Higher-Spin Gauge Theories

M.A.Vasiliev

Lebedev Institute, Moscow

Paros, September 25-26, 2013

Plan

Lecture I

Properties of HS theory

Higher-spin algebra

Lecture II

Nonlinear HS Theory
Space-time metamorphoses
Conclusion

Symmetries

HS gauge theory: theory of maximal symmetries

Usual lower-spin symmetries

- Relativistic theories: Poincaré symmetry:
$\delta x^{a}=\varepsilon^{a}+\varepsilon^{a}{ }_{b} x^{b} \quad \varepsilon^{a}:$ translations; $\varepsilon^{a b}$: Lorentz rotations
Lie algebra: $\delta x^{a}=\left[T, x^{a}\right], \quad T=\varepsilon^{n} P_{a}+\varepsilon^{a b} M_{a b}$

$$
\begin{gathered}
P_{a}=\frac{\partial}{\partial x^{a}}, \quad M_{a b}=x_{a} \frac{\partial}{\partial x^{b}}-x_{b} \frac{\partial}{\partial x^{a}} \\
{\left[M_{a b}, P_{c}\right]=P_{a} \eta_{b c}-P_{b} \eta_{a c}} \\
{\left[M_{a b}, M_{c d}\right]=M_{a d} \eta_{b c}-M_{b d} \eta_{a c}-M_{a c} \eta_{b d}+M_{b c} \eta_{a d}} \\
{\left[P_{a}, P_{b}\right]=0}
\end{gathered}
$$

(A) $d S$ deformation

$$
\left[P_{a}, P_{b}\right]=\Lambda \mathrm{M}_{\mathrm{ab}}
$$

$$
\wedge<0: \operatorname{AdS}, o(d-1,2)
$$

$$
\wedge>0: d S, o(d, 1)
$$

$\wedge=0:$ Minkowski space, $\operatorname{iso}(d-1,1)$

- SUSY

$$
\begin{gathered}
P_{a}, M_{a b} \longrightarrow P_{a}, M_{a b}, \mathrm{Q}_{\alpha}, \quad \alpha=1,2,3,4 \\
\left\{Q_{\alpha}, Q_{\beta}\right\}=\gamma_{\alpha \beta}^{a} P_{a} \\
{\left[M_{a b}, Q_{\alpha}\right]=} \\
\sigma_{a b \alpha}{ }^{\beta} Q_{\beta}, \quad \sigma_{a b}=\frac{1}{4}\left[\gamma_{a}, \gamma_{b}\right]
\end{gathered}
$$

- Inner symmetries: generators T_{i} are space-time invariant

$$
\left[T_{i},\left(P_{a}, M_{a b}\right)\right]=0
$$

Standard Model: $T_{i} \sim S U(3) \times S U(2) \times U(1)$

- Conformal (super)symmetries

Local Symmetries

Useful viewpoint: any global symmetry is the remnant of a local symmetry with parameters like $\varepsilon^{a}(x), \varepsilon^{a b}(x), \varepsilon^{\alpha}(x), \varepsilon^{i}(x)$ being arbitrary functions of space-time coordinates

Local symmetries are symmetries of the full theory
Global symmetries are symmetries of its particular solution

Example:

Infinitesimal diffeomorphisms $\delta x^{a}=\varepsilon^{a}(x)$ are symmetries of GR
Global symmetry with $\varepsilon^{a}(x)=\varepsilon^{a}+\varepsilon^{a}{ }_{b} x^{b}$ are symmetries of the Minkowski
solution $g_{a b}=\eta_{a b}$ of Einstein equations

Gauge fields

Let

$$
S=\int_{M^{d}} L\left(\varphi(x), \partial_{a} \varphi(x), \ldots\right)
$$

be invariant under a global symmetry g with parameters $\varepsilon^{n}(n=a, \alpha, i, \ldots)$
For $\varepsilon^{n}(x)$

$$
\delta S=-\int_{M^{d}} J_{n}^{a}(\varphi) \partial_{a} \varepsilon^{n}(x)
$$

$J_{n}^{a}(\varphi)$ are conserved currents since $\partial_{a} J_{n}^{a}(\varphi) \cong 0$ by virtue of field equations

To achieve local symmetry introduce gauge fields A_{a}^{n}

$$
\begin{gathered}
\delta A_{a}^{n}=\partial_{a} \varepsilon^{n}+\ldots \\
S \longrightarrow S+\Delta S+\ldots, \quad \Delta S=\int_{M^{d}} J_{n}^{a}(\varphi) A_{a}^{n}(x)
\end{gathered}
$$

ΔS : Noether current interaction.

Subtlety

If $\varphi(x)$ were gauge fields with gauge parameters $\varepsilon^{\prime}, J_{n}^{a}(\varphi)$ may not be invariant under the ε^{\prime} symmetry

Noether current interaction for several gauge fields may be obstructed

Inner symmetry:

Yang-Mills fields - spin 1

$$
\begin{gathered}
A_{a}(x)=A_{a}^{i}(x) T_{i}, \quad \varepsilon(x)=\varepsilon^{i}(x) T_{i} \\
\delta A_{a}(x)=D_{a} \varepsilon(x), \quad D_{a} \varepsilon(x)=\partial_{a} \varepsilon(x)+\left[A_{a}(x), \varepsilon(x)\right] \\
{\left[D_{a}, D_{b}\right]=R_{a b}, \quad R_{a b}=\partial_{a} A_{b}-\partial_{b} A_{a}+\left[A_{a}, A_{b}\right], \quad \delta R_{a b}=g\left[R_{a b}, \varepsilon\right]}
\end{gathered}
$$

Poincaré symmetry:

Cartan gravity - spin $2 A_{\nu}^{n}=\left(e_{\nu}^{a}, \omega_{\nu}^{a b}\right)$
$e_{\nu}{ }^{a}$ relates indices ν with a identified in Minkowski space at $e_{\nu}{ }^{a}=\delta_{\nu}^{a}$ Gauge transformation

$$
\begin{gathered}
\delta e_{\nu}{ }^{a}(x)=\partial_{\nu} \varepsilon^{a}(x)+\omega_{\nu}{ }^{a}{ }_{b}(x) \varepsilon^{b}(x)-\varepsilon^{a}{ }_{b}(x) e_{\nu}{ }^{b}(x)+\Delta e_{\nu}{ }^{a} \\
\delta \omega_{\nu}{ }^{a b}(x)=\partial_{\nu} \varepsilon^{a b}(x)+\omega_{\nu}{ }^{a}{ }_{c}(x) \varepsilon^{c b}(x)-\omega_{\nu}{ }^{b}(x) \varepsilon^{c a}(x)+\Delta \omega_{\nu}^{a b}
\end{gathered}
$$

$\Delta e_{\nu}{ }^{a}, \Delta \omega_{\nu}{ }^{a b}$ corrections to YM transformation proportional to curvatures

$$
R_{\nu \mu}{ }^{a}=\partial_{\nu} e_{\mu}{ }^{a}+\omega_{\nu}{ }^{a}{ }_{b} e_{\mu}{ }^{b}-(\nu \leftrightarrow \mu), \quad R_{\nu \mu}{ }^{a b}=\partial_{\nu} \omega_{\mu}{ }^{a b}+\omega_{\nu}{ }^{a}{ }_{c} \omega_{\mu}{ }^{c b}-(\nu \leftrightarrow \mu)
$$

$R_{\nu \mu}{ }^{a}=0 \rightarrow \omega=\omega(e, \partial e), \quad R_{\nu \mu}{ }^{\rho \sigma}:$ Riemann tensor
Metric $g_{\nu \mu}=e_{\nu}{ }^{a} e_{\mu}{ }^{b} \eta_{a b}$

SUSY

$$
\delta \psi_{\nu \alpha}=D_{\nu} \varepsilon_{\alpha}+\ldots
$$

Spontaneous symmetry breaking

Equations of motion are G-invariant while a solution that describes our world is not
Higgs: $H^{i}(x)=H_{0}^{i}+h^{i}(x)$
Unbroken part $\tilde{G} \subset G$ is a leftover symmetry of H_{0}^{i}
$\tilde{G}=S U(3) \times U(1)$ in SM
If H_{0}^{i} has non-zero dimension [H_{0}^{i}] $=\mathrm{cm}^{-1} \sim \mathrm{GeV}$
spontaneous symmetry breaking is a low-energy effect
symmetry restoration at $E>H_{0}^{i}$ symmetries describe massless particles

$$
\begin{array}{ll}
s=1: & A_{\nu}{ }^{i} \\
s=3 / 2: & \psi_{\nu \alpha} \\
s=2: & e_{\nu}{ }^{a} \omega_{\nu}{ }^{a b}
\end{array}
$$

General Features of HS Theories

Key question: is it possible to go to larger HS symmetries?

What are HS symmetries and HS counterparts of lower-spin theories including GR?

What are physical motivations for their study and possible outputs?

Fronsdal fields

All $m=0$ HS fields are gauge fields
$\varphi_{\nu_{1} \ldots \nu_{s}}$ is a rank symmetric tensor obeying $\varphi^{\rho}{ }_{\rho}{ }^{\mu}{ }_{\mu \nu_{5} \ldots \nu_{s}}=0$
Gauge transformation:

$$
\delta \varphi_{\nu_{1} \ldots \nu_{s}}=\partial_{\left(\nu_{1}\right.} \varepsilon_{\left.\nu_{2} \ldots \nu_{s}\right)}, \quad \varepsilon^{\mu}{ }_{\mu \nu_{3} \ldots \nu_{s-1}}=0
$$

Field equations: $G_{\nu_{1} \ldots \nu_{s}}(x)=0 \quad G_{\nu_{1} \ldots \nu_{s}}(x)$: Einstein-like tensor

$$
G_{\nu_{1} \ldots \nu_{s}}(x)=\square \varphi_{\nu_{1} \ldots \nu_{s}}(x)-s \partial_{\left(\nu_{1}\right.} \partial^{\mu} \varphi_{\left.\nu_{2} \ldots \nu_{s} \mu\right)}(x)+\frac{s(s-1)}{2} \partial_{\left(\nu_{1}\right.} \partial_{\nu_{2}} \varphi_{\left.\nu_{3} \ldots \nu_{s} \mu\right)}^{\mu}(x)
$$

Action

$$
S=\int_{M^{d}}\left(\frac{1}{2} \varphi^{\nu_{1} \ldots \nu_{s}} G_{\nu_{1} \ldots \nu_{s}}(\varphi)-\frac{1}{8} s(s-1) \varphi_{\mu}^{\mu \nu_{3} \ldots \nu_{s}} G_{\rho \nu_{3} \ldots \nu_{s}}^{\rho}(\varphi)\right)
$$

No-go and the role of $(A) d S$

In 60th it was argued (Weinberg, Coleman-Mandula) that HS symmetries cannot be realized in a nontrivial local field theory in Minkowski space
In 70th it was shown by Aragone and Deser that HS gauge symmetries are incompatible with GR if expanding around Minkowski space

Green light: $A d S$ background with $\wedge \neq 0 \quad$ Fradkin, MV, 1987
In agreement with no-go statements the limit $\Lambda \rightarrow 0$ is singular

HS Symmetries versus Riemann geometry

HS symmetries do not commute to space-time symmetries

$$
\left[T^{a}, T^{H S}\right]=T^{H S}, \quad\left[T^{a b}, T^{H S}\right]=T^{H S}
$$

HS transformations map gravitational fields (metric) to HS fields

Consequence:
Riemann geometry is not appropriate for HS theory:
concept of local event may become illusive!

Differential forms: coordinate independence without metric

Differential forms are totally antisymmetric tensors
p-form: $\omega(x)=\theta^{\nu_{1}} \ldots \theta^{\nu_{p}} \omega_{\nu_{1} \ldots \nu_{p}}(x)$

$$
\theta^{\nu} \theta^{\mu}=-\theta^{\mu} \theta^{\nu}, \quad\left(\theta^{\nu}=d x^{\nu}\right)
$$

Invariant differentiation is provided by de Rham differential

$$
d=\theta^{\nu} \frac{\partial}{\partial x^{\nu}}, \quad d^{2}=0
$$

Due to total antisymmetrization symmetric Christoffel symbols drop out Connections $A=\theta^{\nu} A_{\nu}^{i} T_{i}$ are one-forms
Curvatures $R=D^{2}, D=d+A$ are two-forms

Elaboration of this language in HS theory leads to new understanding of fundamental concepts of space-time including its dimension

HS Gauge Theory and Quantum Gravity

HS symmetry is in a certain sense maximal relativistic symmetry. Hence,
it cannot result from spontaneous breakdown of a larger symmetry: HS symmetries are manifest at ultrahigh energies above any scale including Planck scale

- HS gauge theory should capture effects of Quantum Gravity: restrictive HS symmetry versus unavailable experimental tests
- Lower-spin theories as low-energy limits of HS theory:
lower-spin symmetries: subalgebras of HS symmetry

HS theory and String theory

- String Theory as spontaneously broken HS theory?! ($s>2, m>0$) Recent conjecture (Chang, Minwalla, Sharma and Yin (2012)):
String Theory $=$ Quantum HS theory?!

HS AdS/CFT correspondence

$A d S_{4}$ HS theory is dual to $3 d$ vectorial conformal models Klebanov- Polyakov (200
Giombi and Yin (2009)
$A d S_{3} / C F T_{2}$ correspondence
Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of $A d S / C F T$

Global HS Symmetry

HS symmetry in $A d S_{d+1}$:
Maximal symmetry of a d-dimensional free conformal field(s)=singletons usually, scalar and/or spinor

Consider KG massless equation in Minkowski space

$$
\square C(x)=0, \quad \square=\eta^{a b} \frac{\partial^{2}}{\partial x^{a} \partial x^{b}}
$$

What are symmetries of KG equation? shaynkman, MV 2001 3d; Eastwood $2002 \forall d$

i Poincaré

ii Scale transformation (dilatation)

$$
\delta C(x)=\varepsilon D C(x), \quad D=x^{a} \frac{\partial}{\partial x^{a}}+\frac{d}{2}-1
$$

iii Special conformal transformations

$$
\delta C(x)=\varepsilon_{a} K^{a} C(x), \quad K^{a}=\left(x^{2} \eta^{a b}-2 x^{a} x^{b}\right) \frac{\partial}{\partial x^{b}}+(2-d) x^{a}
$$

Problem 1.1. Check invariance
Problem 1.2. Check: $P_{a}, M_{a b}, K^{a}, D$ form a Lie algebra (conformal algebra)
Problem 1.3. Check that conformal algebra is $o(d, 2)$

Auxiliary problem

Consider equations

$$
\begin{gather*}
D \mathcal{C}_{A}(x)=0, \quad D^{2}=0 \tag{1}\\
D=d+\omega(x), \quad \omega_{A}{ }^{B}(x)=\omega^{\Omega}(x) T_{\Omega A}{ }^{B}
\end{gather*}
$$

$\omega(x)$: flat connection on the space V of \mathcal{C}_{A}
(1) is invariant under the gauge transformation

$$
\begin{aligned}
& \delta \mathcal{C}(x)=-\varepsilon(x) \mathcal{C}(x), \quad \varepsilon_{A}{ }^{B}(x)=\varepsilon^{\Omega}(x) T_{\Omega}(x) \\
& \delta \omega(x)=D \varepsilon(x):=d \varepsilon(x)+\omega(x) \varepsilon(x)-\varepsilon(x) \omega(x)
\end{aligned}
$$

Problem 1.4. Check

Global symmetry parameters

For a particular $\omega(x)=\omega_{0}(x)$, to keep the equations invariant demands

$$
\delta_{0} \omega(x) \longrightarrow D_{0} \varepsilon_{g l}^{\Omega}(x)=0
$$

Since $D_{0}^{2}=0, \varepsilon_{g l}^{\Omega}(x)$ is reconstructed (locally) in terms of $\varepsilon^{\Omega}\left(x_{0}\right) \forall x_{0}$ $\varepsilon^{\Omega}\left(x_{0}\right)$: global symmetry parameters of $D_{0} \mathcal{C}(x)=0$

Solution: $\omega_{0}(x)=g^{-1}(x) d g(x), \mathcal{C}(x)=g^{-1}(x) \mathcal{C}$. For $g\left(x_{0}\right)=1, \mathcal{C}=\mathcal{C}\left(x_{0}\right)$

Minkowski space: $\omega(x)=e^{a}(x) P_{a}+\omega^{a b}(x) M_{a b}$
Cartesian coordinates: $\omega^{a b}=0, e^{a}(x)=\theta^{a}$
Introduce an infinite set of 0 -forms

$$
C_{a_{1} \ldots a_{n}}(x)=C_{\left(a_{1} \ldots a_{n}\right)}(x), \quad \eta^{b c} C_{b c a_{3} \ldots a_{n}}(x)=0
$$

Unfolded KG equation

$$
d C_{a_{1} \ldots a_{n}}(x)=\theta^{b} C_{a_{1} \ldots a_{n} b}(x)
$$

This system is consistent since $\theta^{b} \wedge \theta^{c}=-\theta^{c} \wedge \theta^{b}$
First two equations imply

$$
\partial_{a} C(x)=C_{a}(x), \quad \partial_{a} C_{b}(x)=C_{a b}(x) \longrightarrow C_{a b}(x)=\partial_{a} \partial_{b} C(x)
$$

Tracelessness of $C_{n m}(x)$:

$$
\square C(x)=0 .
$$

All other equations:

$$
C_{a_{1} \ldots a_{n}}(x)=\partial_{a_{1}} \ldots \partial_{a_{n}} C(x)
$$

$C_{a_{1} \ldots a_{n}}(x)$: set of all on-mass-shell nontrivial derivatives of $C(x)$

Conformal HS algebra

Conformal HS algebra in dimensions: algebra of linear transformations of the infinite-dimensional space V of various traceless symmetric tensors $C, C_{a}, C_{a b} \ldots$, i.e., $h=g l(V)$
h was carefully defined by Eastwood in 2002 by different methods

Algebraic construction simplifies in $d=3$ using spinor formalism most
relevant in the context of $A d S_{4} / C F T_{3}$ HS holography shaynkman, MV (2001)
$3 d$ Lorentz algebra: $o(2,1) \sim s p(2, R) \sim s l_{2}(R) .3 d$ spinors are real

$$
\chi_{\alpha}^{\dagger}=\chi_{\alpha}, \quad \alpha=1,2
$$

$s p(2, R)$ invariant tensor $\epsilon^{\alpha \beta}=-\epsilon^{\beta \alpha}$ relates lower and upper indices

$$
\chi^{\alpha}=\epsilon^{\alpha \beta} \chi_{\beta}, \quad \chi_{\alpha}=\chi^{\beta} \epsilon_{\beta \alpha}
$$

Antisymmetrization of $3 d$ spinor indices is equivalent to contraction

$$
A_{\alpha, \beta}-A_{\beta, \alpha}=\epsilon_{\alpha \beta} A_{\gamma}{ }^{\gamma}
$$

IRREPS of Lorentz algebra: totally symmetric multispinors $A_{\alpha_{1} \ldots \alpha_{n}}$ Consequence:

$$
A_{a_{1} \ldots a_{m}} \sim A_{\alpha_{1} \ldots \alpha_{2 m}}, \quad A^{b}{ }_{b a_{3} \ldots a_{m}}=0
$$

Problem 1.5. Prove by checking the number of independent components Explicit map via 2×2 real symmetric matrices

$$
A_{\alpha \beta}=\sigma_{\alpha \beta}^{n} A_{n}, \quad \sigma_{\alpha \beta}^{n}=\sigma_{\beta \alpha}^{n}
$$

Spinorial form of $3 d$ massless equations

Space V of all $3 d$ traceless symmetric tensors is the space of (even) functions of commuting spinor variable y^{α}

$$
C(y \mid x)=\sum_{n=0}^{\infty} C^{\alpha_{1} \ldots \alpha_{2 n}}(x) y_{\alpha_{1}} \ldots y_{\alpha_{2 n}}
$$

Unfolded massless equations take the form

$$
\begin{equation*}
\theta^{\alpha \beta}\left(\frac{\partial}{\partial x^{\alpha \beta}}+\frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}\right) C(y \mid x)=0 \tag{2}
\end{equation*}
$$

Problem 1.6. Check
Problem 1.7. Check that for odd $C(-y \mid x)=-C(y \mid x)$ (2) describes $3 d$ massless spinor field $C_{\alpha}(x)=\left.\frac{\partial}{\partial y^{\alpha}} C(y \mid x)\right|_{y=0}$

3d HS symmetry

$3 d$ conformal HS algebra is the algebra of various differential operators $\epsilon\left(y, \frac{\partial}{\partial y}\right)$ obeying $\epsilon\left(-y,-\frac{\partial}{\partial y}\right)=\epsilon\left(y, \frac{\partial}{\partial y}\right)$

$$
\begin{gathered}
\delta C(y \mid x)=\epsilon\left(y, \left.\frac{\partial}{\partial y} \right\rvert\, x\right) C(y \mid x) \\
\epsilon\left(y, \left.\frac{\partial}{\partial y} \right\rvert\, x\right)=\exp \left[-x^{\alpha \beta} \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}\right] \epsilon_{g l}\left(y, \frac{\partial}{\partial y}\right) \exp \left[x^{\alpha \beta} \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}\right]
\end{gathered}
$$

Problem 1.8. Check
For any polynomial $\epsilon_{g l}\left(y, \frac{\partial}{\partial y}\right), \epsilon\left(y, \left.\frac{\partial}{\partial y} \right\rvert\, x\right)$ is polynomial as well:
polynomial. $\quad \epsilon_{g l}\left(y, \frac{\partial}{\partial y}\right)$ describe local HS transformations

Conformal subalgebra

$3 d$ Conformal algebra $s p(4) \sim o(3,2)$

$$
P_{\alpha \beta}=\frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}, \quad K^{\alpha \beta}=y^{\alpha} y^{\beta}, \quad M_{\alpha \beta}=y_{\alpha} \frac{\partial}{\partial y^{\beta}}+y_{\beta} \frac{\partial}{\partial y^{\alpha}}, \quad D=y^{\alpha} \frac{\partial}{\partial y^{\alpha}}+1
$$

Problem 1.9. Check that P, K, M, D form closed algebra
Problem 1.10. * Derive conformal transformations of $C(x)$

Weyl algebra

Weyl algebra A_{n} : associative algebra of polynomials of oscillators \widehat{Y}_{A}

$$
\left[\hat{Y}_{A}, \hat{Y}_{B}\right]=C_{A B}, \quad A, B, \ldots=1, \ldots 2 n, \quad C_{A B}=-C_{B A}
$$

$3 d \mathrm{CHS}$ algebra $=A d S_{4} \mathrm{HS}$ algebra is (even part of) Weyl algebra A_{2}

$$
\hat{Y}_{A}=\binom{y^{\alpha}}{\frac{\partial}{\partial y^{\beta}}}
$$

Symbols of operators

$$
\widehat{f}(\widehat{Y})=\sum_{n=0}^{\infty} \frac{1}{n!} f^{A_{1} \ldots A_{n}} \widehat{Y}_{A_{1}} \ldots \widehat{Y}_{A_{n}}, \quad \quad \text { symmetric } f^{A_{1} \ldots A_{n}}
$$

Weyl symbol $f(Y)$ of the operator $\widehat{f}(\hat{Y})$ is a function of commuting variables Y^{A} of the same expansion

$$
f(Y)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{A_{1} \ldots A_{n}} Y_{A_{1}} \ldots Y_{A_{n}}
$$

Y_{A} is the Weyl symbol of \hat{Y}_{A}.

Weyl star-product algebra is defined by the rule $(f * g)(Y)$ is a symbol of $\hat{f}(\hat{Y}) \hat{g}(\widehat{Y})$. In particular,

$$
\left[Y_{A}, Y_{B}\right]_{*}=2 i C_{A B}, \quad[a, b]_{*}=a * b-b * a
$$

Problem 1.11. Prove

$$
\left\{Y_{A}, f(Y)\right\}_{*}=2 Y_{A} f(Y), \quad\left[Y_{A}, f(Y)\right]_{*}=2 i \frac{\partial}{\partial Y^{A}} f(Y), \quad Y^{A}=C^{A B} Y_{B}
$$

Weyl-Moyal formula

$$
\left(f_{1} * f_{2}\right)(Y)=f_{1}(Y) \exp \left[i \overleftarrow{\partial^{A}} \overrightarrow{\partial^{B}} C_{A B}\right] f_{2}(Y), \quad \partial^{A} \equiv \frac{\partial}{\partial Y_{A}}
$$

Problem 1.12. Prove using Campbell-Hausdorf formula for $\exp J^{A} \hat{Y}_{A}$ Important properties

$$
\text { associativity: }(f * g) * h=f *(g * h)
$$

regularity: star product of any two polynomials of Y is a polynomial Integral representation

$$
\left(f_{1} * f_{2}\right)(Y)=\frac{1}{\pi^{2 M}} \int d S d T \exp \left(-i S_{A} T_{B} C^{A B}\right) f_{1}(Y+S) f_{2}(Y+T)
$$

Properties of HS algebras

Global symmetry of symmetric vacuum of bosonic HS theory

Let T_{s} be a homogeneous polynomial of degree $2(s-1)$

$$
\left[T_{s_{1}}, T_{s_{2}}\right]=T_{s_{1}+s_{2}-2}+T_{s_{1}+s_{2}-4}+\ldots+T_{\left|s_{1}-s_{2}\right|+2}
$$

Once spin $s>2$ appears, the HS algebra contains an infinite tower of higher spins: $\left[T_{s}, T_{s}\right.$] gives rise to $T_{2 s-2}$ as well as T_{2} of $o(3,2) \sim s p(4)$.

Usual symmetries: spin-s $\leq 2 u(1) \oplus o(3,2)$: maximal finite-dimensional subalgebra of $h u(1,0 \mid 4) . u(1)$ is associated with the unit element.

4d HS systems

Three series of $4 d$ HS algebras: $h u(n, m \mid 4), h o(n, m \mid 4), h u s p(2 n, 2 m \mid 4)$

Spin-one YM sector:
$g=u(n) \oplus u(m), o(n) \oplus o(m)$ or $u s p(2 n) \oplus u s p(2 m)$
fermions: bifundamental.
Odd spins: adjoint representation of g.
Even spins: the opposite symmetry second rank representation of g,

Particle spectrum always contains a singlet for
colorless graviton and colorless scalar
$h o(1,0 \mid 4)$ is minimal HS algebra: even spins $s=0,2,4,6, \ldots$

Colorless scalar is the prediction of HS symmetry!

Some Reviews

MV, hep-th/0401177; 9910096; 9611024
X. Bekaert, S. Cnockaert, C. Iazeolla and MV, hep-th/0503128
D. Sorokin, arXiv:hep-th/0405069
A. Fotopoulos and M. Tsulaia, 0805.1346
X. Bekaert, N.Boulanger and P.Sundell, 1007.0435
M. R. Gaberdiel and R. Gopakumar, 1207.6697
S. Giombi and X. Yin, 1208.4036

Lecture II

HS theory in $A d S_{4}$ and space-time metamorphoses

Nonlinear HS Theory
Space-time metamorphoses

Summary of Lecture I

General consequences of HS symmetry

$3 d$ conformal HS algebra is even part of Weyl algebra A_{2} of functions

$$
f(Y)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{A_{1} \ldots A_{n}} Y_{A_{1}} \ldots Y_{A_{n}}
$$

of oscillators

$$
\left[Y_{A}, Y_{B}\right]_{*}=2 i C_{A B}, \quad A=1,2,3,4
$$

$A d S_{4}$ HS algebra coincides with $3 d$ conformal HS algebra

Spinorial langauge in four dimensions

Key fact $\quad 2 \times 2=4$
Minkowski coordinates as 2×2 hermitian matrices

$$
X^{n} \Rightarrow X^{\alpha \dot{\alpha}}=\sum_{n=0}^{3} X^{n} \sigma_{n}^{\alpha \dot{\alpha}}, \quad \sigma_{n}^{\alpha \dot{\alpha}}=\left(I^{\alpha \dot{\alpha}}, \vec{\sigma}_{k}^{\alpha \dot{\alpha}}\right)
$$

unit matrix
$\vec{\sigma}_{k}^{\alpha \dot{\alpha}}, \quad k=1,2,3: \quad$ Pauli matrices
$\alpha, \beta, \ldots=1,2, \dot{\alpha}, \dot{\beta}, \ldots=1,2$ two-component spinor indices

$$
\operatorname{det}\left|X^{\alpha \dot{\alpha}}\right|=\left(X^{0}\right)^{2}-\left(X^{1}\right)^{2}-\left(X^{2}\right)^{2}-\left(X^{3}\right)^{2}
$$

Lorentz symmetry: $\operatorname{sl}(2, \mathbb{C}) \sim o(3,1)$.
Dictionary between tensors and multispinors by:

$$
\sigma_{\alpha \dot{\alpha}}^{a}, \quad \sigma_{\alpha \beta}^{a b}=\sigma_{\alpha \dot{\alpha}}^{[a} \sigma_{\beta}^{b] \dot{\beta}}, \quad \bar{\sigma}_{\dot{\alpha} \dot{\beta}}^{a b}=\sigma_{\alpha \dot{\alpha}}^{[a} \sigma_{\dot{\beta}}^{b] \alpha}
$$

Pair of dotted and undotted indices: vector
Pairs of symmetrized indices of the same type: antisymmetric tensors
Problem 1.13. Check

NonAbelian HS Algebra

3d Conformal HS symmetry $=A d S_{4}$ HS symmetry
HS gauge fields: $\omega(Y \mid X)$
$Y_{A}=\left(y_{\alpha}, \bar{y}_{\dot{\alpha}}\right), \alpha, \dot{\alpha}=1,2$ two-component spinor indices

$$
\omega(Y \mid X)=\sum_{n, m=0}^{\infty} \frac{1}{2 n!m!} \omega_{\alpha_{1} \ldots \alpha_{n}, \dot{\alpha}_{1} \ldots \dot{\alpha}_{m}}(X) y^{\alpha_{1}} \ldots y^{\alpha_{n}} \bar{y}^{\dot{\alpha}_{1}} \ldots \bar{y}^{\dot{\alpha}_{m}}
$$

HS curvature and gauge transformation

$$
\begin{gathered}
R(Y \mid X)=d \omega(Y \mid X)+\omega(Y \mid X) * \wedge \omega(Y \mid X) \\
\delta \omega(Y \mid X)=D \epsilon(Y \mid X)=d \epsilon(Y \mid X)+[\omega(Y \mid X), \epsilon(Y \mid X)]_{*} \\
{\left[y_{\alpha}, y_{\beta}\right]_{*}=2 i \varepsilon_{\alpha \beta}, \quad\left[\bar{y}_{\dot{\alpha}}, \bar{y}_{\dot{\beta}}\right]_{*}=2 i \varepsilon_{\dot{\alpha} \dot{\beta}}}
\end{gathered}
$$

Vacuum

Equation of $A d S_{4}: R_{0}=0$ for $\omega_{0} \in s p(4) \sim o(3,2)$

$$
\omega_{0}(Y \mid X)=\frac{1}{4 i}\left(w^{\alpha \beta}(X) y_{\alpha} y_{\beta}+\bar{w}^{\dot{\alpha} \dot{\beta}}(X) \bar{y}_{\dot{\alpha}} \bar{y}_{\dot{\beta}}+2 \lambda h^{\alpha \dot{\beta}}(X) y_{\alpha} \bar{y}_{\dot{\beta}}\right)
$$

Problem 1.14. Check
Fluctuations

$$
\omega=\omega_{0}+\omega_{1}, \quad R_{1}=D_{0} \omega_{1}=d \omega_{1}+\left[\omega_{0}, \omega_{1}\right]_{*}
$$

Central On-shell theorem

The full unfolded system for free massless fields of all spins is formulated in terms of one-form $\omega(Y \mid X)$ and zero-form $C(Y \mid X)$

$$
\begin{gathered}
\mathbf{R}_{1}(\mathbf{y}, \overline{\mathbf{y}} \mid \mathbf{X})=\overline{\mathbf{H}}^{\dot{\alpha} \dot{\beta}} \frac{\partial^{2}}{\partial \overline{\mathbf{y}}^{\dot{\alpha}} \partial \overline{\mathbf{y}}^{\dot{\beta}}} \mathbf{C}(0, \overline{\mathbf{y}} \mid \mathbf{X})+\mathbf{H}^{\alpha \beta} \frac{\partial^{2}}{\partial \mathbf{y}^{\alpha} \partial \mathbf{y}^{\beta}} \mathrm{C}(\mathbf{y}, 0 \mid \mathbf{X}), \\
\tilde{\mathbf{D}}_{0} \mathrm{C}(\mathbf{y}, \overline{\mathbf{y}} \mid \mathbf{X})=0,
\end{gathered}
$$

where

$$
\begin{gathered}
H^{\alpha \beta}=h_{\dot{\alpha}}^{\alpha} \wedge h^{\beta \dot{\alpha}}, \quad \bar{H}^{\dot{\alpha} \dot{\beta}}=h_{\alpha}^{\dot{\alpha}} \wedge h^{\alpha \dot{\beta}} \\
R_{1}(y, \bar{y} \mid X)=D^{a d} \omega(y, \bar{y} \mid X)
\end{gathered}
$$

$D_{0}^{a d} \omega=D^{L}-\lambda h^{\alpha \dot{\beta}}\left(y_{\alpha} \frac{\partial}{\partial \bar{y}^{\dot{\beta}}}+\frac{\partial}{\partial y^{\alpha}} \bar{y}_{\dot{\beta}}\right), \quad \tilde{D}_{0}=D^{L}+\lambda h^{\alpha \dot{\beta}}\left(y_{\alpha} \bar{y}_{\dot{\beta}}+\frac{\partial^{2}}{\partial y^{\alpha} \partial \bar{y}^{\dot{\beta}}}\right)$

$$
D^{L} A=d_{X}-\left(\omega^{\alpha \beta} y_{\alpha} \frac{\partial}{\partial y^{\beta}}+\bar{\omega}^{\dot{\alpha} \dot{\beta}} \overline{y_{\dot{\alpha}}} \frac{\partial}{\partial \bar{y}^{\dot{\beta}}}\right)
$$

Pattern of massless equations

Gauge fields of different spins: homogeneous polynomials in Y

$$
\omega^{s}(\nu y, \nu \bar{y} \mid X)=\nu^{2(s-1)} \omega(y, \bar{y} \mid X), \quad C^{s}\left(\nu y, \nu^{-1} \bar{y} \mid X\right)=\nu^{ \pm 2 s} C(y, \bar{y} \mid X)
$$

Infinite set of spins $s=0,1 / 2,1,3 / 2,2,5 / 2 \ldots$

$$
\omega_{\alpha_{1} \ldots \alpha_{n}, \dot{\beta}_{1} \ldots \dot{\beta}_{m}}^{s}: \quad n+m=2(s-1), \quad C_{\alpha_{1} \ldots \alpha_{n}, \dot{\beta}_{1} \ldots \dot{\beta}_{m}}^{s}: \quad|n-m|=2 s
$$

$C(Y \mid X)$: gauge invariant HS curvatures and spin-zero matter fields

Dynamical fields
Frame-like fields $\omega_{\alpha_{1} \ldots \alpha_{n}, \dot{\beta}_{1} \ldots \dot{\beta}_{n}}^{s}$ contain Fronsdal fields $C(0,0 \mid x)$: scalar
Other components are expressed via higher derivatives of the dynamical fields which come in combination

$$
\lambda^{-1} \frac{\partial}{\partial x}, \quad \lambda^{2}=-\Lambda
$$

Higher derivatives source nonanaliticity in \wedge.

Examples

$s=0: \quad C_{\alpha_{1} \ldots \alpha_{n}, \dot{\beta}_{1} \ldots \dot{\beta}_{n}}^{0} \sim C_{a_{1} \ldots a_{n}}, \quad C_{b a_{3} \ldots a_{n}}^{b}=0$
Problem 1.15. Derive Maxwell equations in the spin-one sector
$s=2$
Gauge fields: Lorentz connection $\omega_{\alpha \beta}, \bar{\omega}_{\dot{\alpha} \dot{\beta}}$ and vierbein $\omega_{\alpha, \dot{\beta}}$
Zero-forms $C_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}}(X)$ and $\bar{C}_{\dot{\alpha}_{1} \dot{\alpha}_{2} \dot{\alpha}_{3} \dot{\alpha}_{4}}(X)$: Weyl tensor in terms of twocomponent spinors.
Higher components $C_{\alpha_{1} \ldots \alpha_{n}, \dot{\beta}_{1} \ldots \dot{\beta}_{m}}^{s}:|n-m|=4$: all its derivatives
$R_{\alpha, \dot{\beta}}=0$: expresses Lorentz connection via vierbein
$R_{\alpha \beta}=H^{\gamma \delta} C_{\alpha \beta \gamma \delta}, R_{\dot{\alpha} \dot{\beta}}=\bar{H}^{\dot{\gamma} \dot{\delta}} \bar{C}_{\dot{\alpha} \dot{\beta} \dot{\gamma} \dot{\delta}}$: nonzero part of the Riemann tensor belongs to Weyl tensor

Spin two in tensorial language

$$
R_{\nu \mu}^{a}=0, \quad R_{\nu \mu}{ }^{a b}=e_{\nu}{ }^{c} e_{\mu}{ }^{d} C_{c d},{ }^{a b}, \quad C_{a b}{ }^{b}{ }_{c}=0
$$

$C_{c d},{ }^{a b}$ coincides with Weyl tensor
$R_{\nu \mu}=R_{\nu \rho}{ }^{\rho}{ }_{\mu}=0$: Einstein equations

HS counterparts impose Fronsdal equations $G_{\nu_{1} \ldots \nu_{s}}=0$ and express generalized Weyl tensors in terms of Fronsdal fields

From COST to nonlinear theory

$$
\begin{gathered}
R(y, \bar{y} \mid X)=\bar{H}^{\dot{\alpha} \dot{\beta}} \frac{\partial^{2}}{\partial \bar{y}^{\alpha} \partial \bar{y}^{\dot{\beta}}} C(0, \bar{y} \mid X)+H^{\alpha \beta} \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}} C(y, 0 \mid X)+\ldots \\
\tilde{D} C(y, \bar{y} \mid X)+\ldots, \quad \ldots=O\left(C, \omega_{1}\right) \\
R(y, \bar{y} \mid X)=d \omega(y, \bar{y} \mid X)+\omega(y, \bar{y} \mid X) * \omega(y, \bar{y} \mid X)
\end{gathered}
$$

$$
\tilde{D} C(y, \bar{y} \mid X)=d C(y, \bar{y} \mid X)+\omega(y, \bar{y} \mid X) * C(y, \bar{y} \mid X)-C(y, \bar{y} \mid X) * \omega(y,-\bar{y} \mid X)
$$

Such field equations are unfolded: exterior differential of any field is expressed via the fields themselves

Problem: find gauge invariant nonlinear corrections

General properties of HS interactions

HS interactions contain higher derivatives Nonanaliticity in \wedge

Background HS gauge fields contribute to higher-derivative terms in the evolution equations: evolution is determined by higher-spin fields along with the metric: no geodesic motion in presence of nonzero HS fields Hence insufficiency of metric in presence of HS fields

HS fields source lower-spin fields via $\omega * \omega$ terms
lower-spin fields source HS fields via C^{2} terms
gravity sources HS fields and vice-versa

Idea of Nonlinear Construction

Being possible in a few first orders, straightforward construction of nonlinear deformation quickly gets complicated
-Trick: to find a larger algebra g^{\prime} such that a substitution

$$
\star \quad \omega \rightarrow W=\omega+\omega C+\omega C^{2}+\ldots
$$

into g^{\prime} reconstructs nonlinear equations via a zero-curvature condition

$$
d W+W \wedge W=0
$$

To find restrictions on W that reconstruct \star in all orders

Doubling of spinors

$$
\omega(Y \mid X) \longrightarrow W(Z ; Y \mid X), \quad C(Y \mid X) \longrightarrow B(Z ; Y \mid X)
$$

to be accompanied by equations that determine dependence on the additional variables Z^{A} in terms of "initial data"

$$
\omega(Y \mid X)=W(0 ; Y \mid X), \quad C(Y \mid X)=B(0 ; Y \mid X)
$$

$S(Z, Y \mid X)=d Z^{A} S_{A}$ is connection along Z^{A}

HS star product

$$
\begin{gathered}
(f \star g)(Z, Y)=\int d S d T f(Z+S, Y+S) g(Z-T, Y+T) \exp -i S_{A} T^{A} \\
{\left[Y_{A}, Y_{B}\right]_{\star}=-\left[Z_{A}, Z_{B}\right]_{\star}=2 i C_{A B}, \quad Z-Y: Z+Y \text { normal ordering }}
\end{gathered}
$$

Inner Klein operators:
$\kappa=\exp i z_{\alpha} y^{\alpha}, \quad \bar{\kappa}=\exp i \bar{z}_{\dot{\alpha}} \bar{y}^{\dot{\alpha}}, \quad \kappa \star f(y, \bar{y})=f(-y, \bar{y}) \star \kappa, \quad \kappa \star \kappa=1$

Nonlinear HS Equations

$$
\left\{\begin{array}{l}
d W+W \star W=0 \\
d B+W \star B-B \star \tilde{W}=0 \\
d S+W \star S+S \star W=0 \\
S \star B-B \star S=0 \\
S \star S=i\left(d Z^{A} d Z_{A}+d z^{\alpha} d z_{\alpha} F(B) \star \kappa+d \bar{z}^{\dot{\alpha}} d \bar{z}_{\dot{\alpha}} \bar{F}(B) \star \bar{\kappa}\right)
\end{array}\right.
$$

Manifest gauge invariance

$$
\delta \mathcal{W}=[\varepsilon, \mathcal{W}]_{\star}, \quad \delta B=\varepsilon \star B-B \star \tilde{\varepsilon}, \quad \varepsilon=\varepsilon(Z ; Y ; K \mid x)
$$

Nontrivial equations are free of space-time differential d

The equations are formally consistent and regular: no divergences despite non-polynomial Klein operators: $\kappa=\exp i z_{\alpha} y^{\alpha}$ and $\bar{\kappa}=\exp i \bar{z}_{\dot{\alpha}} \bar{y}^{\dot{\alpha}}$

Perturbative analysis

Vacuum solution $B_{0}=0, \quad S_{0}=d Z^{A} Z_{A}, \quad W_{0}=\frac{1}{2} \omega_{0}^{\mu \nu}(x) Y_{\mu} Y_{\nu}$

$$
d W_{0}+W_{0} \star W_{0}=0 \longrightarrow \omega_{0}^{\mu \nu}(x) \quad \text { describes } \quad A d S_{d}
$$

First-order analysis reproduces Central On-Shell Theorem
A particular form of star product plays crucial role

Unfolded Dynamics

First-order form of differential equations

$$
\dot{q}^{i}(t)=\varphi^{i}(q(t)) \quad \text { initial values: } \quad q^{i}\left(t_{0}\right)
$$

\# degrees of freedom $=$ \# of dynamical variables
Unfolded dynamics: multidimensional generalization

$$
\begin{aligned}
\frac{\partial}{\partial t} \rightarrow d, \quad q^{i}(t) & \rightarrow W^{\Omega}(x)=d x^{n_{1}} \wedge \ldots \wedge d x^{n_{p}} W_{n_{1} \ldots n_{p}}^{\Omega}(x) \\
d W^{\Omega}(x) & =G^{\Omega}(W(x)), \quad d=d x^{n} \partial_{n}
\end{aligned}
$$

$G^{\Omega}(W)$: function of "supercoordinates" W^{Ω}

$$
G^{\Omega}(W)=\sum_{n=1}^{\infty} f^{\Omega}{\Lambda_{1} \ldots \wedge_{n}} W^{\wedge_{1}} \wedge \ldots \wedge W^{\wedge_{n}}
$$

Covariant first-order differential equations
$d>1$: Compatibility conditions

$$
G^{\wedge}(W) \wedge \frac{\partial G^{\Omega}(W)}{\partial W^{\wedge}} \equiv 0
$$

Properties

- General applicability
- Manifest (HS) gauge invariance under the gauge transformation

$$
\delta W^{\Omega}=d \varepsilon^{\Omega}+\varepsilon^{\wedge} \frac{\partial G^{\Omega}(W)}{\partial W^{\wedge}},
$$

gauge parameter $\varepsilon^{\Omega}(x)$ is a ($p_{\Omega}-1$)-form.

- Invariance under diffeomorphisms

Exterior algebra formalism

- Interactions: nonlinear deformation of $G^{\Omega}(W)$
- Degrees of freedom are in 0-forms $C^{i}\left(x_{0}\right)$ at any $x=x_{0}$ (as $q\left(t_{0}\right)$) infinite-dimensional module dual to the space of single-particle states realized as a space of functions of auxiliary variables (like $C(y, \bar{y})$ instead of phase space coordinates in the Hamiltonian approach
Unfolded dynamics provides a tool to control unitarity in presence of higher derivatives

Space-time metamorphoses

Independence of ambient space-time: geometry is encoded by $G^{\Omega}(W)$ Key observation: unfolded equation makes sense in any space-time
$d W^{\Omega}(x)=G^{\Omega}(W(x)), \quad x \rightarrow X=(x, y), \quad d_{x} \rightarrow=d_{X}=d_{x}+d_{y}, \quad d_{y}=d y^{u} \frac{\partial}{\partial y^{u}}$ X-dependence is reconstructed in terms of fields $W^{\Omega}\left(X_{0}\right)=W^{\Omega}\left(x_{0}, y_{0}\right)$ at any X_{0} To take $W^{\Omega}\left(x_{0}, y_{0}\right)$ in space M_{X} with coordinates X_{0} is the same as to take $W^{\Omega}\left(x_{0}\right)$ in the space $M_{x} \in M_{X}$ with coordinates x

Unfolding as a covariant twistor transform

$W^{\Omega}(Y \mid x)$ are functions on the "correspondence space" C. Space-time M : coordinates x. Twistor space T : coordinates Y.
Unfolded equations: Penrose transform mapping functions on T to solutions of field equations in M.

Holographic duality: different space-times M for the same twistor space

$3 d$ conformal fields and currents

$3 d$ massless equations
$\left(\frac{\partial}{\partial x^{\alpha \beta}} \pm i \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}\right) C_{j}^{ \pm}(y \mid x)=0$,

$$
\alpha, \beta=1,2, \quad j=1, \ldots \mathcal{N} \text { shaynkman, MV (2001) }
$$

Rank-two equations: conserved currents Gelfond Mv 2008

$$
\left\{\frac{\partial}{\partial x^{\alpha \beta}}-\frac{\partial^{2}}{\partial y^{(\alpha} \partial u^{\beta)}}\right\} J(u, y \mid x)=0
$$

$J(u, y \mid x)$: generalized stress tensor. Rank-two equation is obeyed by

$$
J(u, y \mid x)=\sum_{i=1}^{\mathcal{N}} C_{i}^{-}(u+y \mid x) C_{i}^{+}(y-u \mid x)
$$

Bilocal fields in the twistor space.

Elementary currents

Primaries: $3 d$ currents of all spins

$$
\begin{gathered}
J(u, 0 \mid x)=\sum_{2 s=0}^{\infty} u^{\alpha_{1}} \ldots u^{\alpha_{2 s}} J_{\alpha_{1} \ldots \alpha_{2 s}}(x), \quad \tilde{J}(0, y \mid x)=\sum_{2 s=0}^{\infty} y^{\alpha_{1}} \ldots y^{\alpha_{2 s}} \widetilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}(x) \\
J^{a s y m}(u, y \mid x)=u_{\alpha} y^{\alpha} J^{a s y m}(x) \\
\Delta J_{\alpha_{1} \ldots \alpha_{2 s}}(x)=\Delta \tilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}(x)=s+1 \quad \Delta J^{a s y m}(x)=2
\end{gathered}
$$

Differential equations: conservation condition

$$
\frac{\partial}{\partial x^{\alpha \beta}} \frac{\partial^{2}}{\partial u_{\alpha} \partial u_{\beta}} J(u, 0 \mid x)=0, \quad \frac{\partial}{\partial x^{\alpha \beta}} \frac{\partial^{2}}{\partial y_{\alpha} \partial y_{\beta}} \tilde{J}(0, y \mid x)=0
$$

From $3 d$ currents to $4 d$ massless fields

Extension of $3 d$ current equation to $4 d$ massless equations is easy in unfolded dynamics: $x^{\alpha \beta} \rightarrow X^{\alpha \dot{\beta}}$

$$
\left(\frac{\partial}{\partial X^{\alpha \dot{\alpha}}}+\frac{\partial^{2}}{\partial y^{\alpha} \partial \bar{y}^{\dot{\beta}}}\right) C(y, \bar{y})=0
$$

Unfolded equations for $4 d$ massless fields of all spins at $\Lambda=0$
AdS: $x^{\alpha \beta}=\frac{1}{2}\left(X^{\alpha \beta}+X^{\beta \alpha}\right)$: boundary coordinates,
$z^{-1}=X^{\alpha \beta} \epsilon_{\alpha \beta}:$ radial coordinate
At the non-linear level full HS theory in $A d S_{4}$ is equivalent to the theory
of $3 d$ currents of all spins interacting through conformal HS gauge fields

$s p(8)$ invariant setup

$4 d$ massless field equations for all spins are $s p(8)$ symmetric (Fronsdal 1985) To see $S p(8)$ extend $4 d$ massless equations to a ten-dimensional space \mathcal{M}_{4} : with local coordinates $X^{A B}=X^{B A} A=(\alpha, \dot{\alpha})=1,2,3,4$

$$
d X^{A B}\left(\frac{\partial}{\partial X^{A B}}+\frac{\partial^{2}}{\partial Y^{A} \partial Y^{B}}\right) C(Y \mid X)=0, \quad A, B=1, \ldots M
$$

$M=2: 3 d$ massless fields: $S p(4)$ is $3 d$ conformal group shaynkman, MV (2001)
$M=4: S p(8)$ extends $4 d$ conformal group $S U(2,2)$

From four to ten

Dynamical variables in \mathcal{M}_{4} :
$C(0 \mid X)$ describes all $4 d$ integer spins
$Y^{A} C_{A}(0 \mid X)$ describes all $4 d$ half-integer spins

Nontrivial field equations:
(2001)
bosons: $\quad\left(\frac{\partial^{2}}{\partial X^{A B} \partial X^{C D}}-\frac{\partial^{2}}{\partial X^{C B} \partial X^{A D}}\right) C(X)=0$
fermions : $\quad\left(\frac{\partial}{\partial X^{A B}} C_{C}(X)-\frac{\partial}{\partial X^{C B}} C_{A}(X)\right)=0$

From ten to four

Usual space-time picture appears as a result of identification of a local event simultaneously with the metric tensor

Time in \mathcal{M}_{M}

$$
X^{A B}=T^{A B} t
$$

$T^{A B}$ is positive-definite (2002)

Usual space in \mathcal{M}_{M} : Clifford algebra

$$
X^{A B}=x^{n} \gamma_{n}^{A B}
$$

$M=2,4,8,16: \quad d=3,4,6,10$

HS theory and quantum mechanics

Unfolded dynamics distinguishes between positive and negative frequencies

$$
\begin{gathered}
\left(\frac{\partial}{\partial X^{A B}} \pm i \frac{\partial^{2}}{\partial Y^{A} \partial Y^{B}}\right) C^{ \pm}(Y \mid X)=0, \\
C(X)=C^{+}+C^{-}, \quad C^{ \pm}=\int d^{M} \xi c^{ \pm}(\xi) \exp \pm i \xi_{A} \xi_{B} X^{A B}
\end{gathered}
$$

Time parameter $t=\frac{1}{M} X^{A B} T_{A B}$ with any positive-definite $T_{A B}$

Holographic duality between relativistic HS theory and nonrelativistic QM

Reduction of $X^{A B}$ to t with $T_{A B}=\delta_{A B} t$

$$
i \frac{\partial}{\partial t} C^{ \pm}= \pm \frac{\partial^{2}}{\partial Y^{A} \partial Y^{B}} \delta^{A B} C^{ \pm}(Y \mid X)
$$

$C^{ \pm}$counterparts of ψ and $\bar{\psi}$
Twistor coordinates Y play a role of non-relativistic coordinates
$A d S$ and $d S$ harmonic potentials with correct and wrong sign 2012 related
results Bekaert, Meunier and Moroz (2011)

HS theory explains both gravity and QM?!
nonlinear QM with gravtationally small coupling constant?!

Multiparticle algebra as a symmetry of a multiparticle theory

$l(U(h))(2012)$

- contains h as a subalgebra
- admits quotients containing up to $k^{\text {th }}$ tensor products of h :
k Regge trajectories?!
- Acts on all multiparticle states of HS theory

Promising candidate for a HS symmetry algebra of HS theory with mixed symmetry fields like String Theory

String Theory as a theory of bound states of HS theory
Chang, Minwalla, Sharma and Yin (2012)

Conclusion

HS gauge theories contain gravity along with infinite towers of other fields with various spins including ordinary matter fields: singlet scalar!

HS gauge theories available in any $d \geq 3$ are analogues of pure SUGRA

HS theory contains non-minimal higher-derivative interactions

To achieve spontaneous breakdown of HS symmetries a string-like extension is needed

A multiparticle theory: quantum HS theory and String Theory
Remarkable interplay between classical and quantum physics
A very few exact solutions are known in $4 d$ HS theory:
BH-like solution
Didenko, MV 2009, Iazeola, Sundell 2010
A number of inequivalent BTZ-like solutions in $3 d$ HS theory

