeroth differential order.

⇒ φ is an auxiliary field!
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Gravity with Auxiliary Fields

Trivial Case

The field equations imply an algebraic relation of the form

Φ[φ, g] = F [φ, g] = 0 . (6)

We can then eliminate the extra field from the eqs. and obtain

Eab[g] = Tab . (7)

Lovelock theorem guarantees that this tensor is the Einstein one plus a
cosmological constant term.

⇒ The gravitational theory is equivalent to GR!
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Gravity with Auxiliary Fields

General Case

If an algebraic equation for φ exists, it must be obtained by some
combination of the field equations and of their derivatives.

The implicit solution for φ can be schematically written as

φ = φ[g,T] . (8)

Then we can finally write the field equations for the metric as

Eab[g,T] = Tab ⇒ Gab + Λgab = Tab + Sab[g,T]. (9)
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Constructing Sab

Properties of Sab

Depends only on g, T and their derivatives

Vanishes in vacuum

Divergence-free

Sab = α1 gab T + α2 gab T 2 + α3 T Tab + α4 gab Tcd T cd

+ α5 T c
a Tcb + β1∇a∇b T + β2 gab � T

+ β3 � Tab + 2β4∇c∇(a Tb)c + . . . (10)

P. Pani, T. P. Sotiriou and D. Vernieri, arXiv:1306.1835v1 [gr-qc] (2013)
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Relations Between the Coefficients

Using the derivative commutators and the eqs. at lowest order such as

(�∇b −∇b �) T = Rab∇a T

∼ Tab∇a T −
(
α1 +

1

2

)
T∇b T + Λ∇b T + . . . , (11)

it can be shown that there is a unique choice of the coefficients αi and βj

which makes ∇aSab = 0 identically, that is:

α1 = −β1 Λ, 4α2 = (1 + 2α1) (β1 − β4) ,

α3 = β4 (1 + 2α1)− β1, 2α4 = β4 ,

α5 = −2β4 , β2 = −β1, β3 = −β4. (12)
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General Parametrization of the Field Equations

The field equations finally read

Gab = Tab − Λgab

− β1Λ gab T +
1

4
(1− 2β1Λ) (β1 − β4) gab T 2

+ [β4 (1− 2β1 Λ)− β1] T Tab +
1

2
β4 gab Tcd T cd

− 2β4 T c
a Tcb + β1∇a∇b T − β1 gab � T

− β4 � Tab + 2β4∇c∇(a Tb)c + . . . , (13)

where all the coefficients have been expressed in terms of Λ, β1 and β4.
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Particular Cases

It is easy to show that EiBI gravity in the small coupling limit is a
particular case of what derived, with

β1 = 0 , β4 = −κ/2 . (14)

On the other hand, the case of Brans-Dicke theory with ω0 = −3/2
simply corresponds to β4 = 0 with Λ and β1 being related to the
model parameters.

It is interesting to note that these two particular cases are
representative of two “orthogonal” classes of corrections.
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Newtonian Limit

In order to derive the Newtonian limit of the theory, for simplicity we set
Λ = 0, since it is a higher post-Newtonian order contribution.

In the limit of small velocities and small matter fields we have:

gab = ηab + εhab , (15)

Tab = ερδ0
aδ

0
b . (16)

We can use the gauge freedom to impose

ε∂a

(
hab −

1

2
ηabh

)
= ζ∂bT . (17)

Note that the gauges for two different matter configurations would differ
from each other inside matter but different gauges are equivalent in
vacuum.
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Newtonian Limit

Field equations to first order in ε

−∇
2h00

2
=

ρ

2
+

1

2
β−∇2ρ , (18)

−∇
2hij

2
=

δij
2

[
ρ− β+∇2ρ

]
− [β1 − ζ] ∂i∂jρ , (19)

∇2h0i = 0 , (20)

where β± = β1 ± β4.

In general h00 6= hii , and there is an off-diagonal component hij 6= 0.
However it can be set to zero by choosing ζ = β1 in the gauge-fixing
choice (in the standard Einstein-Fock gauge ζ = 0).
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Newtonian Limit

Solutions in the gauge ζ = β1

h00(~x) =

∫
d3x ′

ρ(~x ′)

4π|~x − ~x ′|
− β−ρ(~x) , (21)

hij(~x) = δij

∫
d3x ′

ρ(~x ′)

4π|~x − ~x ′|
+ β+ρ(~x)δij , (22)

h0i (~x) = 0 . (23)

The only possibility to avoid second-order derivatives of ρ in the
Newtonian equations (and to avoid the contributions proportional to ρ in
the solutions) is setting β1 = β4 = 0, i.e. standard Newtonian gravity.
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Viability Constraints

Let us compute the acceleration ~a = ∇h00 experienced within a thin layer
in the interior and close to the surface of a spherical object with
Newtonian mass M and radius Rs . It reads

~a = ~aN − β−∇ρ . (24)

We model the density profile in the layer of width L� R, as

ρ(r) = ρ0

(
R − r

L

)n

, R − L < r < R (25)

where n parametrizes the slope of the profile.
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Viability Constraints

The fact that the density can abruptly change in a region of width L
produces strong extra forces in this class of theories.
Using that profile, in the region R − L < r < R we find:

a

aN
= 1 +

3n

4πRsL
β− [(Rs − r)/L]n−1

. (26)

In order not to affect the standard Newtonian force to measurable levels
in tabletop experiments, the last term on the r.h.s. must be much smaller
than unity.
Evaluating the force at r ∼ R − L we obtain the constraint

(β1 − β4)� 4πRsL

3n
. (27)
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Viability Constraints

Similar abrupt changes in the density profile naturally occur at the
interface of any macroscopic object. Assuming Rs ∼ m and L ∼ µm, we
get the following constraint for the characteristic lenght scale λβ :

λβ � n−1/2 mm . (28)

Consider that the Hubble radius squared is roughly Λ−1 ∼ 1052m2!

If these theories were to pass sensible macroscopic constraints, they have
to accomodate at least two typical lenght scales, λβ and the effective
cosmological constant scale, which differ for many orders of magnitude.
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Conclusions

Auxiliary fields in the gravitational action.

Two possibilities: GR or higher order derivatives of the matter fields!

General parametrization of theories with auxiliary fields:
Two parameters control all of the possible theories!

Newtonian limit and general results.

Viability constraints: if passed, λ2
β and Λ−1 differ for many orders of

magnitude.

These theories are unlikely to play any role at large scales!
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First Example: Brans-Dicke Theory

The action for Brans-Dicke theory with ω0 = −3/2 is

S [g , φ, ψm] =
1

2κ

∫
d4x
√
−g

(
φR +

3

2φ
∂µφ∂

µφ− V (φ)

)
+SM(gµν , ψ),

(29)
whose independent variation with respect to the metric and the scalar
yields to the field eqs.

Gµν =
κ

φ
Tµν −

3

2φ2

(
∇µφ∇νφ−

1

2
gµν∇λφ∇λφ

)
+

1

φ
(∇µ∇νφ− gµν�φ)− V (φ)

2φ
gµν , (30)

�φ =
φ

3
(R − V ′(φ)) +

1

2φ
∇µφ∇µφ. (31)
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First Example: Brans-Dicke Theory

We can use the trace of the first eq. to eliminate R in the second
one. The outcome is

2V (φ)− φV ′(φ) = κT . (32)

Once V (φ) is assigned, the scalar field can be algebraically solved as
φ = φ(T ), then it is a non-dynamical field.

Substituting it back into the field eqs. one gets

Higher order derivatives of the matter fields!
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Second Example: EiBI Gravity

EiBI gravity is described by the following action

S [g , Γ, ψm] =
1

4πGκ

∫
d4x

(√
| det

(
gab + κR(ab)

)
|

−(1 + κΛ)
√

g
)

+ SM [gab, ψM ] . (33)

Independent variation of the action with respect to the metric and the
connection yields after some manipulations to

Γc
ab =

1

2
qcd (∂aqbd + ∂bqad − ∂dqab) , (34)

qab =
(1 + κΛ)g ab − κT ab

√
g
√

det ((1 + κΛ)g ab − κT ab)
, (35)

where qab ≡ gab + κR(ab).
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Second Example: EiBI Gravity

The connection Γc
ab is not a dynamical field!

The field eqs. can be expanded at first order in κ by noting that

qab = g ab − κτ ab +O(κ2) , (36)

where τab ≡ Tab − 1
2gabT + Λgab. One finally gets a single equation for

the metric gab only:

Rab = Λgab + Tab −
1

2
Tgab + κ

[
Sab −

1

4
Sgab

]
+

κ

2

[
∇a∇bτ − 2∇c∇(aτcb) + �τab

]
+O(κ2) , (37)

where Sab = T c
aTcb − 1

2TTab.

M. Bañados and P. G. Ferreira, Phys. Rev. Lett. 105, 011101 (2010)
P. Pani and T. P. Sotiriou, Phys. Rev. Lett. 109, 251102 (2012)
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Constructing Sab

Why not terms with Ricci or Riemann contracted with Tab, like

RabT , RTab , RacT c
b , ... ,RabcdT bc ? (38)

Rab and R can be calculated from the field eqs. and substitued
above to give terms already present in the field eqs.

For the term with Rabcd let us use the tensorial relation

∇a∇dTab = RedT e
b + RbecdT ec , (39)

which can be symmetrized giving

RbecdT ec = ∇a∇(dTb)a − Re(dTb)
e . (40)

These terms are already present into the field eqs.!
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Asking for Divergence-Free Field Equations

Then, taking the divergence of both sides of the field eqs. we get:

0 = α1∇b T + 2α2 T ∇b T + α3 Tab∇a T + 2α4 T cd ∇b Tcd

+ α5 T c
a∇aTcb + β1 �∇b T + β2∇b� T

+ β3∇a� Tab + 2β4∇a∇c∇(a Tb)c . (41)

The various terms are not independent from each others, being related
through the derivative commutators!
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A Few Tensorial Algebra

With a few algebra one can obtain the following tensorial relations

(�∇b −∇b �) T = Rab∇a T , (42)

(∇a∇c ∇a −∇c �)Tcb = Rabcd∇d T ca, (43)

(∇c ∇d −∇d ∇c)Tab = RaecdT e
b + RbecdTa

e , (44)

and one can use the Bianchi identity, suitably contracted as

∇aRabcd = 2∇[cRd ]b. (45)
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