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Real-time zero temperature AdS/CFT

AdS/CFT at T = 0: Strong-weak duality between a conformal field theory and string
theory in a curved (Anti-de Sitter) background.
Trademark example: N = 4 super Yang-Mills (sYM) and IIB string theory on
AdS5 × S5.
Identification of partition functions: ZsYM = ZIIBstring

In a simplified set-up, consider the supergravity (sugra) modes on AdS5 × S5.
Witten:
ZsYM [J = source for a BPS opt. O] = Zsugra[φsugra(xµ, z) −→ J(xµ) at the AdS bdy]
=⇒ Correlators of BPS sYM operators can be computed at strong coupling by doing
a weakly coupled gravity computation.

3-point function Witten diagram

Witten’s prescription was for Euclidean AdS.
The correlators are then computed in imaginary time. What about real-time
correlators?



Why do we need to worry about real time correlations?
Answer: The response of the system to some external perturbation is phrased in the
language of retarded/causal correlators.

Examples:

In the hydrodynamic regime, the stress tensor gives the response of the plasma to a
metric fluctuation via 2-point and higher order stress-stress retarded correlators. The
real-time 2-point functions give (via Kubo formulae) the linear (the familiar shear
viscosity coefficient) and a couple of second order coefficients. The real-time 3-point
functions give the remaining second order hydrodynamic coefficients.

In the case when the system is perturbed by injecting some high energy excitation (a
“jet”), the response is again given by real-time correlators, except that this time the
leading order contribution comes from 3-point correlation fucntions.



Examples of real-time correlators:

I CFT 2-point functions

GF (x) = −i〈0|T O(x)O(0)|0〉 = −i
(

1

−t2 + ~x2 + iε

)∆

G+(x) = −i〈0|O(x)O(0)|0〉 = θ(t)GF (x) + θ(−t)G∗F (x) = −i
(

1

−(t − iε)2 + ~x2

)∆

G−(x) = −i〈0|O(0)O(x)|0〉 = θ(−t)GF (x) + θ(t)G∗F (x) = −i
(

1

−(t + iε)2 + ~x2

)∆

GR(x) = GF (x)− G−(x) = θ(t)

(
G+(x)− G−(x)

)
, GA(x) = θ(−t)

(
G−(x)− G+(x)

)
I CFT 3-point functions
GF (x1, x2, x3) = (−i)2〈0|T O(x1)O(x2)O(x3)|0〉

= (−i)2

(
1

−t2
12 + ~x2

12 + iε

1

−t2
23 + ~x2

23 + iε

1

−t2
31 + ~x2

31 + iε

)∆/2

etc.
Comment: 2 and 3-point functions are completely determined (up to an overall
coefficient) by the CFT algebra.



The problem:
AdS5 can be described using different coordinates: global coordinates, which cover the
whole space, or coordinates which make manifest the Poincare symmetry of the field
theory (plus a radial coordinate)

ds2
AdS =

1

z2
(dxµdxµ + dz2)

and which cover only half of the space.
Which region of AdS must one integrate to get real-time correlators?
How are the different types of real-time correlators computed from sugra?



To find the answer, P.Arnold, E.Barnes, D.V. and C. Wu (2010) used reverse
engineering:
-start from the known expressions of the real-time 3-point correlators:

GF (x1, x2, x3) = (−i)2〈0|T O(x1)O(x2)O(x3)|0〉

= (−i)2

(
1

−t2
12 + ~x2

12 + iε

1

−t2
23 + ~x2

23 + iε

1

−t2
31 + ~x2

31 + iε

)∆/2

G123(x1, x2, x3) = (−i)2〈0|O(x1)O(x2)O(x3)|0〉

= (−i)2

(
1

−t2
12 + ~x2

12 + iεt12

1

−t2
23 + ~x2

23 + iεt23

1

−t2
31 + ~x2

31 − iεt31

)∆/2

GR(x1, x2; x3) = θ(t31)θ(t12)

(
G312 − G132 + G213 − G231

)
+ θ(t32)θ(t21)

(
G321 − G231 + G123 − G132

)
and manipulate until the structure of a cubic Witten diagram emerges.



Warm-up:

I begin with Euclidean signature 3-point CFT correlators;

I then Fourier-transform to momentum space;

I use Schwinger parameters to deal with the denominators, and perform the
Gaussian integrals; use one more Schwinger parameter to deal with the
intermediate result.
Discover AdS/CFT!

G(k1, k2, k3) ∼ δ(k1 + k2 + k3)
∫∞

0
dz
z5

∏3
i=1(

√
k2
i )∆−2z2K∆−2(

√
k2
i z)

AdS5 metric: ds2 =
dz2+dxµdxµ

z2

Bulk-to-boundary propagators: (
√

k2
i )∆−2z2K∆−2(

√
k2
i z)

3-point function Witten diagram



Retarded 3-point correlators
I What to expect: in field theory, the retarded/advanced 2-point function in

momentum space are obtained by analytic continuation ω → −i(ω ± iε) of the
Euclidean 2-point function.

I Is there a similar analytic continuation which gives the retarded higher n-point
functions computed from holography?

Consider the retarded 3-point with x3 with the largest time:

GR(x1, x2; x3) = θ(t31)θ(t12)

(
G312 − G132 + G213 − G231

)
+ θ(t32)θ(t21)

(
G321 − G231 + G123 − G132

)
In momentum space this yields

GR(k1, k2; k3) ∼ δ(k1 + k2 + k3)

∫ ∞
0

dz

z5

∏
i=1,2

(
(
√
−(Ei − iε)2 + ~p2

i )∆−2z2

×K∆−2(
√
−(Ei − iε)2 + ~p2

i z)

)
(
√
−(E3 + iε)2 + ~p2

3)∆−2z2K∆−2(
√
−(E3 + iε)2 + ~p2

3z)

This is a Witten diagram with two advanced bulk-to-boundary propagators and one
retarded propagator joined at a bulk vertex integrated over the Poincare patch of the
AdS space.

X



How are real-time correlators computed from sugra?
For Feynman (time-ordered) correlators use Feynman sugra propagators; for retarded/
(causal) correlators use causal sugra propagators. Tantamount to using Veltman’s
circling rules at T = 0 in supergravity (Arnold, Barnes, DV, Wu[1004.1179]).

∆R = ∆F −∆−

∆A = ∆F −∆+

and in momentum space (i∆F ) = Re(i∆R) + iIm(i∆R)sign(E)
This is the jump-off point for real-time T 6= 0 computations from AdS/CFT.



Finite temperature real-time field theory

In real time formalism, fields have doublers.

Schwinger-Keldysh contour:

S =

∫
C
L[φ(~x , t)]

Or use a “single time” formalism, with two sets of fields by defining

φ1 ≡ φ(~x , t), φ2 ≡ φ(~x , t − iσ)

Finite temperature propagators

D11(x) = 〈e−βHT φ1(x)φ1(0)〉, D22 = 〈e−βH T̃ φ2(x)φ2(0)〉,
D12 = 〈e−βHφ2(0)φ1(x)〉, D21 = 〈e−βHφ2(x)φ1(0)〉

In Heisenberg formalism φ(~x , t) = e i Ĥtφ(~x)e−i Ĥt

⇒ for σ = β/2, D12(x) = D21(−x), and D22(x) = D11(−x).



The finite temperature propagator is a matrix, the Schwinger-Keldysh propagator(
D11(p) D12(p)
D21(p) D22(p)

)
=

(
i

p2+iε
+ n(E)2πδ(p2) (θ(−E) + n(E))2πδ(p2)eβE/2

(θ(E) + n(E))2πδ(p2)e−βE/2 −i
p2−iε

+ n(E)2πδ(p2)

)

where

n(E) =
1

eβ|E | − 1

Finite temperature Feynman and Wightman propagators

D12 = exp(βE/2)D−, D21 = exp(−βE/2)D+,

D11 = DF , D22 = D∗F .

Retarded propagator DR = θ(t)〈e−βH [φ1(x), φ1(0)]〉 determines completely the other
components of the SK propagator, with

GF = Re GR + iIm GR coth(βE/2), GR,F = −iDR,F

Zero temp limit: DF = −i
−E2+~p2−iε

,DR = −i
−(E+iε)2+~p2 , X



Kobes, Kobes& Semenoff (1985): Trade off the SK path integral contour for circling
rules diagrams.

Any finite temperature “Feynman” diagram is given by the sum of all diagrams with
vertices either circled or uncircled, with the exception of vertices connected to external
lines which remain uncircled.
Largest time equation (identity): The sum of all diagrams with all vertices either
circled or uncircled is 0.
A retarded n-point function, with one external vertex having the largest time is given
by the sum of all diagrams, with all other vertices being either circled or uncircled,
with the exception of the vertex with the largest time, which remains uncircled.
It is this causal Green’s function computed in real-time formalism that coincides with
the analytic continuation from imaginary time formalism.



Real-time finite temperature AdS/CFT
Finite temperature AdS/CFT: The finite temperature phase of the CFT on R3,1 is
holographically dual to AdS with a black hole in it: AdS-Schwarzschild

ds2
10 =

r2

R2
(−f (r)dt2 + d~x2) +

R2

r2f (r)
dr2 + R2dΩ2

5

= R2

(−f (z)dt2 + d~x2 + dz2

z2f (z)

z2
+ dΩ2

5

)
, z =

R2

r

f (r) = 1−
r4
h

r4
= 1−

z4

z2
h

≡ 1− u2

The Hawking temperature is TH = rh
πR2 .

AdS-S Penrose diagram

How to integrate over the black hole bulk (given the presence of singularities,
horizons)?



Tools of the trade: supergravity bulk-to-boundary propagators, and supergravity
vertices.
Consider a massless scalar field φ(pµ, u) = F (ω,~p, u)φ0(pµ) in the AdS-S background
obeys �F = 0:

F ′′ −
1 + u2

u(1− u2)
F ′ +

(
ω2

u(1− u2)2
−

~p2

u(1− u2)

)
F = 0

where ω,~p and u are dimensionless quantities

ω =
E

2πTH
, ~p =

~P

2πTH
, u =

r2
h

L2
z2.

Retarded bulk-to-boundary propagator: F is an incoming wave at the horizon.
Re and Im parts of the Euclidean bulk-to-boundary propagator FE , with u = 0.5 and
~p2 = 1:



For a while what was known was how to compute 2-point functions:
Son & Starinets (2002) conjectured that the retarded 2-point CFT correlator at finite
temperature is given by

〈O(ω,~k)O(0)〉β ∝
√
gguu∂uF (ω,~k, u)

∣∣∣∣
u=0

based on the zero-temperature limit.

Son & Herzog (2002) gave a geometric interpretation of the finite temperature
Schwinger-Keldysh matrix 2-point correlator by adding sources for the physical and
ghost/doubler fields on the two boundaries of the AdS-S Penrose diagram.

Comments: Peculiar feature of 2-point functions which arise from
∫ √

g∂φ · ∂φ: when
evaluating the quadratic action on-shell, a 2-point function reduces to a boundary
term. A genuine integration over the black hole bulk is not needed. Son and Herzog’s
prescription was not precise in how the integration over the black hole bulk needs to
be carried out.



Son & Herzog

Construct the propagator matrix for the supergravity fields (e.g. a scalar):
-the field approaches φ1 and φ2 on the R and L boundaries.
-use the Unruh mode decomposition to keep incoming, positive frequency modes and
outgoing negative frequency modes at the horizon.

φ(p, uR) =

(
e2ωπ

e2ωπ − 1
F (p; uR)−

1

e2ωπ − 1
F (−p, uR)

)
φ1(p)− 2i

eωπ

e2ωπ − 1
ImF (p, uR)φ2(p)

φ(p, uL) = 2i
eωπ

e2ωπ − 1
ImF (p, uL)φ1(p) +

(
e2ωπ

e2ωπ − 1
F (−p, uL)−

1

e2ωπ − 1
F (p, uL)

)
φ2(p)

φ(p, u)
∣∣
a

= φb(p)Gba(p, u).



I Start with the retarded propagator: GR ≡ F (ω,~k, u).

I Follow Gibbons & Perry: The “Kruskal” vacuum Feynman propagator is the one
which exhibits periodicity in imaginary “Schwarzschild” time. Hallmark
characteristic of thermal propagators.

Feynman propagator: GF = ReGR + i coth(ωπ)ImGR is the Feynman
bulk-to-boundary Green’s function.
GR = GF − G− etc. ⇒ get the other (Wightman) Green’s functions.
Compare with the bulk-to-boundary propagator matrix Gab.

I D11= Feynman; D12 = D− exp(ωπ); D21 = D+ exp(−ωπ) where iG = D.
Same relations as for a finite temperature field theory. Here σ = β/2.



How to integrate over the black hole bulk? ABVW 2010: To compute correlators, use
a R-minus-L prescription. (Also used by Frolov and Martinez in a different context.)
Even though the scalar field and its action were real to begin with, the boundary
conditions imposed at the horizon break reality. The on-shell action is complex and
yields complex 2-point functions

Gab(p1, p2) = −(−1)a+b δ2S0

δφa(p1)δφb(p2)

and
GR(p) = −2N̄

√
−gguuF (p, u)∂uF (p, u)|u=0



Define 3-point functions in AdS-S to be given by R-minus-L quadrant integration

Gabc ∝
∫ √

−g
(
Ga1Gb1Gc1 − Ga2Gb2Gc2

)

Gab is a propagator from the boundary a = 1, 2 (1=R,2=L) to the bulk b = 1, 2
(1=R,2=L).
Does it make sense?

I Real time finite temperature identities
Gabc should obey the same KMS identities as the CFT correlator it computes

Ga1a2...an = (−)n−1G∗ā1 ā2...ān

where ā = 1 if a = 2 and ā = 2 if a = 1, and we have assumed that σ = β/2.
Here this follows from Gab = G∗

āb̄
.

X



I Largest time

− sinh(ωrπ)ReG112(q, p) = sinh(ωqπ)ReG211(q, p) + sinh(ωpπ)ReG121(q, p)

ImG111(q, p)− cosh(ωpπ)ImG121(q, p)− cosh(ωqπ)ImG211(q, p)− cosh(ωrπ)ImG112(q, p) = 0

q, p are incoming and r is outgoing.

X



I Retarded 3-point definition

The retarded 3-point correlator is given by the sum of all diagrams above.
After substituting the various Gabc , the final expression is very simple

GR(q, p; r) ∝
∫ 1

0
du
√
gGA(q)GA(p)GR(r)

This is consistent with causality, analyticity and with the zero temperature limit.



Causality:



Simpler interpretation and main message:

I The R-minus-L prescription is merely enforcing on the gravity side Veltman
circling rules at finite temperature.

I Dispose of the Penrose diagram all together.

I The bulk-to-boundary propagators which are causal are singled out by imposing
incoming/outgoing wave condition at the horizon. The thermal Feynman
propagators are constructed from the retarded ones by the same relation as for
finite temperature field theory GF = ReGR + i coth(ωπ)ImGR .

I The bulk vertex integration on the gravity side is done only up to the horizon.
The Poincare coordinates are singled out since they are the preferred coordinates
in the dual field theory.



Applications to strongly coupled plasmas



Jet quenching

The problem: How far does a localized high-energy excitation travel through the
quark-gluon plasma before stopping and thermalizing?

All weak-coupling: lstop ∝ E1/2 (up to logs)
All strong-coupling N = 4 super Yang-Mills: lstop ∝ E1/3

(Maximal distance traveled ∼ (E/
√
λ)1/3 for excitations dual to semi-classical

strings(Chesler Jensen Karch Yaffe (2008), Gubser Gulotta Pufu Rocha (2008). No√
λ-dependence for excitations dual to sugra modes (Hatta Iancu Mueller (2008),

Arnold DV (2010).)



Arnold DV 1008.4023 re-opened the problem by posing the question on the field
theory side: namely begin by specifying the nature of the excitation created on the
gauge theory side, and by measuring the response (in terms of conserved charge
densities) in the field theory as well.

x3

.

x3

.

x3

.

x3

.

x3

.

x3

tim
e

stopping distance



Work at strong coupling and use AdS/CFT duality in the last step to compute the
resulting correlator.
The Boot Operator:
For simplicity consider the case when the external perturbation is a transverse
polarized R-current (it’s easier to track conserved R-charge as opposed to conserved
energy/momentum, and also easier to discuss a perturbation created by the decay of a
slightly off shell gauge boson than a slightly off shell graviton):

L → L+ jaµA
aµ
cl ,

Aµcl(x) = ε̄µNA

[ τ+

2
e i k̄·x + h.c.

]
e−

1
2

(x0/L)2
e−

1
2

(x3/L)2
,

k̄µ = (E , 0, 0,E), ε̄µ = (0, 1, 0, 0)

E � T ,EL� 1.



Jets

I our jets; also studied by Hatta Iancu Mueller (2008)

Analogy: A very high energy W+ boson decaying inside a standard-model
quark-gluon plasma and producing high-energy partons with net 3rd component
of isospin, τ3/2:

W
d

u
E

+



I other jets
I light-quark jets (Chesler Jensen Karch Yaffe(2008))

I gluon jets (Gubser Gulotta Pufu Rocha (2008))

I gluon beam jets via synchrotron radiation (Chesler Ho Rajagopal (2011))



The problem:
The Boot The source Aaµ

cl creates an excitation that carries energy, momentum, and R
charge.
The Eye Operator We track the R charge density, specifically the large-time behavior
(t � both T−1 and L) of 〈

j(3)0(x)
〉
Acl

if the system starts in thermal equilibrium at t = −∞.



Measure the response in a “smeared” fashion, without resolving short distance scales
(shorter than 1/E or 1/T ). This “smearing” eliminates the large momentum
component of the respose function.
This reduces to a retarded 3-point function!
Consider a small perturbation H = H0 + δH, where δH is short lived. The evolution of
some observable O under H

〈O(t)〉H = Z−1
0 Tr

(
e−βH0U†(t,−∞)OU(t,−∞)

)
where U(t, t0) = T exp(−i

∫ t
t0
dt′H(t′)) is the evolution operator.

Work in the interaction picture, and expand in powers of δH.

〈O(t)〉H − 〈O(t)〉H0
=

∫
dt1 GR(t1; t) +

1

2!

∫
dt1 dt2 GR(t1, t2; t) + . . .

where t is the “largest time” and

iGR(t1; t) = θ(t − t1)〈[O(t), δH(t1)]〉H0

i2GR(t1, t2; t) = θ(t − t2)θ(t2 − t1)〈[[O(t), δH(t2)], δH(t1)]〉H0

+ θ(t − t1)θ(t1 − t2)〈[[O(t), δH(t1)], δH(t2)]〉H0



Due to “smearing” the contribution coming from the 2-point function vanishes: the
source carries large momenta (energetic jet) but the response function does not. The
smearing in question is motivated by an interest in the hydrodynamic regime after the
jet has stopped.
So, the leading order contribution to the response function comes from〈

j(3)µ(x)
〉
Acl

= 1
2

∫
d4x1 d4x2 G

(ab3)αβµ
R (x1, x2; x)Aa

α,cl(x1)Ab
β,cl(x2)

where

G
(ab3)αβµ
R (x1, x2; x) = θ(t − t1)θ(t1 − t2)〈[[j(3)(x), ja(x1)], jb(x2)]〉

+ θ(t − t2)θ(t2 − t1)〈[[j(3)(x), jb(x2)], ja(x1)]〉

The physical problem of tracking the jet evolution reduces to a technical problem:
how to actually compute a retarded 3-point correlator.



Witten diagram for (a) 3-point boundary correlator in imaginary-time
AdS5-Schwarzschild and (b) retarded 3-point boundary correlator GR(x1, x2; x) in
real-time AdS5-Schwarzschild.

2x

1x

3x

=1u

=0uboundary

=1
u

=1
u 2x

1x
=0

u

x

(a) (b)

RL

Technical comments (helpful approximations):
-the jet has large energy (WKB approximation useful; analytic expressions are now
available)
-the R-charge density is measured at scales which are large comparative to 1/E or
even 1/T (one measures a “smeared response”); the Fourier-transform 3-point
correlator factorizes (almost).



Charge deposition function
Final result:

(∂t −
1

2πT
∇2)

〈
j(3)0(x)

〉
Acl

' Q̄(3) Θ(x),

where the charge deposition function is

Θ(x) ' 2 δL(x−) θ(x+)


(4c4EL)2

(2πT )8(x+)9 Ψ
(
− c4EL

(2πTx+)4

)
, x+ � E1/3/(2πT )4/3;

(2πT )42(c2L)2

E
Ψ(0) exp

(
− c1(2πT )4/3x+

E1/3

)
, x+ � E1/3/(2πT )4/3.

with Ψ(y) = e−2y2
, c ≡

Γ2(
1
4

)

(2π)1/2 , c1 ' 0.927, c2 ' 3.2.

E1/3T −4/3(EL)1/4T −1 E1/3T −4/3(EL)1/4T −1

ch
ar

ge
 d

ep
os

ite
d

exponential
fall−off

∝ (x+)−9

x+ x

t

3

(b)(a)



Jet quenching simplified
P.Arnold, DV (2011): Consider a source

source(x) ∼ e i k̄·xΛL(x)

which creates a localized perturbation at the boundary, which then propagates in the
5th dimension, eventually falling into the horizon.
Previously, k̄ was light-like:

(a) k̄µ = (E , 0, 0,E)

Instead choose now k̄ off the light-cone

(b) k̄µ = (E + ε, 0, 0,E − ε)

Qualitative picture of momenta used to generate jets:

L−1 L−1

L−1

q3

q0 q0

q3

q0

q3

(b) (c)(a)

ε~E E E

E E E



(a,b) A snapshot in time of waves in the fifth dimension u for times after the
boundary source has turned off but relatively early (before the wave gets very close to
the horizon).
(a) shows the type of wave generated by a localized source that superposes a range of
q2 values.
(b) shows the wave packet generated by a source with approximately well-defined q2

(c) shows a single 4-momentum component, corresponding to a single, definite value
of 4-momentum qµ.



(a) A classical particle in the AdS5-Schwarzschild space-time, moving in the x3

direction as it falls from the boundary to the black brane in the fifth dimension u.
(b) The presence of the particle perturbs the boundary theory in a manner that
spreads out diffusively as the particle approaches the horizon for x0 →∞.

1

0

u

x3
stopstopping distance x3

stopstopping distance

horizon

x3boundary

(b)

horizon

x3boundary

(a)

1

0

u

jµ

The x3 distance traveled is estimated from the geodesic equation:

dxµ

dx5
=
√
g55

gµνqν√
−qαqα

q2 ≡ qµqνη
µν .



Consider that the original source is a superposition of wave packets with k̄ off the
light-cone by an amount ε, and the spread in momenta 1/L� ε. Each small wave
packet may be approximated by a point-particle.
The particle falls into the horizon after having traveled a distance

x3stop '
c
√

2

(
|q|2

−q2

)1/4

'
c

2

(
E

ε

)1/4

Each wave packet will travel a different distance, depending on its energy and ε. The
total charge deposited by the initial source will be the weighted average of all these
individual wave packets, with an weight equal to the probability that the source
produces a jet of a given q2, P.

Prob(x3) '
∫

d(q2)P(q2) δ
(
x3 − xstop3 (q2)

)
For the original source, the typical value for −q2 is −q2 ∼ E/L.
x3 ∼ (EL)1/4 is then the typical distance traveled by the jet.

The distance traveled by the jet is determined by its 4d virtuality −q2.



The distribution of stopping distances

Spectral density: ρ(q) = 2Im(GA
⊥(q)) where GA

⊥ is the gauge boson 2-point advanced
correlator in momentum space.
For large momenta, we can approximate the 2-point function by the vacuum result

ρ(q) = Im

[
−

1

g2
SG

lim
ū→0

∂ūGA⊥
]

= Im

[
−

q2

g2
SG

(
ln(ūq2) + 2γE

)]
=

π

g2
SG

(−q2)θ(−q2)sign(q0)

Back-of-envelope calculation:

x3stop ∼
E1/4

q
1/4
+

, Pdq+ ∼ q2dq+ ∼ q+dq+ ∼ (x3stop)−9dx3stop

so
Prob(x3) ' (x3)−9



The maximal E1/3 scale from the typical (EL)1/4 scale:
The classical particle picture must break down for a stopping distance of the order L.
Back-of-envelope calculation:

x3stop ∼ L ∼ (EL)1/4 ⇒ L ∼ E1/3 ∼ x3stop max



Massive particles

P.Arnold, DV (2011) For supergravity modes on AdS5 × S5 mass is related to the
conformal dimension of the CFT BPS operator

(Rm)2 = ∆(∆− d), d = 4.

The probability distribution of jet stopping distances for scalar or transverse BPS
sources with conformal dimension ∆. (R-charge current case corresponds to ∆=3.)
Here we assume that ∆ is held fixed when taking the limit of large energy E (as well
as large coupling g2Nc and large Nc).

The typical scale, with the same (EL)1/4 dependence, is again where most of the
charge is being deposited; however, the heavier a KK mode, the sooner it stops; this is
similar to weakly coupled field theory where the more partons are available to carry the
total momentum, the shorter the stopping distance.



Adding a finite chemical potential

DV, C.Wu:

I Start with N=4 d=5 SU(2)× U(1) gauged supergravity: metric gmn, dilaton φ,
SU(2)× U(1) gauge fields AI

m and am, and two antisymmetric tensor fields Bαmn
which are charged under the action of the U(1) field. It is a consistent truncation.

I Finite chemical potential (µ) in N=4 sYM ↔ supergravity in
AdS-Reissner-Nordstrom background.

ds̄2 =
4π2R2T 2

H

(2− ζ)2u
(−f (u)dt2 + d~x2) +

R2

4u2f (u)
du2, u =

r2
+

r2

f (u) = (1− u)(1 + u − ζu2), Z̄0 =

√
3ζr+

2R2
(u − 1)

TH =
(2− ζ)r+

2πR2
, µ =

√
3ζ

2R2
r+ =

√
3ζ

2(2− ζ)
2πTH , 0 ≤ ζ ≤ 2.

I Typical stopping distance (µ � E , 1/L � E , T � E):

x3stop '
2− ζ

2

1

2πTH

8Γ2( 5
4

)
√
π(1 + ζ)1/4

(
~q2

−q2

)1/4

Finite chemical potential leads to a jet quenching enhancement.



Charge-charge correlations
P.Arnold, DV (2011): More evidence that the charge deposition function is the result
of averaging over uncorrelated point-particle stopping distances. Compute
charge-charge correlator in the background of the source. This is a real-time 4-point
function.
Typical Witten diagrams:

The only relevant real-time diagram is

where || denotes a symmetrized rr propagator.



Bulk-to-bulk propagators

The bulk-to-bulk symmetrized propagator is constructed knowing the bulk-to-bulk
causal propagators

Grr(u1, u2, ω,~k) = coth(βω
2

)

[
GR(u1; u2, ω,~k)− GA(u1; u2, ω,~k)

]
where

GR(u1; u2, ω,~k) ∝ GR(u>, ω,~k)[GR(u<, ω,~k)− GA(u<, ω,~k)]

and G denotes bulk-to-boundary propagators.
An explicit calcuation shows that for x 6= y ,

〈{Θ(x),Θ(y)}〉jet = 0

Outcome: no correlation for separated space-time points.



Hydrodynamic regime: second order hydro coefficients

Baier, Romatschke, Son, Starinets, Stephanov (2007):
In the hydro regime, the stress tensor of a CFT can be writen as an expansion in small
gradients

Tµν = Tµνeq + Πµν , Tµνeq = (ε+ P)UµUν + Pgµν

Πµν = −ησµν + ητΠ

(
〈U · ∇σµν〉 + 1

3
∇ · Uσµν

)
+ κ

(
R〈µν〉 − 2UρUσR

ρ〈µν〉σ
)

+λ1σ
〈µ
ρσ
ν〉ρ + λ2σ

〈µ
ρΩν〉ρ + λ3Ω〈µρΩν〉ρ + . . .

where σ and Ω are the fluid’s shear and vorticity tensors:

σµν = 2∇〈µUν〉 ≡ 1
2

∆µρ∆νσ(2∇ρUσ + 2∇σUρ)− 1
3

∆µν∆ρσ2∇ρuσ
Ωµν = 1

2
∆µρ∆νσ(∇ρUσ −∇σUρ)

where ∆µν are transverse (to the fluid’s velocity) projectors:

∆µν = gµν + UµUν

How to compute the hydro coefficients: until recently η, τΠ, κ were obtained via Kubo
formulae from 2-point stress correlators. What about the others? Answer: use 3-point
retarded stress correlators!



I Moore and Sohrabi (2010): compute the fluid’s response to a small, slowly
varying gravitational perturbation, and derive Kubo-type formulae for 2nd order
hydro coefficients.

〈Tµν(z)〉h = 〈Tµν〉h=0 − 1
2

∫
d4x G

µν|ρσ
R (z; x)hρσ(x)

+ 1
8

∫
d4x

∫
d4y G

µν|ρσ|τζ
R (z; x , y)hρσ(x)hτζ(y) + . . .

I Solve the conservation law ∇µTµν = 0, and Tµµ = 0 iteratively, for the fluid’s
velocity Uµ and energy density ε, order-by-order in the metric fluctuations;
compare with the previous expansion in terms of correlators =⇒ get Kubo-type
formulae!

I P.Arnold, D.V., C.Wu (2011) Formulae for 2nd order hydro coefficients
(q ≡ (ω, 0, 0, k), etc.):

lim
ω1→0
ω2→0

∂ω1∂ω2 lim
k1→0
k2→0

G xy|xz|yz (q; q1, q2) = −λ1 + ητΠ

lim
ω2→0
k1→0

∂k2
∂ω1 lim

ω2→0
k1→0

G xy|yz|tx (q; q1, q2) = − 1
4
λ2 + 1

2
ητΠ

lim
k1→0
k2→0

∂k1
∂k2

lim
ω1→0
ω2→0

G xy|0x|0y (q; q1, q2) = − 1
4
λ3



I Retarded supergravity bulk-to-boundary propagators:

δgx
y = C5(1− u)−iω/2

(
1− i

ω

2
ln(1 + u) + ω2(−

1

2
Li(2,

1− u

2
)

+
1

8
ln2(1 + u) + (1−

ln 2

2
) ln(1 + u))− k2 ln(1 + u) + . . .

)
C5 =

(
1 +

ω2(π2 − 6 ln2 2)

24
+ . . .

)
hxy

I Supergravity quadratic action:

δ(2)S =
N2
c

26π2

[
1

8

∫
u=0

1

u
∂5

(
− δgµµ δgνν + δgµν δg

ν
µ

)
+

1

4

∫
u=0

(
3

4
(h0

0)2 −
1

2
h0

0h
i
i + h0

i h
i
0 +

1

4
hiih

j
j −

1

2
hijh

j
i

)]
, i , j , k = 1, 2, 3



Recover Baier, Romatschke, Son, Starinets, Stephanov:

G
xy|xy
AdS = −

δ2S
δ2hxy

=
N2

c

27π2
− i

N2
cω

26π2
+

(ω2(1− ln 2)− k2)N2
c

26π2
+ . . .

The result derived in the hydrodynamic limit from solving the conservation law of the
stress tensor is

G
xy|xy
hydro = 1

3
ε̄− iηω + ητΠω

2 − 1
2
κ(ω2 + k2) + . . .

where the background energy density is ε̄ = 3
8
N2
c π

2T 4.
Determine

η =
πN2

cT
3

8
, κ =

N2
cT

2

8
, ητΠ =

N2
c (2− ln 2)T 2

16
.

What about λ1, λ2 and λ3?
Need 3-point stress tensor correlators!
This is an independent check of the values determined by Bhattacharyya, Hubeny,
Minwalla, Rangamani (2007).



Real-time Witten diagrams for the retarded 3-point correlator G xy|yz|xz (x; x1, x2) with
the boundary point x having the largest time; x1 and x2 can have any time order.
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lim
k1→0
k2→0

G
xy|yz|xz
AdS =

N2
c

24π2

[
1

23
− i

ω1 + ω2

22
−

(ω1ω2 + ω2
1 + ω2

2)(ln 2− 1)

22
+ . . .

]

lim
k1→0
k2→0

G
xy|yz|xz
hydro =

N2
c

24π2

[
1
3
ε̄−iη(ω1+ω2)+ητΠ(ω2

1+ω2
2+ω1ω2)− 1

2
κ(ω2

1+ω2
2)−λ1ω1ω2+. . .

]

I λ1: λ1 =
N2
c

26π2 ,⇒ λ1 =
N2
cT

2

16
.

lim
ω1→0
ω2→0

G
xy|ty|tx
AdS =

N2
c

26π2

[
−

1

2
+ (k2

1 + k2
2 ) + . . .

]

lim
ω1→0
ω2→0

G
xy|ty|tx
hydro = − 1

3
ε̄+ 1

2
κ(k2

2 + k2
1 )− 1

4
λ3k1k2 + . . .

I λ3: λ3 = 0.

lim
k1→0
ω2→0

G
xy|yz|tx
AdS =

N2
c

26π2
ω1k2 + . . .

lim
k1→0
ω2→0

G
xy|yz|tx
hydro = (− 1

4
λ2 + 1

2
ητΠ)ω1k2 + . . .

I λ2: λ2 = − N2
c

25π2 ln 2⇒ λ2 = − 1
8
N2
cT

2 ln 2.



Higher Derivative Corrections

The first corrections to low-energy SUGRA arise from the low-energy limit of the
string-string scattering amplitude, for which Nc=∞ corresponds to the tree-level
amplitude.

R → R + 1
8
ζ(3)α′3

[
ChmnkCpmnqCh

rspCq
rsk + 1

2
ChkmnCpqmnCh

rspCq
rsk

]
,



At tree level (appropriate for Nc=∞), the energy dependence of the amplitude is
captured by an overall factor (Green Schwarz (1982), Gross Witten (1986))

T (s, t, u) =
Γ(−α′s/8) Γ(−α′t/8) Γ(−α′u/8)

Γ(1 + α′s/8) Γ(1 + α′t/8) Γ(1 + α′u/8)
,

where s, t, and u are the Mandelstam variables (in 10 dimensions). This is an
“on-shell” result, which means s + t + u = 0.
Green Vanhove (1999):

T =
64

α′3stu
exp

[ ∞∑
n=1

2 ζ(2n + 1)

2n + 1

(
α′

4

)2n+1

(s2n+1 + t2n+1 + u2n+1)

]

=
3

σ3
+ 2 ζ(3) + ζ(5)σ2 + 2

3
ζ2(3)σ3 + 1

2
ζ(7) (σ2)2 + 2

3
ζ(3) ζ(5)σ2σ3 + · · · ,

where

σk ≡
(
α′

4

)k

(sk + tk + uk ).



In general, from the string scattering of higher n-point gravitons one reads off
(Stieberger 2009):

L ∼ R +
[
α′3R4 + α′5D4R4 + α′6D6R4 + · · ·

]
+

[
α′5D2R5 + α′6D4R5 + α′7D6R5 + · · ·

]
+ · · · ,



M. Paulos (2008): Include the 5-form field strengthcontribution. To leading order, the
Weyl4 term gets promoted to

C4 →
1

86016

∑
i

niMi

Tabcdef = iDaFbcdef +
1

16
(FabcmnFdef

mn − 3FabfmnFdec
mn).



Effect on hydrodynamic coefficients

λ ≡ g2
YMNc

AdS/CFT⇐⇒ λ =
R4

4πα′2

Take Nc →∞: string loops are suppressed. The α′ expansion turns into a 1/
√
λ

expansion.

Buchel, Liu, Starinets (2004), Buchel (2008): The Weyl4 term leads to a modification
of the ratio of the shear viscosity hydrodynamic coefficient by entropy density

η

s
=

1

4π
(1 + 15ζ(3)λ−3/2).

Myers, Paulos, Sinha (2008) included the 5-form field strength contribution to the
study of hydrodynamic coefficients.
Their conclusion: no effect on top on the previously reported one.

Saremi, Sohrabi (2011) studied the effect of the Weyl4 term on second order
hydrodynamic coefficients.
In particular, to order λ−3/2, λ3 is no longer zero:

λ3 = −
25

16
ζ(3)λ−3/2N2T 2.



Effect of higher derivative corrections on jet stopping

Suppose we are interested in the jet stopping distance at large, but finite (as opposed
to infinite) coupling. This opens the possibility a new scale might enter which could
invalidate the maximal stopping distance high energy dependence E1/3.
Which of these scenarios is realized?

Recall that we have recast the jet stopping distance computation into the question of
how far is dual gravity wavepacket (massless gauge boson, graviton etc) traveling
before falling into the horizon:



So, we can ask what is the effect of the higher derivatives on the wavepacket’s
trajectory:
i) the background is modified (Klebanov Gubser Tseytlin (1998)); small corrections
suppressed by powers of α′

ii) potentially large corrections to the geodesic equation: the quadratic action for the
gravity fluctutation leads to an equation of motion which departs significantly from
the geodesic equation.

As opposed to the hydrodynamic coefficient corrections, in the jet story there is a
large scale, E , and so small corrections are potentially offset by powers of E .



In more detail

E.g. Take a scalar 5d Kaluza-Klein field originating into the 10d graviton

Φab(x , y) = e iS(x5)e iqµx
µ
Yab(y), µ = 0, 1, 2, 3, a = 6, 7, 8, 9, 10,

qµ = (E , 0, 0, q3) q2 ≡ qµqνη
µν � E2

with Yab some traceless S5 spherical harmonic, and with z ≡ x5.
In the WKB limit, with S(x5) large, the KK mass of φ(x) (which is of order 1) can be
negelected, the covariant derivatives can be replaced by

∇I → iQI ≡ i(qµ, q5 =
∂S

x5
), I = 0, 1, 2, 3, 5,

and the �10dΦ = 0 becomes
QIQJg

IJ = 0.

This leads immediately to the usual geodesic equation.



How is the geodesic derived:
-solve for q5:

q5 =
√
−g55qµqνgµν ;

-substitute into the wavepacket obtained by convolution with an appropriate localizing
Λ(x)

φ(x) =

∫
d4q e iqµx

µ+i
∫
q5dx

5
Λ̃(q);

-use saddle point to evaluate the integral:

0 =
∂

∂qµ
(qµx

µ +

∫
q5dx

5);

-and lastly derive

xµ = −
∫

dx5
∂q5

∂qµ
.

The stopping distance formula is reproduced:

lstop = −
∫ zh

0
dz

dq5

dq3
=

∫ zh

0
dz

√
g55g

33q3

−qµqνgµν
.

=

∫ zh

0
dz

q3

−q2 + z4

z4
h

q2
3

∝
(

E2

−q2

)1/4

We can similarly turn the new dispersion relation (modified by Weyl4 terms) into a
particle trajectory equation.



Including the Weyl4 term contribution, the new dispersion relation is

q5 =

√
g55

(
− qµqνgµν +

εz12q4
3

z8
hL

2

)
with ε = 6ζ(3)λ−3/2.
Define “the importance” of the Weyl4 correction by comparing the size of the
correction

εz12q4
3

z8
hL

2

and of the leading order term

−qµqνgµν = −q2 +
z4

z2
h

q2
3

at a scale

z? ∼ zh

(
q2

E2

)1/4



Importance(C4) ∼

εz10
?

z8
h

E4

−q2
∼

(−q2)3/2

λ3/2ET 2

Importance(C4) ∼
(
λ−1/4`max

`stop

)6

∼ λ−1/2

(
λ−1/6`max

`stop

)6

.

Reminder: lmax ∼ E1/3.



Exponential tails as stand in for stoping distance
The stopping distance depends on the kind of jets we make. However, for computing
the maximal stoping distance we can use (with caveat) as a stand in the scale of the
exponential fall off of the distribution of charge deposition

deposition(x3) ∝ exp(−x3/ltail)

where ltail is determined by the quasinormal modes (poles of the retarded
bulk-to-boundary propagator).
For λ =∞, and for R-charge transverse polarized currents, the result is

ltail '
0.539E1/3

(2πT )4/3
.

E1/3T −4/3(EL)1/4T −1

ch
ar

ge
 d

ep
os

ite
d

exponential
fall−off

∝ (x

x3

)3 −9

Note: q+ ≡ 1
2

(q3 − q0).



The Weyl4 terms yield the following contribution to the quasinormal mode evaluation
of ltail:

ltail = lλ=∞
tail [1 + 82.174λ−3/2 + . . . ]

where

lλ=∞
tail =

0.1704E1/3

(2πT )4/3

for the jet sourced by the traceless hab (these are fluctuation which transform under
84 rep of SU(4) ' SO(6) and source a BPS operator of conformal dimension ∆ = 6
Tr(λλλ̄λ̄).
This result is well defined for jets which travel the farthest, and the first order
correction leads to an increase of the stoping distance.



Conclusion:
Those jets which travel a distance larger than λ−1/6lmax have a well defined series in
1/
√
λ.

For those jets which travel a distance shorter than λ−1/6lmax the expansion in 1/
√
λ

breaks down.

Interesting!!!

The distance λ−1/6lmax ∼ T−4/3

(
E√
λ

)1/3

is the maximal distance traveled by jets

which are holograms of classical strings.(Chesler Jensen Karch Yaffe (2008), Gubser
Gulotta Pufu Rocha (2008))



Why is the α′ expansion breaking down?

If
√
s ≥”Mass of typical string excitations”, such processes can excite on-shell string

states. Then the small momentum expansion (i.e. the higher derivative expanion)
breaks down.
Since

√
s ∝
√
E and the typical string excitation has a mass of the order of

1√
α′ ∝ λ

1/4 this gives E ≥ Tλ1/2, which is precisely the regime we discussed earlier.

Similarly,

are unsupressed.



Tidal stretching of gravitons into classical strings

P.Arnold, P. Szepietowski, D.V., G. Wong (1212.3321)

Despite the fact that we do not know how to quantize the string in a generic curved
background, we still have an analytic handle on the physics we want to study.
To leading order, the graviton follows a classical null geodesic trajectory. The string
excitations about the ground state, the graviton, will probe only the spacetime in the
immediate vicinity of the null geodesic.
But this space is the Penrose limit about the null geodesic and yields a plane wave
metric. =⇒ We know how to quantize strings in plane wave backgrounds!



The Penrose limit
Define an affine parameter u along the null geodesic

du = ω

√
g55 dx

5

(−qαgαβqβ)1/2
,

and distances to the null geodesic

∆xµ ≡ xµ − x̄µ(x5).

Change coordinates from x5 and ∆x0 to u=u(x5) and

v ≡
qµ ∆xµ

E
= −∆x0 +

q3

E
∆x3

The AdS5-Schwarzschild metric becomes

(ds)2 = 2 du dv +
R2

z2

[
(dx1)2 + (dx2)2 +

(E2 − f (q2
3)

ω2
(d∆x3)2

+ 2f
q3

E
dv d∆x3 − f (dv)2

]
,

where f is now implicitly a function of u.
Zooming onto the null geodesic (the Penrose limit):

u → u, v → γ−2 v x i → γ−1x i , γ →∞.



The plane wave metric in Brinkmann coordinates is

ds2
pp = 2 du dv̂ + (dx̂1)2 + (dx̂2)2 + (d∆x̂3)2 + G(u, x̂1, x̂2,∆x̂3) (du)2

with
G(u, x̂1, x̂2,∆x̂3) = G1(u)

[
(x̂1)2 + (x̂2)2

]
+ G3(u) (∆x̂3)2,

G1(u) = G2(u) ' −2
z6

z4
hR

4
,

G3(u) ' 4
z6

z4
hR

4
.



Write now the sigma model action for the bosonic string coordinates in the pp wave
metric by choosing

u ≡ worldsheet time

L =
pu

2

∑
i

∞∑
n=−∞

(
∂τ∆X̂ i

n

∗
∂τ∆X̂ i

n − ω2
i,n(τ) ∆X̂ i

n

∗
∆X̂ i

n

)
where pu = pv ' E ,∆X̂ i =

∑
n ∆X̂ i

ne
inσ and

ω2
i,n(τ) ≡

n2

(α′pu)2
− Gi (τ).

The effect of the curved background: ∆X̂ 1,2 are tidally compressed as one moves
away from the boundary and ∆X̂ 3 are stretched. (Similar to problems studied by
Papadopoulos Russo Tseytlin (2002); also by Kim Lee (2000), Kim Page (2001).)



When tidal forces dominate over the string tension potential:

zn '
(
nz2

hR
2

2α′E

)1/3

= λ1/6

(
nz2

h

2E

)1/3

.

Since the stopping distance is essentially determined by evolution up to z?, only
modes up to

n? ∼
(

lstop

λ−1/6lmax

)−3

become tidally unstable.
[Even so, these modes do not have time to stretch significantly until reaching z = z∗.]
Due to the unstable inverted harmonic oscillator potential at late times the dynamics
becomes classical: we can calculate the prob distribution for each mode X̂ i

n. =⇒ can
calculate the late-time size of the classical string.



Averaging with the late-time probability distribution, the size of the string in the
direction which is tidally stretched is

(δX 3)rms ' 0.8660λ−1/4lstop ln1/2

(
λ−1/6lmax

lstop

)
,

The prefactor λ−1/4 is essentially coming from the proper size of the initial quanta,√
α′.

The conclusion of this story:
-the quantum string (graviton) is stretched into a classical closed string when
lstop � λ−1/6lmax .



What happens if the Penrose limit breaks down (i.e. if the number of modes exicted
n? becomes exponentially big s.t. to compensate for the smalleness of the prefactor
λ−1/4)?
The string becomes tidally stretched all the way to the horizon:

This bears a striking similarity to the folded back strings dual to gluons considered by
Gubser Gulotta Pufu and Rocha (2008):



Conclusion

A mystery persists: We expected to find some interpolating function F (λ) such that

lstop = EF (λ), with F (λ = 0) = 1/2 and F (λ =∞) =
1

3

We expected that expansion around strong coupling could be of the form

F (λ) =
1

3
+

∑
n=3,4...

cnλ
−n/2

which means that

lstop = e ln(E)×F (λ) = E1/3(1 + # ln(E)λ−3/2 + . . . )

However, in our analysis we found no trace of a ln(E) term!


