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Symmetries

HS gauge theory: theory of maximal symmetries

Usual lower-spin symmetries

• Relativistic theories: Poincaré symmetry:

δxa = εa + εabx
b εa : translations; εab : Lorentz rotations

Lie algebra: δxa = [T, xa] , T = εnPa + εabMab

Pa =
∂

∂xa
, Mab = xa

∂

∂xb
− xb

∂

∂xa

[Mab, Pc] = Paηbc − Pbηac

[Mab, Mcd] = Madηbc −Mbdηac −Macηbd +Mbcηad

[Pa , Pb] = 0
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(A)dS deformation

[Pa , Pb] = ΛMab

Λ < 0: AdS, o(d− 1,2)

Λ > 0: dS, o(d,1)

Λ = 0: Minkowski space, iso(d− 1,1)
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• SUSY

Pa,Mab −→ Pa,Mab,Qα , α = 1,2,3,4

{Qα , Qβ} = γaαβPa

[Mab , Qα] = σabα
βQβ , σab =

1

4
[γa , γb]

• Inner symmetries: generators Ti are space-time invariant

[Ti , (Pa,Mab)] = 0

Standard Model: Ti ∼ SU(3)× SU(2)× U(1)

• Conformal (super)symmetries
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Local Symmetries

Useful viewpoint: any global symmetry is the remnant of a

local symmetry with parameters like εa(x), εab(x), εα(x), εi(x) being

arbitrary functions of space-time coordinates

Local symmetries are symmetries of the full theory

Global symmetries are symmetries of its particular solution

Example:

Infinitesimal diffeomorphisms δxa = εa(x) are symmetries of GR

Global symmetry with εa(x) = εa+εabx
b are symmetries of the Minkowski

solution gab = ηab of Einstein equations
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Gauge fields
Let

S =
∫
Md

L(ϕ(x), ∂aϕ(x), . . .)

be invariant under a global symmetry g with parameters εn (n = a, α, i, . . .)

For εn(x)

δS = −
∫
Md

Jan(ϕ)∂aε
n(x)

Jan(ϕ) are conserved currents since ∂aJan(ϕ) ∼= 0 by virtue of field equations

To achieve local symmetry introduce gauge fields Ana

δAna = ∂aε
n + . . .

S −→ S + ∆S + . . . , ∆S =
∫
Md

Jan(ϕ)Ana(x)

∆S: Noether current interaction.
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Subtlety

If ϕ(x) were gauge fields with gauge parameters ε′, Jan(ϕ) may not be

invariant under the ε′ symmetry

Noether current interaction for several gauge fields may be obstructed

8



Inner symmetry:

Yang-Mills fields - spin 1

Aa(x) = Aia(x)Ti , ε(x) = εi(x)Ti

δAa(x) = Daε(x) , Daε(x) = ∂aε(x) + [Aa(x) , ε(x)]

[Da , Db] = Rab , Rab = ∂aAb − ∂bAa + [Aa, Ab] , δRab = g[Rab, ε]
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Poincaré symmetry:

Cartan gravity - spin 2 Anν = (eνa, ωνab)

eνa relates indices ν with a identified in Minkowski space at eνa = δaν

Gauge transformation

δeν
a(x) = ∂νε

a(x) + ων
a
b(x)εb(x)− εab(x)eν

b(x) + ∆eν
a

δων
ab(x) = ∂νε

ab(x) + ων
a
c(x)εcb(x)− ωνbc(x)εca(x) + ∆ων

ab

∆eνa, ∆ωνab corrections to YM transformation proportional to curvatures

Rνµ
a = ∂νeµ

a + ων
a
beµ

b − (ν ↔ µ) , Rνµ
ab = ∂νωµ

ab + ων
a
cωµ

cb − (ν ↔ µ)

Rνµa = 0 → ω = ω(e, ∂e) , Rνµρσ: Riemann tensor

Metric gνµ = eνaeµbηab
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SUSY

SUGRA: spin 3/2 gauge field gravitino

δψνα = Dνεα + . . .
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Spontaneous symmetry breaking

Equations of motion are G-invariant

while a solution that describes our world is not

Higgs: Hi(x) = Hi
0 + hi(x)

Unbroken part G̃ ⊂ G is a leftover symmetry of Hi
0

G̃ = SU(3)× U(1) in SM

If Hi
0 has non-zero dimension [Hi

0] = cm−1 ∼ GeV

spontaneous symmetry breaking is a low-energy effect

symmetry restoration at E > Hi
0
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In the unbroken regime, gauge fields associated with usual lower-spin

symmetries describe massless particles

s = 1: Aνi

s = 3/2: ψν α

s = 2: eνaωνab
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General Features of HS Theories

Key question: is it possible to go to larger HS symmetries?

What are HS symmetries and HS counterparts of lower-spin theories

including GR?

What are physical motivations for their study and possible outputs?
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Fronsdal fields

All m = 0 HS fields are gauge fields

ϕν1...νs is a rank s symmetric tensor obeying ϕρρµµν5...νs = 0

Gauge transformation:

δϕν1...νs = ∂(ν1
εν2...νs)

, εµµν3...νs−1 = 0

Field equations: Gν1...νs(x) = 0 Gν1...νs(x) : Einstein-like tensor

Gν1...νs(x) = �ϕν1...νs(x)− s∂(ν1
∂µϕν2...νsµ)(x) +

s(s− 1)

2
∂(ν1

∂ν2ϕ
µ
ν3...νsµ)(x)

Action

S =
∫
Md

(
1

2
ϕν1...νsGν1...νs(ϕ)−

1

8
s(s− 1)ϕµ

µ ν3...νsGρρ ν3...νs(ϕ)
)
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No-go and the role of (A)dS

In 60th it was argued (Weinberg, Coleman-Mandula) that

HS symmetries cannot be realized in a nontrivial local field theory in

Minkowski space

In 70th it was shown by Aragone and Deser that HS gauge symmetries

are incompatible with GR if expanding around Minkowski space

Green light: AdS background with Λ 6= 0 Fradkin, MV, 1987

In agreement with no-go statements the limit Λ→ 0 is singular
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HS Symmetries versus Riemann geometry

HS symmetries do not commute to space-time symmetries

[T a , THS] = THS , [T ab , THS] = THS

HS transformations map gravitational fields (metric) to HS fields

Consequence:

Riemann geometry is not appropriate for HS theory:

concept of local event may become illusive!
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Differential forms: coordinate independence
without metric

Differential forms are totally antisymmetric tensors

p-form: ω(x) = θν1 . . . θνpων1...νp(x)

θνθµ = −θµθν , (θν = dxν)

Invariant differentiation is provided by de Rham differential

d = θν
∂

∂xν
, d2 = 0

Due to total antisymmetrization symmetric Christoffel symbols drop out

Connections A = θνAiνTi are one-forms

Curvatures R = D2 , D = d+A are two-forms

Elaboration of this language in HS theory leads to new understanding

of fundamental concepts of space-time including its dimension
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HS Gauge Theory and Quantum Gravity

HS symmetry is in a certain sense maximal relativistic symmetry. Hence,

it cannot result from spontaneous breakdown of a larger symmetry:

HS symmetries are manifest at ultrahigh energies above any scale

including Planck scale

• HS gauge theory should capture effects of Quantum Gravity:

restrictive HS symmetry versus unavailable experimental tests

• Lower-spin theories as low-energy limits of HS theory:

lower-spin symmetries: subalgebras of HS symmetry
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HS theory and String theory

• String Theory as spontaneously broken HS theory?! (s > 2,m > 0)

Recent conjecture (Chang, Minwalla, Sharma and Yin (2012)):

String Theory = Quantum HS theory?!
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HS AdS/CFT correspondence

AdS4 HS theory is dual to 3d vectorial conformal models Klebanov- Polyakov (2002);

Giombi and Yin (2009)

AdS3/CFT2 correspondence Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of AdS/CFT
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Global HS Symmetry

HS symmetry in AdSd+1:

Maximal symmetry of a d-dimensional free conformal field(s)=singletons

usually, scalar and/or spinor

Consider KG massless equation in Minkowski space

�C(x) = 0 , � = ηab
∂2

∂xa∂xb

What are symmetries of KG equation? Shaynkman, MV 2001 3d; Eastwood 2002 ∀d
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i Poincaré

ii Scale transformation (dilatation)

δC(x) = εDC(x) , D = xa
∂

∂xa
+
d

2
− 1

iii Special conformal transformations

δC(x) = εaK
aC(x) , Ka = (x2ηab − 2xaxb)

∂

∂xb
+ (2− d)xa

Problem 1.1. Check invariance

Problem 1.2. Check: Pa,Mab,K
a, D form a Lie algebra (conformal algebra)

Problem 1.3. Check that conformal algebra is o(d,2)
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Auxiliary problem

Consider equations

DCA(x) = 0 , D2 = 0 (1)

D = d+ ω(x) , ωA
B(x) = ωΩ(x)TΩA

B

ω(x): flat connection on the space V of CA
(1) is invariant under the gauge transformation

δC(x) = −ε(x)C(x) , εA
B(x) = εΩ(x)TΩ(x)

δω(x) = Dε(x) := dε(x) + ω(x)ε(x)− ε(x)ω(x)

Problem 1.4. Check
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Global symmetry parameters

For a particular ω(x) = ω0(x), to keep the equations invariant demands

δ0ω(x) −→ D0ε
Ω
gl(x) = 0

Since D2
0 = 0, εΩ

gl(x) is reconstructed (locally) in terms of εΩ(x0) ∀x0

εΩ(x0): global symmetry parameters of D0C(x) = 0

Solution: ω0(x) = g−1(x)dg(x), C(x) = g−1(x)C. For g(x0) = 1, C = C(x0)

25



Massless scalar unfolded

Minkowski space: ω(x) = ea(x)Pa + ωab(x)Mab

Cartesian coordinates: ωab = 0, ea(x) = θa

Introduce an infinite set of 0-forms

Ca1...an(x) = C(a1...an)(x) , ηbcCbca3...an(x) = 0

Unfolded KG equation

dCa1...an(x) = θbCa1...anb(x)

This system is consistent since θb ∧ θc = −θc ∧ θb

First two equations imply

∂aC(x) = Ca(x) , ∂aCb(x) = Cab(x) −→ Cab(x) = ∂a∂bC(x)

Tracelessness of Cnm(x) :

�C(x) = 0.

All other equations:

Ca1...an(x) = ∂a1 . . . ∂anC(x)

Ca1...an(x): set of all on-mass-shell nontrivial derivatives of C(x)

26



Conformal HS algebra

Conformal HS algebra in d dimensions: algebra of linear transforma-

tions of the infinite-dimensional space V of various traceless symmetric

tensors C,Ca, Cab . . ., i.e., h = gl(V )

h was carefully defined by Eastwood in 2002 by different methods

Algebraic construction simplifies in d = 3 using spinor formalism most

relevant in the context of AdS4/CFT3 HS holography Shaynkman, MV (2001)
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3d multispinors

3d Lorentz algebra: o(2,1) ∼ sp(2, R) ∼ sl2(R). 3d spinors are real

χ†α = χα , α = 1,2

sp(2, R) invariant tensor εαβ = −εβα relates lower and upper indices

χα = εαβχβ , χα = χβεβα

Antisymmetrization of 3d spinor indices is equivalent to contraction

Aα,β −Aβ,α = εαβAγ,
γ

IRREPS of Lorentz algebra: totally symmetric multispinors Aα1...αn

Consequence:

Aa1...am ∼ Aα1...α2m , Abba3...am = 0

Problem 1.5. Prove by checking the number of independent components

Explicit map via 2× 2 real symmetric matrices

Aαβ = σnαβAn , σnαβ = σnβα
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Spinorial form of 3d massless equations

Space V of all 3d traceless symmetric tensors is the space of (even)

functions of commuting spinor variable yα

C(y|x) =
∞∑
n=0

Cα1...α2n(x)yα1 . . . yα2n

Unfolded massless equations take the form

θαβ
(

∂

∂xαβ
+

∂2

∂yα∂yβ

)
C(y|x) = 0 (2)

Problem 1.6. Check

Problem 1.7. Check that for odd C(−y|x) = −C(y|x) (2) describes 3d mass-

less spinor field Cα(x) = ∂
∂yαC(y|x)

∣∣∣∣
y=0
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3d HS symmetry

3d conformal HS algebra is the algebra of various differential operators

ε(y, ∂∂y) obeying ε(−y,− ∂
∂y) = ε(y, ∂∂y)

δC(y|x) = ε(y,
∂

∂y
|x)C(y|x)

ε(y,
∂

∂y
|x) = exp

[
−xαβ

∂2

∂yα∂yβ

]
εgl(y,

∂

∂y
) exp

[
xαβ

∂2

∂yα∂yβ

]
Problem 1.8. Check

For any polynomial εgl(y,
∂
∂y), ε(y, ∂∂y |x) is polynomial as well:

polynomial. εgl(y,
∂
∂y) describe local HS transformations
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Conformal subalgebra

3d Conformal algebra sp(4) ∼ o(3,2)

Pαβ =
∂2

∂yα∂yβ
, Kαβ = yαyβ , Mαβ = yα

∂

∂yβ
+yβ

∂

∂yα
, D = yα

∂

∂yα
+1

Problem 1.9. Check that P,K,M,D form closed algebra

Problem 1.10. ∗ Derive conformal transformations of C(x)
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Weyl algebra

Weyl algebra An: associative algebra of polynomials of oscillators ŶA

[ŶA , ŶB] = CAB , A,B, . . . = 1, . . .2n , CAB = −CBA

3d CHS algebra = AdS4 HS algebra is (even part of) Weyl algebra A2

ŶA =

 yα
∂
∂yβ



32



Symbols of operators

f̂(Ŷ ) =
∞∑
n=0

1

n!
fA1...AnŶA1

. . . ŶAn , symmetric fA1...An

Weyl symbol f(Y ) of the operator f̂(Ŷ ) is a function of commuting

variables Y A of the same expansion

f(Y ) =
∞∑
n=0

1

n!
fA1...AnYA1

. . . YAn

YA is the Weyl symbol of ŶA.
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Star-product

Weyl star–product algebra is defined by the rule

(f ∗ g)(Y ) is a symbol of f̂(Ŷ )ĝ(Ŷ ) . In particular,

[YA, YB]∗ = 2iCAB , [a , b]∗ = a ∗ b− b ∗ a

Problem 1.11. Prove

{YA , f(Y )}∗ = 2YAf(Y ) , [YA , f(Y )]∗ = 2i
∂

∂Y A
f(Y ) , Y A = CABYB

Weyl-Moyal formula

(f1 ∗ f2)(Y ) = f1(Y ) exp [i
←−
∂A
−→
∂BCAB] f2(Y ) , ∂A ≡

∂

∂YA

Problem 1.12. Prove using Campbell-Hausdorf formula for exp JAŶA

Important properties

• associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h)

• regularity: star product of any two polynomials of Y is a polynomial

Integral representation

(f1 ∗ f2)(Y ) =
1

π2M

∫
dSdT exp(−iSATBCAB)f1(Y + S) f2(Y + T )
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Properties of HS algebras

Global symmetry of symmetric vacuum of bosonic HS theory

Let Ts be a homogeneous polynomial of degree 2(s− 1)

[Ts1 , Ts2] = Ts1+s2−2 + Ts1+s2−4 + . . .+ T|s1−s2|+2 .

Once spin s > 2 appears, the HS algebra contains an infinite tower of

higher spins: [Ts, Ts] gives rise to T2s−2 as well as T2 of o(3,2) ∼ sp(4).

Usual symmetries: spin-s ≤ 2 u(1) ⊕ o(3,2): maximal finite-dimensional

subalgebra of hu(1,0|4). u(1) is associated with the unit element.
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4d HS systems

Three series of 4d HS algebras: hu(n,m|4), ho(n,m|4), husp(2n,2m|4)

Spin-one YM sector:

g = u(n)⊕ u(m), o(n)⊕ o(m) or usp(2n)⊕ usp(2m)

fermions: bifundamental.

Odd spins: adjoint representation of g.

Even spins: the opposite symmetry second rank representation of g,

Particle spectrum always contains a singlet for

colorless graviton and colorless scalar

ho(1,0|4) is minimal HS algebra: even spins s = 0,2,4,6, . . .

Colorless scalar is the prediction of HS symmetry!
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Summary of Lecture I

General consequences of HS symmetry

3d conformal HS algebra is even part of Weyl algebra A2 of functions

f(Y ) =
∞∑
n=0

1

n!
fA1...AnYA1

. . . YAn

of oscillators

[YA , YB]∗ = 2iCAB , A = 1,2,3,4

AdS4 HS algebra coincides with 3d conformal HS algebra
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Spinorial langauge in four dimensions
Key fact 2× 2 = 4

Minkowski coordinates as 2× 2 hermitian matrices

Xn ⇒ Xαα̇ =
3∑

n=0

Xnσαα̇n , σαα̇n = (Iαα̇,−→σ αα̇k )

Iαα̇: unit matrix

−→σ αα̇k , k = 1,2,3: Pauli matrices

α, β, . . . = 1,2, α̇, β̇, . . . = 1,2 two-component spinor indices

det |Xαα̇| = (X0)2 − (X1)2 − (X2)2 − (X3)2

Lorentz symmetry: sl(2,C) ∼ o(3,1).

Dictionary between tensors and multispinors by:

σaαα̇ , σabαβ = σ
[a
αα̇σ

b]
β
β̇ , σ̄ab

α̇β̇
= σ

[a
αα̇σ

b]α
β̇

Pair of dotted and undotted indices: vector

Pairs of symmetrized indices of the same type: antisymmetric tensors

Problem 1.13. Check
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NonAbelian HS Algebra

3d Conformal HS symmetry = AdS4 HS symmetry

HS gauge fields: ω(Y |X)

YA = (yα, ȳα̇), α, α̇ = 1,2 two-component spinor indices

ω(Y |X) =
∞∑

n,m=0

1

2n!m!
ωα1...αn ,α̇1...α̇m(X)yα1 . . . yαnȳα̇1 . . . ȳα̇m

HS curvature and gauge transformation

R(Y |X) = dω(Y |X) + ω(Y |X) ∗ ∧ω(Y |X)

δω(Y |X) = Dε(Y |X) = dε(Y |X) + [ω(Y |X) , ε(Y |X)]∗

[yα , yβ]∗ = 2iεαβ , [ȳα̇ , ȳβ̇]∗ = 2iεα̇β̇
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Vacuum

Equation of AdS4: R0 = 0 for ω0 ∈ sp(4) ∼ o(3,2)

ω0(Y |X) =
1

4i
(wαβ(X)yαyβ + w̄α̇β̇(X)ȳα̇ȳβ̇ + 2λhαβ̇(X)yαȳβ̇)

Problem 1.14. Check

Fluctuations

ω = ω0 + ω1 , R1 = D0ω1 = dω1 + [ω0 , ω1]∗
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Central On-shell theorem

The full unfolded system for free massless fields of all spins is formulated

in terms of one-form ω(Y |X) and zero-form C(Y |X)

R1(y,y | X) = H
α̇β̇ ∂2

∂yα̇∂yβ̇
C(0,y | X) + Hαβ ∂2

∂yα∂yβ
C(y, 0 | X) ,

D̃0C(y,y | X) = 0 ,

where

Hαβ = hαα̇ ∧ hβα̇ , H
α̇β̇ = hα

α̇ ∧ hαβ̇ ,

R1(y, ȳ | X) = Dadω(y, ȳ | X)

Dad
0 ω = DL − λhαβ̇

(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)
, D̃0 = DL + λhαβ̇

(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)
,

DLA = dX −
(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)
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Pattern of massless equations

Gauge fields of different spins: homogeneous polynomials in Y

ωs(νy, νȳ|X) = ν2(s−1)ω(y, ȳ|X) , Cs(νy, ν−1ȳ|X) = ν±2sC(y, ȳ|X)

Infinite set of spins s = 0,1/2,1,3/2,2,5/2 . . .

ωs
α1...αn ,β̇1...β̇m

: n+m = 2(s− 1) , Cs
α1...αn ,β̇1...β̇m

: |n−m| = 2s

C(Y |X) : gauge invariant HS curvatures and spin-zero matter fields

Dynamical fields

Frame-like fields ωs
α1...αn ,β̇1...β̇n

contain Fronsdal fields

C(0,0|x): scalar

Other components are expressed via higher derivatives of the dynamical

fields which come in combination

λ−1 ∂

∂x
, λ2 = −Λ

Higher derivatives source nonanaliticity in Λ.
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Examples

s = 0 : C0
α1...αn ,β̇1...β̇n

∼ Ca1...an , Cbba3...an = 0

Problem 1.15. Derive Maxwell equations in the spin-one sector

s = 2

Gauge fields: Lorentz connection ωαβ, ω̄α̇β̇ and vierbein ωα,β̇

Zero-forms Cα1α2α3α4(X) and C̄α̇1α̇2α̇3α̇4
(X) : Weyl tensor in terms of two-

component spinors.

Higher components Cs
α1...αn ,β̇1...β̇m

: |n−m| = 4 : all its derivatives

Rα,β̇ = 0: expresses Lorentz connection via vierbein

Rαβ = HγδCαβγδ, Rα̇β̇ = H̄ γ̇δ̇C̄α̇β̇γ̇δ̇: nonzero part of the Riemann tensor

belongs to Weyl tensor
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Spin two in tensorial language

Rνµ
a = 0 , Rνµ

ab = eν
ceµ

dCcd,
ab , Cab,

b
c = 0

Ccd,
ab coincides with Weyl tensor

Rνµ = Rνρρµ = 0: Einstein equations

HS counterparts impose Fronsdal equations Gν1...νs = 0 and express gen-

eralized Weyl tensors in terms of Fronsdal fields
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From COST to nonlinear theory

R(y, y | X) = H
α̇β̇ ∂2

∂yα̇∂yβ̇
C(0, y | X) +Hαβ ∂2

∂yα∂yβ
C(y,0 | X) + . . .

D̃C(y, y | X) + . . . , . . . = O(C,ω1)

R(y, y | X) = dω(y, y | X) + ω(y, y | X) ∗ ω(y, y | X)

D̃C(y, y | X) = dC(y, y | X) + ω(y, y | X) ∗ C(y, y | X)− C(y, y | X) ∗ ω(y,−y | X)

Such field equations are unfolded: exterior differential of any field is

expressed via the fields themselves

Problem: find gauge invariant nonlinear corrections
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General properties of HS interactions

HS interactions contain higher derivatives

Nonanaliticity in Λ

Background HS gauge fields contribute to higher-derivative terms in the

evolution equations: evolution is determined by higher-spin fields along

with the metric: no geodesic motion in presence of nonzero HS fields

Hence insufficiency of metric in presence of HS fields

HS fields source lower-spin fields via ω ∗ ω terms

lower-spin fields source HS fields via C2 terms

gravity sources HS fields and vice-versa

48



Idea of Nonlinear Construction

Being possible in a few first orders, straightforward construction of

nonlinear deformation quickly gets complicated

•Trick: to find a larger algebra g′ such that a substitution

? ω →W = ω + ωC + ωC2 + . . .

into g′ reconstructs nonlinear equations via a zero-curvature condition

dW +W ∧W = 0

To find restrictions on W that reconstruct ? in all orders
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Doubling of spinors

ω(Y |X) −→W (Z;Y |X) , C(Y |X) −→ B(Z;Y |X)

to be accompanied by equations that determine dependence on the

additional variables ZA in terms of “initial data”

ω(Y |X) = W (0;Y |X) , C(Y |X) = B(0;Y |X)

S(Z, Y |X) = dZASA is connection along ZA

HS star product

(f ? g)(Z, Y ) =
∫
dSdTf(Z + S, Y + S)g(Z − T, Y + T ) exp−iSATA

[YA, YB]? = −[ZA, ZB]? = 2iCAB , Z − Y : Z + Y normal ordering

Inner Klein operators:

κ = exp izαyα , κ̄ = exp iz̄α̇ȳ
α̇ , κ ? f(y, ȳ) = f(−y, ȳ) ? κ , κ ? κ = 1
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Nonlinear HS Equations



dW +W ?W = 0
dB +W ? B −B ? W̃ = 0
dS +W ? S + S ?W = 0
S ? B −B ? S = 0
S ? S = i(dZAdZA + dzαdzαF (B) ? κ+ dz̄α̇dz̄α̇F̄ (B) ? κ̄)

Manifest gauge invariance

δW = [ε,W]? , δB = ε ? B −B ? ε̃ , ε = ε(Z;Y ;K|x)

Nontrivial equations are free of space-time differential d

The equations are formally consistent and regular: no divergences de-

spite non-polynomial Klein operators: κ = exp izαyα and κ̄ = exp iz̄α̇ȳ
α̇
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Perturbative analysis

Vacuum solution B0 = 0 , S0 = dZAZA , W0 = 1
2ω

µν
0 (x)YµYν

dW0 +W0 ? W0 = 0 −→ ω
µν
0 (x) describes AdSd

First-order analysis reproduces Central On-Shell Theorem

A particular form of star product plays crucial role
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Unfolded Dynamics

First-order form of differential equations

q̇i(t) = ϕi(q(t)) initial values: qi(t0)

# degrees of freedom = # of dynamical variables

Unfolded dynamics: multidimensional generalization

∂

∂t
→ d , qi(t)→WΩ(x) = dxn1 ∧ . . . ∧ dxnpWΩ

n1...np
(x)

dWΩ(x) = GΩ(W (x)) , d = dxn∂n

GΩ(W ) : function of “supercoordinates” WΩ

GΩ(W ) =
∞∑
n=1

fΩ
Λ1...ΛnW

Λ1 ∧ . . . ∧WΛn

Covariant first-order differential equations

d > 1: Compatibility conditions

GΛ(W ) ∧
∂GΩ(W )

∂WΛ
≡ 0
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Properties

• General applicability

• Manifest (HS) gauge invariance under the gauge transformation

δWΩ = dεΩ + εΛ∂G
Ω(W )

∂WΛ
,

gauge parameter εΩ(x) is a (pΩ − 1)-form.

• Invariance under diffeomorphisms

Exterior algebra formalism

• Interactions: nonlinear deformation of GΩ(W )

• Degrees of freedom are in 0-forms Ci(x0) at any x = x0 (as q(t0))

infinite-dimensional module dual to the space of single-particle states

realized as a space of functions of auxiliary variables (like C(y, ȳ) instead

of phase space coordinates in the Hamiltonian approach

Unfolded dynamics provides a tool to control unitarity in presence of

higher derivatives
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Space-time metamorphoses

Independence of ambient space-time: geometry is encoded by GΩ(W )

Key observation: unfolded equation makes sense in any space-time

dWΩ(x) = GΩ(W (x)) , x→ X = (x, y) , dx →= dX = dx+dy , dy = dyu
∂

∂yu

X-dependence is reconstructed in terms of fields WΩ(X0) = WΩ(x0, y0)

at any X0 To take WΩ(x0, y0) in space MX with coordinates X0 is the

same as to take WΩ(x0) in the space Mx ∈MX with coordinates x
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Unfolding as a covariant twistor transform

@
@
@
@R

�
�
�

�	

C(Y |x)

M(x) T (Y ) .

η ν

WΩ(Y |x) are functions on the “correspondence space” C.

Space-time M : coordinates x. Twistor space T : coordinates Y .

Unfolded equations: Penrose transform mapping functions on T to so-

lutions of field equations in M .

Holographic duality: different space-times M for the same twistor space
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3d conformal fields and currents

3d massless equations

(
∂

∂xαβ
±i

∂2

∂yα∂yβ
)C±j (y|x) = 0 , α, β = 1,2 , j = 1, . . .N Shaynkman, MV (2001)

Rank-two equations: conserved currents Gelfond MV 2008{
∂

∂xαβ
−

∂2

∂y(α∂uβ)

}
J(u, y|x) = 0

J(u, y|x): generalized stress tensor. Rank-two equation is obeyed by

J(u, y |x) =
N∑
i=1

C−i (u+ y|x)C+
i (y − u|x)

Bilocal fields in the twistor space.
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Elementary currents

Primaries: 3d currents of all spins

J(u,0|x) =
∞∑

2s=0

uα1 . . . uα2sJα1...α2s(x) , J̃(0, y|x) =
∞∑

2s=0

yα1 . . . yα2sJ̃α1...α2s(x)

Jasym(u, y|x) = uαy
αJasym(x)

∆Jα1...α2s(x) = ∆J̃α1...α2s(x) = s+ 1 ∆Jasym(x) = 2

Differential equations: conservation condition

∂

∂xαβ
∂2

∂uα∂uβ
J(u,0|x) = 0 ,

∂

∂xαβ
∂2

∂yα∂yβ
J̃(0, y|x) = 0
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From 3d currents to 4d massless fields

Extension of 3d current equation to 4d massless equations is easy in

unfolded dynamics: xαβ → Xαβ̇(
∂

∂Xαα̇
+

∂2

∂yα∂ȳβ̇

)
C(y, ȳ) = 0

Unfolded equations for 4d massless fields of all spins at Λ = 0

AdS: xαβ = 1
2(Xαβ +Xβα) : boundary coordinates,

z−1 = Xαβεαβ: radial coordinate

At the non-linear level full HS theory in AdS4 is equivalent to the theory

of 3d currents of all spins interacting through conformal HS gauge fields
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sp(8) invariant setup

4d massless field equations for all spins are sp(8) symmetric (Fronsdal 1985)

To see Sp(8) extend 4d massless equations to a ten-dimensional space

M4 : with local coordinates XAB = XBA A = (α, α̇) = 1,2,3,4

dXAB(
∂

∂XAB
+

∂2

∂Y A∂Y B
)C(Y |X) = 0 , A,B = 1, . . .M

M = 2: 3d massless fields: Sp(4) is 3d conformal group Shaynkman, MV (2001)

M = 4: Sp(8) extends 4d conformal group SU(2,2)
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From four to ten

Dynamical variables in M4 :

C(0|X) describes all 4d integer spins

Y ACA(0|X) describes all 4d half-integer spins

Nontrivial field equations: (2001)

bosons :

(
∂2

∂XAB∂XCD
−

∂2

∂XCB∂XAD

)
C(X) = 0

fermions :
(

∂

∂XAB
CC(X)−

∂

∂XCB
CA(X)

)
= 0
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From ten to four

Usual space-time picture appears as a result of identification of a local

event simultaneously with the metric tensor

Time in MM

XAB = TABt

TAB is positive-definite (2002)

Usual space in MM: Clifford algebra

XAB = xnγABn

M = 2,4,8,16 : d = 3,4,6,10 Bandos, Lukierski, Sorokin (1999); MV

(2002); Bandos, Bekaert, de Azcarraga, Sorokin, Tsulaia (2005)
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HS theory and quantum mechanics

Unfolded dynamics distinguishes between positive and negative frequen-

cies

(
∂

∂XAB
± i

∂2

∂Y A∂Y B
)C±(Y |X) = 0 ,

C(X) = C+ + C− , C± =
∫
dMξc±(ξ) exp±iξAξBXAB

Time parameter t = 1
MX

ABTAB with any positive-definite TAB
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Holographic duality between relativistic HS
theory and nonrelativistic QM

Reduction of XAB to t with TAB = δABt

i
∂

∂t
C± = ±

∂2

∂Y A∂Y B
δABC±(Y |X)

C± counterparts of ψ and ψ̄

Twistor coordinates Y play a role of non-relativistic coordinates

AdS and dS harmonic potentials with correct and wrong sign 2012 related

results Bekaert, Meunier and Moroz (2011)

HS theory explains both gravity and QM?!

nonlinear QM with gravtationally small coupling constant?!
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Multiparticle algebra as a symmetry of a
multiparticle theory

l(U(h)) (2012)

• contains h as a subalgebra

• admits quotients containing up to kth tensor products of h:

k Regge trajectories?!

• Acts on all multiparticle states of HS theory

Promising candidate for a HS symmetry algebra of HS theory with mixed

symmetry fields like String Theory

String Theory as a theory of bound states of HS theory

Chang, Minwalla, Sharma and Yin (2012)
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Conclusion

HS gauge theories contain gravity along with infinite towers of other

fields with various spins including ordinary matter fields: singlet scalar!

HS gauge theories available in any d ≥ 3 are analogues of pure SUGRA

HS theory contains non-minimal higher-derivative interactions

To achieve spontaneous breakdown of HS symmetries a string-like ex-

tension is needed

A multiparticle theory: quantum HS theory and String Theory

Remarkable interplay between classical and quantum physics

A very few exact solutions are known in 4d HS theory:

BH-like solution Didenko, MV 2009, Iazeola, Sundell 2010

A number of inequivalent BTZ-like solutions in 3d HS theory

Didenko, MV 2009, Gutperle, Kraus 2011,...
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