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Symmetries
HS gauge theory: theory of maximal symmetries

Usual lower-spin symmetries
e Relativistic theories: Poincaré symmetry:

dx® =%+ e%2b &% : translations; €% : Lorentz rotations

Lie algebra: §z% = [T, 2], T = e"Py + M,
3, 3, %,
P, = : My, =xqg—F —x
“T Hxo ab “Oxb b@xa

[Maba Pl = Panpe — PyNac
[Mab7 Mcd] = Myanbe — Mpgnac — Macnpg + MpcNad

[Pa,Pb]:O



(A)dS deformation

[Pa,Pb] :AMab

N < 0: AdS, o(d—1,2)
A > 0: dS, o(d,1)
A = 0: Minkowski space, iso(d —1,1)



e SUSY

Pa,MabHPa,Mab,Qa, Oé:1,2,3,4
{Qa,Qp} =V5sPa
3 1
[Mgp, Qo] = 0qpa Qﬁ 3 Tab — Z['Va , Vb)
e INnner symmetries: generators 7; are space-time invariant

[Ti , (Pa, Mab)] =0

Standard Model: T; ~ SU(3) x SU(2) x U(1)

e Conformal (super)symmetries



Local Symmetries

Useful viewpoint: any global symmetry is the remnant of a
local symmetry with parameters like %(z),e%(z),¥(z),(z) being

arbitrary functions of space-time coordinates

Local symmetries are symmetries of the full theory

Global symmetries are symmetries of its particular solution

Example:
Infinitesimal diffeomorphisms §z% = £%(x) are symmetries of GR
Global symmetry with ¢%(z) = %4 %2? are symmetries of the Minkowski

solution g,, = n,;, of Einstein equations



Gauge fields
Let

s= [ L), 0up(a),...)

be invariant under a global symmetry g with parameters " (n = a,,1,...)

For £"(x)

R RAGLEIC

J%(p) are conserved currents since 9,J%(y) = 0 by virtue of field equations

To achieve local symmetry introduce gauge fields A}
5143:8&6,”—'_

S—sS+AS+...., AS= /Md J(p) A™ (z)

AS: Noether current interaction.



Subtlety

If o(x) were gauge fields with gauge parameters ¢/, J%(¢) may not be

invariant under the ¢ symmetry

Noether current interaction for several gauge fields may be obstructed



Inner symmetry:
Yang-Mills fields - spin 1
Aa(z) = AL(2)T;, e(z) = e'(2)T;
0Aq(x) = Dge(x), Dgae(x) = Oge(x) + [Ag(x) , e(x)]

[Da, Dp] = Ry, Ry = 0aAp — OpAa + [Aa, Ap], Ry = g[Ryp, €]



Poincare symmetry:

Cartan gravity - spin 2 A" = (e,%, w, )
ey? relates indices v with a identified in Minkowski space at e, % = ¢

Gauge transformation
Ser™(z) = 8,e™(x) 4+ wi%(2)eb (@) — e%(2)e’(x) + Ae,?
5wyab(a:) = 8,/6ab(ac) + wyac(w)acb(az) — wybc(az)sca(ac) + Aw,,
Ney?, Awyab corrections to YM transformation proportional to curvatures

Ryu® = Ovey” + wvabe,ub — (v ), Rv,uab — al/wﬂab + wVanMCb — (W p)

Ryu*=0 - w=uw(e,de), Ry, ’: Riemann tensor

Metric gy,u — el/a’elubnab



SUSY

SUGRA: spin 3/2 gauge field gravitino

5¢VOA — Dy€a+



Spontaneous symmetry breaking

Equations of motion are G-invariant

while a solution that describes our world is not

Higgs: H'(z) = HY + h'(z)

Unbroken part G C G is a leftover symmetry of H}
G=SU@3) xU(1l) in SM

If H has non-zero dimension [H{] = em™! ~ GeV
spontaneous symmetry breaking is a low-energy effect

symmetry restoration at E > H}



In the unbroken regime, gauge fields associated with usual lower-spin
symmetries describe massless particles

s=1: At

s =3/2: Yva

s = 2: eyawVab



General Features of HS T heories

Key question: is it possible to go to larger HS symmetries?

What are HS symmetries and HS counterparts of lower-spin theories

including GR?

What are physical motivations for their study and possible outputs?



Fronsdal fields

All m = 0 HS fields are gauge fields

©Yvy..vs 1S @ rank s symmetric tensor obeying o”," .0, = 0

Gauge transformation:

el

0Puy..vs = 8(1/151/2...1/5) ) pvz..vg_g = 0

Field equations: Gy,..,,(z) =0  Guy,. .,(x) : Einstein-like tensor

s(s—1)
2

Gul...us(iﬂ) — DSpl/l---Vs(x) - Sa(ulaﬂgpyz..ysu) (z) + a(Vla’/QSOMV&--VSM) (2)

Action

1 1
S = /Md (5901/1"'1/8(;1/1-.-1/3(90) _ 58(3 _ 1)90M’uV3“‘V3Gppl/3...vs(90))



No-go and the role of (A)dS

In 60th it was argued (Weinberg, Coleman-Mandula) that

HS symmetries cannot be realized in a nontrivial local field theory in
Minkowski space

In 70th it was shown by Aragone and Deser that HS gauge symmetries

are incompatible with GR if expanding around Minkowski space

Green light: AdS background with A =0 Fradkin, MV, 1987

In agreement with no-go statements the limit A — 0 is singular



HS Symmetries versus Riemann geometry

HS symmetries do not commute to space-time symmetries
HS transformations map gravitational fields (metric) to HS fields
Consequence:

Riemann geometry is not appropriate for HS theory:

concept of local event may become illusive!



Differential forms: coordinate independence
without metric

Differential forms are totally antisymmetric tensors

p-form: w(xz) = 6"1...0"Pwy, .. v,(x)
gror = —@HgY . (6" = da¥)

Invariant differentiation is provided by de Rham differential
8]

OxV’

Due to total antisymmetrization symmetric Christoffel symbols drop out

d = 6" d? =0

Connections A = 0¥ AL T; are one-forms

Curvatures R=D?, D=d+ A are two-forms

Elaboration of this language in HS theory leads to new understanding

of fundamental concepts of space-time including its dimension



HS Gauge Theory and Quantum Gravity

HS symmetry is in a certain sense maximal relativistic symmetry. Hence,

it cannot result from spontaneous breakdown of a larger symmetry:

HS symmetries are manifest at ultrahigh energies above any scale

including Planck scale

e HS gauge theory should capture effects of Quantum Gravity:
restrictive HS symmetry versus unavailable experimental tests

e Lower-spin theories as low-energy limits of HS theory:

lower-spin symmetries: subalgebras of HS symmetry



HS theory and String theory

e String Theory as spontaneously broken HS theory?! (s > 2,m > 0)
Recent conjecture (chang, Minwalla, Sharma and Yin (2012)):

String Theory = Quantum HS theory?!



HS AdS/CFT correspondence

AdS,s HS theory is dual to 3d vectorial conformal models Kiebanov- Polyakov (20C

Giombi and Yin (2009)
AdS3/CFT, correspondence Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of AdS/CFT



Global HS Symmetry

HS symmetry in AdSgyq:
Maximal symmetry of a d-dimensional free conformal field(s)=singletons

usually, scalar and/or spinor

Consider KG massless equation in Minkowski space
82
Ox0Oxb
What are symmetries of KG equation? shaynkman, MV 2001 3d; Eastwood 2002 Vd

OC(z) =0, [ =



1 Poincaré

i1 Scale transformation (dilatation)

0 d

0C(x) = eDC(x), sza——l———l
ox?
121 Special conformal transformations
5C(x) = ea K*C(2), = (2%n%® — 2¢ xb)—+ (2 — d)z®

Problem 1.1. Check invariance

Problem 1.2. Check: Py, M, ,, K% D form a Lie algebra (conformal algebra)
Problem 1.3. Check that conformal algebra is o(d, 2)



Auxiliary problem

Consider equations

DCA(x) =0, D? =0

D=d+ w(x), wAB(SU) = WQ(CU)TQAB

w(x): flat connection on the space V of Cy4

(1) is invariant under the gauge transformation

6C(z) = —e(x)C(x), eaP(z) = e (2)To(x)

dw(x) = De(x) :=de(x) + w(x)e(x) — e(x)w(x)

Problem 1.4. Check

(1)



Global symmetry parameters

For a particular w(x) = wg(z), to keep the equations invariant demands
dow(x) — Dosg%(:c) =0

Since D3 = 0, eéfl(w) is reconstructed (locally) in terms of 2(zg) Vzo

£82(z0): global symmetry parameters of DyC(z) =0

Solution: wg(z) = ¢ 1 (a)dg(x), C(z) = g 1(x)C. For g(zg) =1, C = C(zp)



Massless scalar unfolded

Minkowski space: w(z) = e%(z)P, + w®(z) M,
Cartesian coordinates: w% =0, ¢%(z) = 9°
Introduce an infinite set of O-forms
Cal...an(x) — C(al,,,an) (x) 9 nbccbcag,...an(x) — O
Unfolded KG equation

dCay...an(x) = chal...anb(x)
This system is consistent since 0% A ¢ = —9¢ A 60

First two equations imply
0aC(x) = Ca(x), 0aCp(x) = Cyp(x) — Cyp(x) = 9a0,C ()
Tracelessness of Cpy(x)
OC(x) = 0.
All other equations:
Cay...an(x) = 8ay . .. 0a, C ()

Caq..an(z): set of all on-mass-shell nontrivial derivatives of C(z)



Conformal HS algebra

Conformal HS algebra in d dimensions: algebra of linear transforma-
tions of the infinite-dimensional space V of various traceless symmetric
tensors C,Cy,Cpy ..., i.€., h = gl(V)

h was carefully defined by Eastwood in 2002 by different methods

Algebraic construction simplifies in d = 3 using spinor formalism most

relevant in the context of AdS,;/CFT3 HS holography shaynkman, Mmv (2001)



3d multispinors

3d Lorentz algebra: o(2,1) ~ sp(2, R) ~ slo(R). 3d spinors are real

X5 = Xa a=1,2
sp(2, R) invariant tensor ¢ = —¢f2 relates lower and upper indices
X* = e*Pxg, Xa = X"€s4

Antisymmetrization of 3d spinor indices is equivalent to contraction
Aa,ﬁ — Aﬁ,oz — 604514%7

IRREPS of Lorentz algebra: totally symmetric multispinors Aq;..q,

Consequence:

b —
Aal...am ~ Aal...a2m7 A baz...am — 0

Problem 1.5. Prove by checking the number of independent components

Explicit map via 2 x 2 real symmetric matrices

Aaﬁ — O'gﬂAn, O-Ozﬁ — O'Ba



Spinorial form of 3d massless equations

Space V of all 3d traceless symmetric tensors is the space of (even)
functions of commuting spinor variable y“

@)
C(y|z) = Z CLY2n(2)yay - - - Yao,
n=0

Unfolded massless equations take the form

JAele o + 92 C(ylx) =0 (2)

xr) =
0xB ~ Jy*dyP Y

Problem 1.6. Check

Problem 1.7. Check that for odd C(—y|x) = —C(y|z) (2) describes 3d mass-
less spinor field Co(x) = 9y C’(y|ac)‘



3d HS symmetry

3d conformal HS algebra is the algebra of various differential operators

e(y, ) obeying e(—y, — %) = e(y, 52)

5C(yle) = e(y, a%m)o(mx)

o H2 o 52
e(y; a—ylw) = exp [—waﬁayaayﬁlegl(y, ——) exp [x‘w ]

Problem 1.8. Check
For any polynomial egl(y,a%), e(y,(%|:1:) Is polynomial as well:

polynomial. egl(y,a%) describe local HS transformations



Conformal subalgebra

3d Conformal algebra sp(4) ~ o(3,2)

02 %, %,
Oyoyd’ 8y5 YRR LR WS oy
Problem 1.9. Check that P, K, M, D form closed algebra

Problem 1.10. * Derive conformal transformations of C(x)

Paﬁ = K = yozyﬁ’ Maﬁ

D = y© ——I—]



Weyl algebra

Weyl algebra A,: associative algebra of polynomials of oscillators ?A

[?A7?B]:CA37 AB,...=1,...2n, CAB:_CBA

3d CHS algebra = AdS, HS algebra is (even part of) Weyl algebra A,

. y“
oyb



Symbols of operators

0

F(O)y =Y —fArdnp, ¥y, symmetric fA1--An

|
n=0 n:

Weyl symbol f(Y) of the operator f(Y) is a function of commuting

variables Y4 of the same expansion
= 1 4.4
f(y) = Z Jf L nYAl : “YAn
n=0 """

Y, is the Weyl symbol of Y,.



Star-product

Weyl star—product algebra is defined by the rule
(fxg)(Y) is a symbol of f(Y)g(Y). In particular,
[Ya,Yglx = 2iCyp, [a,b]« =a*xb—bx*xa

Problem1.11. Prove
0

Ya, fON=2Y4f(Y),  Ya, fODe =25 f(V),  Y4=Cyp
Weyl-Moyal formula
2 0
(1% 1)) = 1Y) 00905l foly) 01 = 0

Problem 1.12. Prove using Campbell-Hausdorf formula for exp JAY/A
Important properties

e associativity: (fxg)xh=f*(g*h)

° regularity: star product of any two polynomials of Y is a polynomial

Integral representation

1
(f1 £2)(Y) = =57 [ dSAT exp(=iSATECAP) ALY + 9) fo¥ +1T)



Properties of HS algebras
Global symmetry of symmetric vacuum of bosonic HS theory

Let 75 be a homogeneous polynomial of degree 2(s— 1)

[Tsl 7T82] — T31—|—32—2 + T31—|—32—4 + ...+ T|31—32|—|—2 :

Once spin s > 2 appears, the HS algebra contains an infinite tower of

higher spins: [Ts,Ts] gives rise to T>,_» as well as T> of 0(3,2) ~ sp(4).

Usual symmetries: spin-s < 2 u(1) ® 0o(3,2): maximal finite-dimensional

subalgebra of hu(1,0]4). u(1l) is associated with the unit element.



4d HS systems

Three series of 4d HS algebras: hu(n,m|4), ho(n,m|4), husp(2n,2m|4)

Spin-one YM sector:

g=uln) dulm),oln) ®ol(m) or usp(2n) @ usp(2m)
fermions: bifundamental.

Odd spins: adjoint representation of g.

Even spins: the opposite symmetry second rank representation of g,

Particle spectrum always contains a singlet for

colorless graviton and colorless scalar
ho(1,0]4) is minimal HS algebra: even spins s =0,2,4,6,...

Colorless scalar is the prediction of HS symmetry!



Some Reviews

MV, hep-th/0401177; 9910096; 9611024

X. Bekaert, S. Cnockaert, C. Iazeolla and MV, hep-th/0503128

D. Sorokin, arXiv:hep-th/0405069

A. Fotopoulos and M. Tsulaia, 0805.1346

X. Bekaert, N.Boulanger and P.Sundell, 1007.0435

M. R. Gaberdiel and R. Gopakumar, 1207.6697

S. Giombi and X. Yin, 1208.4036



Lecture 11

HS theory in AdS, and
space-time metamorphoses

II1 Nonlinear HS Theory

IV Space-time metamorphoses



Summary of Lecture I

General consequences of HS symmetry

3d conformal HS algebra is even part of Weyl algebra A, of functions

@,

FO) =Y Ay, vy,
n=0 mn!
of oscillators
[YA7YB]*:27’CAB7 A: 1727374

AdS, HS algebra coincides with 3d conformal HS algebra



Spinorial langauge in four dimensions

Key fact 2x2=4
Minkowski coordinates as 2 x 2 hermitian matrices
X" = X0 = 23: X"oQY, o= (I, 7
n=0
Joa: unit matrix
ax | =1,2,3: Pauli matrices
a,fB,...=1,2, &, 8,... = 1,2 two-component spinor indices

det | X% = (X9)2 — (x1)2 - (X2)2 - (x3)?

Lorentz symmetry: si(2,C) ~o0(3,1).

Dictionary between tensors and multispinors by:

a ab _ _[a _blg —ab _ _[a _bla

o’ af
Pair of dotted and undotted indices: vector
Pairs of symmetrized indices of the same type: antisymmetric tensors

Problem 1.13. Check



NonAbelian HS Algebra

3d Conformal HS symmetry = AdS; HS symmetry
HS gauge fields: w(Y|X)

YA = (Wa,Ys), o, = 1,2 two-component spinor indices

00
1 . .
(,U(Y|X) — Z ~ 1 Yaq..on dl...dm(X)yal st yangal s gam
nm—0 2n!m/!

HS curvature and gauge transformation
R(Y|X) =dw(Y|X) +w(Y|X) x Aw(Y|X)
Sw(Y|X) = De(Y|X) = de(V|X) + [w(Y]|X), e(Y|X)]+

[yOé ) yﬁ]* — 27:6045 ) [ga ) gﬁ]* — QZE:QB



vacuum

Equation of AdS4: Rg = 0 for wg € sp(4) ~ 0(3,2)

1 Y P af _
wo(Y|X) = Zi(waﬁ(X)yayﬁ + w B(X)yay[; + 2\h B(X)yay/;)

Problem 1.14. Check

Fluctuations

w = wg + wi , R1 = Dow1 = dwy + [wo, w1«



Central On-shell theorem

T he full unfolded system for free massless fields of all spins is formulated

in terms of one-form w(Y|X) and zero-form C(Y|X)

o2 B o2
Ri(y.y | X)=H" " _c(0.y X)) +H" T _C(y.0/X).
Oy oyh Jy >0y
DoC(y,y | X) =0,
where
Haﬂzhad/\hﬁd, ﬁdB:hadAhaBa
Ri(y, 7 | X) = D" (y,7 | X)
D4 w—DL—)\hC“B< —+i ) I3 —DL+Aha5< s )

DA =dy — (ouo‘ﬂyoéi + @O"Bgdi)



Pattern of massless equations

Gauge fields of different spins: homogeneous polynomials in Y
Wy, vglX) = 2 D0y, g1X),  Ciuy, v 1gX) = vE20(y, 91X)
Infinite set of spins s =0,1/2,1,3/2,2,5/2...

S . . . — . S . . . . —
wal...an B1...0m n+m 2(8 1) ’ Cal...an B1...0m |’I’L m| 2s

C(Y|X) : gauge invariant HS curvatures and spin-zero matter fields

Dynamical fields
Frame-like fields w? . . contain Fronsdal fields

C'(0,0|z): scalar

Other components are expressed via higher derivatives of the dynamical
fields which come in combination
10
ox’
Higher derivatives source nonanaliticity in A.

A~ A2 = —A



Examples

s=20: O

- b _
ot P~ Catean C%as...an = 0

Problem 1.15. Derive Maxwell equations in the spin-one sector

s =2
Gauge fields: Lorentz connection waﬁ,wdﬁ- and vierbein W 3

Zero-forms Cajasaz04(X) and Cg (X) : Weyl tensor in terms of two-

120304
component spinors.

Higher components C?%

. » - |n—m|=4: all its derivatives

Raﬁ- — O: expresses Lorentz connection via vierbein

R.3 = HV‘SCO{B,Y(;, R.5 = F[%éozﬁ'/yé: nonzero part of the Riemann tensor

belongs to Weyl tensor



Spin two in tensorial language

Ryua =0, Rz/,uab — euce,udccd,ab, Cab,bc —

C.q % coincides with Weyl tensor

Ry, = Ryp?u = 0: Einstein equations

HS counterparts impose Fronsdal equations G,,..,, = 0 and express gen-

eralized Weyl tensors in terms of Fronsdal fields



From COST to nonlinear theory

Ry | X) =T ci0,9] x) + mob— O S O(y,0] X) +..
Y,y — 3yday5 ] 3 8 Yy,
PCy,7 | X) + ..., = O(C,wr)

R(y,y| X) =dw(y,y | X) +w(y, ¥ | X) xw(y,y | X)

DC(y, 7| X) = dC(y,5 | X) +w(y,7| X) * C(y,7| X) = C(y,7 | X) *w(y, —7 | X)

Such field equations are unfolded: exterior differential of any field is

expressed via the fields themselves

Problem: find gauge invariant nonlinear corrections



General properties of HS interactions

HS interactions contain higher derivatives

Nonanaliticity in A

Background HS gauge fields contribute to higher-derivative terms in the
evolution equations: evolution is determined by higher-spin fields along
with the metric: no geodesic motion in presence of nonzero HS fields

Hence insufficiency of metric in presence of HS fields
HS fields source lower-spin fields via w * w terms
lower-spin fields source HS fields via C? terms

gravity sources HS fields and vice-versa



Idea of Nonlinear Construction

Being possible in a few first orders, straightforward construction of

nonlinear deformation quickly gets complicated

eTrick: to find a larger algebra ¢’ such that a substitution
X  woaW=w4wC+wC?+...
into ¢’ reconstructs nonlinear equations via a zero-curvature condition
dW +W AW =0

To find restrictions on W that reconstruct % in all orders



Doubling of spinors
w(Y|X) — W(Z,Y|X), C(Y|X) — B(Z;Y|X)

to be accompanied by equations that determine dependence on the

additional variables Z4 in terms of “initial data”

w(Y|X) = W(0;Y|X), C(Y|X) = B(0;Y|X)

S(Z,Y|X) = dZAS 4 is connection along Z4

HS star product
(Fxg)(Z.Y) = /deTf(Z—I— SY +8)g(Z —T,Y 4+ T) exp —iS T4

(YA, Yl = —[Z4, Zls = 2iCyp, Z —Y . Z+Y normal ordering

Inner Klein operators:

Kk = expizay®, R=expi2d§d, kx f(y,y) = f(—y,y) x kK, Kxk=1



Nonlinear HS Equations

(AW +W W =0

dB+W B —-BxW =0

L dS+HWxS+S+W =0

SxB—BxS=0 |

| Sx S =1i(dZAdZ s + dzYdza F(B) x k + dz%dz,F (B) * &)

Manifest gauge invariance

W = [e, W], B=e¢xB— Bx¢&, e=¢e(Z;Y; K|z)

Nontrivial equations are free of space-time differential d

The equations are formally consistent and regular: no divergences de-

spite non-polynomial Klein operators: k = expizoy® and k& = exp iz, 7°



Perturbative analysis

Vacuum solution By =0, Sog =dz4Z 4, Wo = swh” () Y,V

dWo + Wor Wy =0 — wf ' (z)  describes AdSy

First-order analysis reproduces Central On-Shell Theorem

A particular form of star product plays crucial role



Unfolded Dynamics

First-order form of differential equations

§'(t) = ' (q(t)) initial values: ¢'(¢p)

# degrees of freedom = # of dynamical variables
Unfolded dynamics: multidimensional generalization

0 )
o ¢'(t) = W(x) =da™ A ... Adz"PWpl ()

AW (z) = G2(W (2)), d = dz"0y,

GS2(W) : function of “supercoordinates” W*?

O
GPW) = A AWM AL AW

n=1

Covariant first-order differential equations

d > 1: Compatibility conditions

OGS (W)

OWN 0

GNW) A



Properties

e General applicability
e Manifest (HS) gauge invariance under the gauge transformation
AOGSH (W)
o) ZAN
gauge parameter %(z) is a (po — 1)-form.

SWE = (et? + ¢

e Invariance under diffeomorphisms
Exterior algebra formalism
e Interactions: nonlinear deformation of G*2(W)
e Degrees of freedom are in O-forms C'(xzg) at any z = zg (as q(tp))
infinite-dimensional module dual to the space of single-particle states
realized as a space of functions of auxiliary variables (like C(y,y) instead
of phase space coordinates in the Hamiltonian approach
Unfolded dynamics provides a tool to control unitarity in presence of

higher derivatives



Space-time metamorphoses

Independence of ambient space-time: geometry is encoded by GQ(W)

Key observation: unfolded equation makes sense in any space-time

0
dWQ('CU) — GQ(W(QZ')) , = X=(z,y), de—o=dx = de+dy, dy= dy“ﬁ
Yy

X-dependence is reconstructed in terms of fields W*%(Xp) = W*%(z0, yo)
at any Xy To take W*(zq,yp) in space My with coordinates X_ is the

same as to take W*(zg) in the space M, € My with coordinates =z



Unfolding as a covariant twistor transform

C(Y|x)
TN
M (x) T(Y).
WE(Y|z) are functions on the “correspondence space” C.
Space-time M : coordinates z. Twistor space T : coordinates Y.
Unfolded equations: Penrose transform mapping functions on 7' to so-

lutions of field equations in M.

Holographic duality: different space-times M for the same twistor space



3d conformal fields and currents

3d massless equations

(8fa5iiay§2yﬁ)0f(y|x) =0, a,8=1,2, j=1,...N shaynkman, MV (2001)
Rank-two equations: conserved currents Gelfond MV 2008
2
{ afaﬁ - 8y(f§u5)} I, yle) =0

J(u, y|xr): generalized stress tensor. Rank-two equation is obeyed by

N

TG yle) = 3 i (vt ylo) C; (y — ulz)
i=

Bilocal fields in the twistor space.



Elementary currents

Primaries: 3d currents of all spins

©.@) ©.@)
J(u,0lz) = > u®.. w2y a0 (), J(O,ylz) = D y ... y*2Ja;. an,(z)
2s=0 2s=0

J@I (u, ylz) = uay™ I (@)

AJay.ap,() = DJagas, (@) =s+1  AJV(z) =2

Differential equations: conservation condition
o 02 o 02
J(u,0|lz) =0,
0xP dunOu 3 Ox P 0Yadyg

J(0,ylz) =0



From 3d currents to 4d massless fields

Extension of 3d current equation to 4d massless equations iIs easy iIin

unfolded dynamics: 228 — X8
5, 52
. - | C(y,y) =0
(6‘X wa 8yaa§5> )
Unfolded equations for 4d massless fields of all spins at A=0

AdS: %8 = 5(X*# 4+ XP*) : boundary coordinates,

2=l = X%¢,5: radial coordinate
At the non-linear level full HS theory in AdS, is equivalent to the theory

of 3d currents of all spins interacting through conformal HS gauge fields



sp(8) invariant setup

4d massless field equations for all spins are sp(8) symmetric (Fronsdal 1985)
To see Sp(8) extend 4d massless equations to a ten-dimensional space
M, : with local coordinates X458 = XB4 A = (a,4) =1,2,3,4

%, 02
0XAB + oY Agy B
M = 2: 3d massless fields: Sp(4) is 3d conformal group shaynkman, MV (2001)
M = 4: Sp(8) extends 4d conformal group SU(2,2)

YC(Y|X) =0, AB=1,...M



From four to ten
Dynamical variables in M,
C'(0|X) describes all 4d integer spins

YAC4(0|X) describes all 4d half-integer spins

Nontrivial field equations: (2001)
02 02
bosons : <8XA38XCD — 8XCBE)XAD> C(X)=0

_ 9 5
fermions : (8XABCC(X) _ aXCBCA(X)> =0



From ten to four

Usual space-time picture appears as a result of identification of a local

event simultaneously with the metric tensor
Time in My,

xAB _ pABy
TAB is positive-definite (2002)

Usual space in M,,: Clifford algebra

M = 2,4,8,16 d = 3,4,6,10 Bandos, Lukierski, Sorokin (1999); MV

(2002); Bandos, Bekaert, de Azcarraga, Sorokin, Tsulaia (2005)



HS theory and quantum mechanics

Unfolded dynamics distinguishes between positive and negative frequen-

cies
%) 02 n
9 4, cE(Y|X) =0,
Goxas £ igyagys)C” (YIX)
c(xX)=ct+c-, cf= / dMect (£) exp +it 46 g X AB

Time parameter t = %XABTAB with any positive-definite Typ



Holographic duality between relativistic HS
theory and nonrelativistic QM

Reduction of X485 to ¢ with Ty = d 45t

o0 . 02
ot =4+
"ot oY A9y B

C* counterparts of ¢ and

ABCE(Y|X)

Twistor coordinates Y play a role of non-relativistic coordinates
AdS and dS harmonic potentials with correct and wrong sign 2012 related

results Bekaert, Meunier and Moroz (2011)

HS theory explains both gravity and QM?!

nonlinear QM with gravtationally small coupling constant?!



Multiparticle algebra as a symmetry of a
Mmultiparticle theory

I(U(h)) (2012)

e contains i as a subalgebra

e admits quotients containing up to k" tensor products of h:
k Regge trajectories?!

e Acts on all multiparticle states of HS theory

Promising candidate for a HS symmetry algebra of HS theory with mixed

symmetry fields like String Theory

String Theory as a theory of bound states of HS theory

Chang, Minwalla, Sharma and Yin (2012)



conclusion

HS gauge theories contain gravity along with infinite towers of other

fields with various spins including ordinary matter fields: singlet scalar!
HS gauge theories available in any d > 3 are analogues of pure SUGRA
HS theory contains non-minimal higher-derivative interactions

To achieve spontaneous breakdown of HS symmetries a string-like ex-

tension is needed
A multiparticle theory: quantum HS theory and String Theory
Remarkable interplay between classical and quantum physics

A very few exact solutions are known in 4d HS theory:
BH-like solution Didenko, MV 2009, Iazeola, Sundell 2010
A number of inequivalent BT Z-like solutions in 3d HS theory

Didenko, MV 2009, Gutperle, Kraus 2011,...



