
Black Hole Solutions in Massive Gravity

Mikhail S. Volkov

LMPT, University of Tours, FRANCE

7th Aegean Summer School, Paros, 25th September 2013

Mikhail S. Volkov Black Hole Solutions in Massive Gravity



Contents

Part I: Black holes in massive gravity theories

Part II: Energy in the ghost-free massive gravity



Part I: Black holes in massive gravity



Black holes and no-hair conjecture



No-hair conjecture

All stationary black holes are completely characterized by their
mass, angular momenum, and electric charge measurable from
infinity.

They cannot support hair= external fields distributed close to
the horizon but not seen from infinity /Wheeler 1969/

Logic: only the exact local symmetries (Lorentz, U(1)) can survive
in the gravitational collapse. Associated to them global charges
(mass, etc.) remain attached to the black hole. All other
symmetries will be broken ⇒ no associated charges ⇒ no extra
black hole parameters. Everything that can be radiated or
absorbed will be radiated and absorbed. Exact charges can be
neither swallowed nor radiated away.

Black holes have no hair



Evidence for ho-hair

Uniqueness theorems: all electrovacuum black holes are
Kerr-Newman /Israel ’68/, /Carter ’73/, /Mazur ’82/ ... .

No-hair theorems for black holes coupled to other fields

Gµν = 8πGTµν(Ψ), �Ψ = V (Ψ)

Ψ as a scalar, spinor, massive vector etc. /Bekenstein ’72/.
If Ψ 6= 0 at the horizon, then it diverges ⇒ singular horizon
⇒ no black holes other than Kerr-Newman.

No black holes with massive hair.



First evidence against ho-hair

Local SU(2) is also an exact symmetry – can one have black holes
with Yang-Mills fields ?

U(1)∈SU(2) ⇒ all electrovacuum Kerr-Newman black holes
are contained in the Einstein-Yang-Mills theory /Yasskin ’75/.

Theory also admits other black holes with Yang-Mills field
∼ 1/r3 at large r ⇒ no charges. They are labeled by the
horizon radius rH and by the number n = 1, 2, . . . of nodes of
the Yang-Mills field for r > rH /M.S.V., Gal’tsov ’89/

⇒ first example of hairy black hoes



Hairy black holes

In systems with Yang-Mills coupled to other fields: black holes
inside magnetic monopoles, sphalerons, Skyrmions, etc.
/M.S.V., Gal’tsov Phys.Rept. 319 (1999) 1/

In systems with stringy-inspired (Gauss-Bonnet, axion,
dilaton, fluxes etc. fields). In D > 4. In non-asymptotically
flat systems (AdS) /many papers after the year 2000/

Nowadays hairy black holes are common in physics.
They usually support massless hair.

Typically they are either unstable or microscopically small ⇒ the
no-hair conjecture holds for astrophysical black holes.

What about black holes in massive gravity ?



Theories with massive gravitons



The ghost-free bigravity
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Flat space is the solution if only β0 = 4c3 + c4 − 6,
β1 = 3− 3c3 − c4, β2 = 2c3 + c4 − 1, β3 = −(c3 + c4),
β4 = c4. Two gravitons, propagates 7 degrees of freedom



Field equations
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For η → 0 one can set fµν = ηµν and the theory reduces to the
dRGT massive gravity theory with one massive graviton.



Black hole solutions



Black holes with non-bidiagonal metrics
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For η→ 0 one has Λf → 0, fµν → ηµν , which gives black holes in
dRGT massive gravity. There are no asymptotically flat black holes
in the theory. A possible explanation: black holes in massive
gravity are non-stationary. For M = 0 ⇒ self-accelerated
cosmologies (a large family of solutions /M.V. QCG 30 2013/).



Hairy black holes with bidiagonal metrics

ds2g = Q2dt2 − dr2

N2
− r2dΩ2, ds2f = A2dt2 − U ′2

Y 2
dr2 − U2dΩ2

Q,N,Y ,U,A are 5 functions of r , they fulfill 5 equations
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/M.S.V.Phys.Rev. D85 (2012) 124043/



Simplest solutions

fµν = C 2gµν

A4C
4 + A3C

3 + A2C
2 + A1C + A0 = 0 (∗)

Gµ
ν + Λg (C ) = 0

There are 4 roots of (∗), C = {Ck}.
C = 1 is a root, Λ(C ) = 0 ⇒ Schwarzschild black holes
For other roots, Λ(C ) 6= 0 ⇒ Schwarzschild-dS,AdS

The idea is to deform these solutions by changing their horizon
boundary conditions.



Event horizon at r = rh

Local solutions near the horizon (N2 = g rr , Y 2 = f rr )

N2 =
∑

n≥1

an(r−rh)
n, Y 2 =

∑

n≥1

bn(r−rh)
n, U = urh+

∑

n≥1

cn(r−rh)
n,

contain one free parameter u=U(rh)/rh, the ratio of the horizon
radius measured by fµν to that measured by gµν .

Horizon is common for both metrics

Horizon temperatures and surface gravities are the same with
respect to both metrics /Deffayet, Jackobson ’12/

For u=Ck (root of the algebraic equation) one obtains the
Schwarzschild-(A)dS black holes.
For u 6= Ck one obtains more general solutions.



Deforming Schwarzschild-AdS

Deformations stay close to the horizon and tend to zero for
r → ∞. Solutions approach AdS for large r .
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N0,Q0,Y0, a0 correspond to the background AdS.
Hair is localized close to horizon ⇒ hairy black holes in AdS



Deforming Schwarzschild-dS
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Deformations become singular at a finite distance from the
horizon. Solutions are compact and singular.



Deforming Schwarzschild
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Deformations are small close to horizon but then grow and change
completely the asymptotic behavior at r → ∞.

The only asymptotically flat solution one finds is pure
Schwarzschild.



Regular stars and Vainstein mechanism
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Are there other asymptotically flat black holes ?

There are 3 first coupled order equations for N,U,Y . At the
horizon the solutions depend on one parameter u. At infinity, if
they are asymptotically flat, they are Yukawa + Newton,

N = 1− C1 sin
2 η

r
+ C2 cos

2 η
mr + 1

r
e−mr ,

U = r + C2
m2r2 +mr + 1

m2r2
e−mr ,

Y = 1− C1 sin
2 η

r
− C2 sin2 η

1 +mr

r
e−mr

⇒ two other parameters C1,C2. One can try to adjust {u,C1,C2}
such that {N,U,Y } fulfill correct boundary conditions at the
horizon and infinity ⇒ 3 conditions for 3 free parameters ⇒
solutions can only comprise a discrete set. One cannot get them
deforming Schwarzschild ⇒ a good initial guess for {u,C1,C2} is
needed.



Black hole stability



Perturbing the Schwarzschild black hole

gµν = gBH

µν + δgµν , fµν = gBH

µν + δfµν

Linear combinations of δgµν and fµν describe the massive and
massless gravitons. The massive graviton fulfills

�hµν + 2Rµανβh
αβ = m2hµν (∗)

∇µhµν = hµµ = 0

Eq.(∗) is exactly the same as the one describing the
Gregory-Laflamme instability. With hµν = e iωtHµν(r , ϑ, ϕ) there
are bound state solutions with ω2 < 0 if

m rH =
black hole radius

graviton’s Compton length
< 0.86

⇒ small black holes are unstable. /Babichev,Fabbri ’13/
/Brito,Cardoso,Pani ’13/.
m rH = 0.86 ⇒ zero mode = bound state with ω = 0.



Hairy black holes

Zero mode for m rH = 0.86 provides a perturbative description of a
new solution branch. Starting from it one can iteratively decrease
rH , which leads to fully non-linear stationary black hole solutions
different from Schwarzschild = asymptotically flat hairy black holes
/Brito,Cardoso,Pani arXiv:1309.0818/.

For given parameters βk and for m rH < 0.86 one finds 2 different
asymptotically flat solutions: the Schwarzschild black hole and the
hairy black hole.

It seems that hairy black holes can exist also for small values of rH
if only c3 = −c4 = 2.



Summary of Part I

In dRGT massive gravity there are only Schwarzschild-dS
black holes, no asymptotically flat solutions, perhaps because
black holes should be time-dependent.

In bigravity there is a continuous family of asymptotically AdS
hairy black holes.

In bigravity there are also asymptotically flat black holes:
Schwarzschild and its hairy counterpart with very large size.
Small hairy black holes exist only for special values of the
theory parameters.

In bigravity there are also Schwarzschild-dS black holes, whose
their hairy analogs are generically singular. It is not known if
some special solutions of this type could be regular.



Part II: Energy in the ghost-free
massive gravity



ADM formulation of GR

L =
√−gR

3 + 1 decomposition

ds2 = −N2dt2 + hik(dx
i + N idt)(dxk + Nkdt)

Momenta

πik =
∂L

∂ḣik
=

√
h(K ik − Khik),

∂L

∂Ṅµ

= 0

here Nµ = (N,Nk ). Hamiltonian

H = πik ḣik − L = NµHµ

with

H0 = −
√
hR (3) +

1√
h
(πikπik −

1

2
π2), Hk = −2∇(3)

i hik

Nµ are non-dynamical, phase space is spanned by 12 (πik , hik).



Constraints

∂H

∂Nµ
= Hµ(π

ik , hik) = 0 4 constraints

Since
{Hµ,Hν} ∼ Hα

they are first class and generate gauge symmetries ⇒ one can
impose 4 gauge condition. There remain

12− 4− 4 = 4 = 2× (2 DoF)

independent phase space variables describing 2 graviton
polarizations.

Energy is zero on the constraint surface,

H = NµHµ = 0



Generic massive gravity

Hamiltonian

H = NµHµ +m2V (Nα, πik , hik) (∗)

Varying with respect to Nµ gives

∂H

∂Nµ
= Hµ(π

ik , hik) +m2∂V (Nα, πik , hik)

∂Nµ
= 0

These are not constraints but equations for Nµ whose solution is
Nµ(πik , hik). No constraints ⇒ all 12 phase space variables are
independent ⇒ 6 = 5 + 1 degrees of freedom.

Inserting Nµ(πik , hik) to (∗) gives a non-positive-definite quadratic
form in πik ⇒ energy is non-zero and is unbounded from below.
Among the 6 degrees of freedom 5 correspond to graviton
polarizations and 1 is a BD ghost which should be excluded.



dRGT massive gravity

V is chosen such that the equations

∂H

∂Nµ
= Hµ(π

ik , hik) +m2∂V (Nα, πik , hik)

∂Nµ
= 0

determine only Nk(πik , hik) while N remains free. H becomes

H = E(πik , hik) + NC (πik , hik)

Varying with respect to N gives C = 0 while dC/dt = 0 gives a
secondary constraint C2 = 0. The two constraints eliminate one
DoF. The remaining 5 DoF are healthy in the decoupling limit and
in the flat space limit. The energy is

H = E(πik , hik)

where (πik , hik) should fulfill the conditions

C (πik , hik) = 0, C2(π
ik , hik) = 0.

Is H positive ?



Spherical symmetry

ds2g = −N2dt2 +
1

∆2
(dr + Nrdt)2 + R2(dϑ2 + sin2 ϑdϕ2)

ds2f = −dt2 + dr2 + r2(dϑ2 + sin2 ϑdϕ2)

where N,Nr ,∆,R depend on t, r . H = H(π∆, πR ,∆,R ,N,Nr , r):

H = NH0 + NrHr +m2V
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∆3

4R2
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2R
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∆
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∆ + 2∆′π∆ + R ′πR

V =
N

∆
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∆
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√

(N∆+ 1)2 − (Nr )2 + R2P2

Pm = βm + 2βm+1
r
R
+ βm+2

r2

R2 (m = 0, 1, 2). Phase space is 4D.
If m = 0 ⇒ 2 constraints H0 = Hr = 0 ⇒ 4− 2− 2 = 0 DoF.
If m 6= 0 and generic V ⇒ 2 DoF=scalar graviton+ghost



Excluding N
r

Varying with respect to Nr gives (∀βk)

Nr = (N∆+ 1)/

√

1 + (m2
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Inserting back to H gives H = E(p, q) + N C (p, q) with
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)

The kinetic part of E is a non-positive-definite quadratic form in
π∆, πR . However, π∆, πR are not arbitrary, they should fulfill
C = 0 and also the secondary constraint

C2 = {C ,

∫

H dr}; {C (r1),C (r2)} = 0 ⇒ C2 = {C ,

∫

E dr}



Second constraint

C2 = ∆H′
r +

H0

∆2
∂π∆
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Y
∂π∆

(H0) +
∆Hr

Y
H′

0

+ m2

(

2P0R
2

∆3
+ ∂R(R

2P2 −
R2P0

∆2
) ∂πR

)

H0

− m2Hr

Y

(

2∆′

∆
R2P0 − (R2P0)

′ − R2∂rP0

)

+
m4

2∆Y
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with Y =
√

∆2H2
r + (m2R2P1)2. Requiring further that dC2

dt
= 0

gives an equation for N.

For flat space values, ∆ = 1, R = r , π∆ = πR = 0 one has

C = C2 = E = 0 if βk = βk(c3, c4)



Exciting the flat space

Let ∆ = 1, R = r , π∆ = π∆(r), πR = πR(r)

With z = π2
∆/r both constraints are fulfilled if z fulfills

4r3m2(z − 4r)z ′′ + 4m6r6z − 4r3m4(z2 − r2z ′ + 3rz)

− m2r2(16r + 11z)z ′ − z ′2z − 4zz ′2

− (4m4r4 − 8z ′ − 7m2rz)Q = 0, (∗)

with Q = ±
√
4m4r4z2 + 8m2r3z ′z + z ′2z and if

πR =
4m2r3z + 4rz ′ + 4rz − z2 + 2rQ

2
√
rz(z − 4r)

.

The energy is

E = −2m2r2z + 2rz ′ − Q

z − 4r

Eq.(∗) has singular points at r = 0,∞ and r = z/4 (movable).
Near a regular r = r0 the solution is determined by z(r0), z

′(r0).



Example solution

-200

-100

 0

 100

 200

 300

 12  14  16  18  20  22  24  26

r

z = π2
∆/r

πR

E

Solution on a compact interval, E is everywhere negative,
E =

∫

Edr = −∞. Perhaps one can have E > 0 for globally
regular solutions on r ∈ [0,∞), but it is unclear if they exist.



Summary of Part II

The dRGT massive gravity contains two constraints which
remove one degree of freedom ⇒ only 5 degrees propagate.

However, the energy can be negative and infinite ⇒ it is
unclear if it is the ghost and not something else which is
removed. Perhaps there are several ghosts, not seen in the DL.

This raises concerns about stability of the theory.

There are also positive energy solutions of the constraint
equations.

It possible that the positive and negative energy solutions
belong to disjoint sectors, but more analysis is needed to
claim this.


