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What are the origins of early time (inflation) and late time	

(dark energy) cosmic accelerations?	 

1.  For inflation, the exact scale-invariant spectrum is ruled out at	

      more than 5sigma C.L. from the Planck data.	 

This means that inflation should have a dynamics to 	

end the epoch of cosmic acceleration.	 

2.  The dark energy equation of state is constrained to be 	 

(Planck +BAO)	 

We do not have the strong evidence for dynamical dark 	

energy, but the cosmological constant has a mild tension 	

with the recent data. 	 



l  “Old’’ inflation	 

         Inflationary models 	


	 

Many inflationary models have been proposed so far.	


l  Curvature inflation	 
The higher-order curvature term leads to inflation.	 

f(R) = R + R2/(6M2)

Kazanas (1980), Sato (1981), Guth (1981) 	

 	 

Inflation occurs due to the first-order phase transition of a vacuum.	


Lagrangian:	 Starobinsky (1980)	 

l  Slow-roll inflation	 

New, chaotic, power-law, hybrid, natural, extra-natural, eternal, D-term,  	

F-term, brane, oscillating, tachyon, hill-top, KKLMMT, … (too many)	


l  K-inflation	 

Inflation is driven by the potential energy of a scalar field.	


Inflation is driven by the kinetic energy of a scalar field.	

	 Ghost condensate, DBI, Galileon,…	 

l  Inflation in extended theories of gravity.	 
Brans-Dicke, non-minimal couplings, derivative couplings,…. 	 

(first model of inflation)	 



      Dark energy models 	 

1. Modified matter models 	 

Quintessence: Acceleration driven by the potential energy V (�) of a field �

K-essence: Acceleration driven by the kinetic energy X of a field �

2. Modified gravity models 	 
f(R) gravity: The Lagrangian is the function of a Ricci scalar R.

DGP model: Acceleration by the gravitational leakage to extra dimensions.
Galileon gravity: The Lagrangian is constructed to satisfy the Galilean

symmetry ⇥µ�� ⇥µ� + bµ in the flat spacetime.
Such as	 

e.g. Dilatonic ghost condensate:	

       	 K = �X + ce�⇥X2

Slow-roll inflation	 

K-inflation	 

Curvature inflation	 

Galileon inflation	 

Higgs inflation	 



Most general single-field scalar-tensor theorr with 	

second-order equations of motion: Horndeski’s theory	 

L4 = G4(�, X) R + G4,X [(��)2 � (⇥µ⇥��) (⇥µ⇥��)]
L5 = G5(�, X) Gµ⇤ (⇥µ⇥⇤�)� 1

6
G5,X [(��)3 � 3(��) (⇥µ⇥⇤�) (⇥µ⇥⇤�) + 2(⇥µ⇥��) (⇥�⇥⇥�) (⇥⇥⇥µ�)]

Horndeski (1974) 	

Deffayet et al (2011)	

Charmousis et al (2011)	

Kobayashi et al (2011)	 

This action covers most of the single-field inflation and dark energy models proposed in literature. 	

 	 

l   Quintessence and K-essence: 	 

l  Galileon:	 

l   LCDM: 	 

l   f(R) gravity and scalar-tensor gravity: 	 

l  Gauss-Bonnet coupling	 :	 

S =

Z
d4x
⇥
�g [G2(�, X)�G3(�, X)⇤� + L4 + L5]

G2 = ��, G3 = 0, G4 = M2
pl/2, G5 = 0

G2 = G2(�, X), G3 = 0, G4 = M2
pl/2, G5 = 0

G2 = �c2X, G3 = c3X/M3, G4 = M2
pl/2�c4X

2/M6, G5 = 3c5X
2/M9

G2 = 8�(4)(⇥)X2(3� ln X), G3 = 4�(3)(⇥)X(7� 3 ln X)



Horndeski’s paper in 1973	 
At the age of 25 when he was the PhD student of Lovelock, 	

he wrote this valuable paper.	

	




Before he became an artist, Mr. Horndeski was a 
tenured professor of applied mathematics at the 
University of Waterloo in Ontario, Canada. 	

While on sabbatical in the Netherlands in 1981, 	

he saw a van Gogh exhibition and was deeply moved.	

	

"I was never that interested in art," he states. 	

"Then I stumbled onto van Gogh. I never knew art 
could be like that. I had always thought of it as very 
representational and not very interesting. But then I 
thought, 'This is something I eventually want to do.' 	

When I saw van Gogh I was sure I could paint."	 

Horndeski became an artist in 1981 when he saw Gogh’s arts!	 
	 

Horndeski was born in 1948 and 	

he got the PhD degree in 1973.	 

Horndeski: The First Three Years as a physicist	

                    Paros (Greece), September 23-28, 2013	




Relation between Horndeski’s theory and effective field theory 	

of inflation and dark energy	 

S =

Z
d

4
x

⇥
�g L(N, K,S,R,Z; t)

The Horndeski’s theory belongs to a sub-class of  effective field theory 	

described by the action 	 

where the 3+1 splitting in unitary gauge is performed with the ADM metric  	 
ds

2 = �N

2
dt

2 + hij

�
dx

i + N

i
dt

� �
dx

j + N

j
dt

�

The Lagrangian depends on the Lapse N	

as well as the 4 scalar quantities	 

K � Kµ
µ , S � Kµ�K

µ� ,

Extrinsic curvature: 	 



Expansion of the Lagrangian up to second order in the 	

perturbations on the flat cosmological background	 
L = L̄� Ḟ � 3HF + (Ḟ + LN)�N + LR�R

+

✓
1

2
LNN � Ḟ

◆
�N2 + LNR�N�R+ · · · .

Up to first order	 

Second order terms	 

The Lagrangian up to first order gives rise to the background equations 	 

L̄� Ḟ � 3HF = 0, Ḟ + LN = 0

where	 F � 2HLS + LK

We describe the spatial metric in terms of curvature perturbations, as	 

hij = a2(t)e2��ij

Horndeski’s theory 	

should satisfy these	

conditions.	 

Gleyzes et al	

(2013)	 



Second order action for cosmological perturbations	


L2 = a3Q


�̇2 � c2

s

(⇥�i)2

a2

�

where	 
Q = (LN + LNN/2� 3HB � 6H2LS)D2 + 6LS

Qc2
s = 2


1

a

d

dt
(aM)� LR

�

and	 

The conditions for the avoidance of scalar ghosts and Laplacian instabilities are	 

Q > 0, c2
s > 0

The curvature perturbation obeys the second order equation of motion	 

d

dt
(a3Q�̇)� aQc2

s⇥
2� = 0



Effective field theory (EFF) language	 

where	 

The conditions for the absence of higher spatial derivatives translate to	 

Under these conditions the EFF Lagrangian with second order equations 	

of motion at linear order reads	 

where	 

This should cover	

the Horndeski’s	

Lagrangian.	 

Weinberg (2008)	 

Cheung et al (2008)	 



In fact, the Horndeski’s theory can be accommodated in the 	

EFF Lagrangian 	 

with the additional condition 	 

The Horndeski’s theory automatically satisfies the other conditions 	

for the avoidance of higher spatial derivatives:	 



Dictionary between EFF and Horndeski’s theories	

In unitary gauge where the uniform field  hypersurfaces are constant time hypersurfaces,  	

the unit vector orthogonal to hypersurfaces is 	 

where	 

⇤� = �
p

2XK +
�;µ

2

X;µ

X

For example, one of the Horndeski’s Lagrangian  	 

Gleyzes et al	

(2013)	 
	 

L4 = G4(�, X)R + G4,X [(⇤�)2 � �;µ��;µ� ]

can be expressed as 	 
L4 = G4R+ (2XG4,X �G4)(K

2 � S)� 2
⇥

2XG4,�K

From this we can evaluate the EFF parameters like	 

X = ��;µ�;µ/2 = �̇2/(2N2)

m2
4 = m̃2

4 = �2XG4,X



In summary, the Horndeski’s theory corresponds to the EFF Lagrangian  	 

with the functions	 
M2

⇤ f = 2G4 � 2XG5,� � 2XG5,X �̈

� = XG2,X �G2 + (�̈ + 3H�̇)XG3,X + · · ·

c = XG2,X � (�̈� 3H�̇)XG3,X � 2XG3,� + · · ·

M4
2 = X2G2,XX +

1

2
(�̈ + 3H�̇)XG3,X + 3HX2G3,XX �̇�X2G3,�X + · · ·

m2
4 = m̃2

4 = �2XG4,X + 2XG5,� �HXG5,X �̇ + XG5,X �̈

m3
3 = 2�̇XG3,X + 2�̇�̈G4,X + · · ·



Background equations of motion	


� + c = 3M2
⇤ (fH2 + ḟH)� �m

�� c = M2
⇤ (2fḢ + 3fH2 + 2ḟH + f̈)� Pm

3M2
plH

2 = �DE + �m

M2
pl(2Ḣ + 3H2) = �PDE � Pm

�DE = 3H2(M2
pl �M2

⇤ f)� 3M2
⇤ ḟH + c + �

PDE = �(2Ḣ + 3H2)(M2
pl �M2

⇤ f) + M2
⇤ (2Hḟ + f̈) + c� �

Satisfying the continuity equation	 

�̇DE + 3H(�DE + PDE) = 0

wDE =
PDE

�DE
= �1�

2Ḣ(M2
pl �M2

⇤ f)�M2
⇤ (f̈ �Hḟ)� 2c

3H2(M2
pl �M2

⇤ f)� 3M2
⇤ ḟH + c + �

In modified gravity one can realize	

the phantom  equation of state without 	

having ghosts and instabilities.	 



Dark energy equation of state: modified gravity models	 

(1) f(R) gravity	 
Hu and Sawicki (2007)	 

(2) Covariant Galileons	 

G2 = �c2X, G3 = c3X/M3

G4 = M2
pl � c4X

2/M6, G5 = 3c5X
2/M9

Deffayet et al (2009)	 

Late-time 	

tracking	 

Tracker	 
�̇ � H�1

 	 



Discrimination between dark energy models from 	

cosmological perturbations	 

The dark energy models can be further distinguished from the observations 	

of large-scale structure, weak lensing, CMB (ISW effect) etc.	 

Perturbed metric:	 

LSS	 CMB	 Weak lensing 	 

ds2 = �(1 + 2⇥)dt2 + a2(t)(1 + 2�)�ijdxidxj

Non-relativistic matter:  	 

with the four velocity	 

(Newtonian gauge)	 



Matter perturbations in the Horndeski’s theory	 

�̈m + 2H �̇m +
k2

a2
� = 3

�
Ï + 2Hİ

�
where	 

The two gravitational potentials � and �⇥ are generally di⇤erent:
B6� + B8⇥ = �B7�⇥

B6 = 4[G4 �X(�̈G5,X + G5,�)]
B8 = 4[G4 � 2XG4,X �X(H�̇ G5,X �G5,�)]
B7 = �4G4,XH�̇� 4(G4,X + 2XG4,XX )�̈ + 4 G4,� � 8XG4,�X + 4(G5,� + XG5,�X)�̈

�4H[(G5,X + XG5,XX )�̈�G5,� + XG5,�X ]�̇ + 4X[G5,�� � (H2 + Ḣ)G5,X ]

where	 

In GR (G4 = M2
pl/2) one has B6 = B8 = 2M2

pl and B7 = 0. � = �⇥

There are other perturbation equations.	

See De Felice, Kobayashi, S.T. (2011).	 

The growth rate of matter perturbations	

is related with the peculiar velocity.	 

We introduce the gauge-invariant density contrast:	 



Quasi-static approximation on sub-horizon scales	 
For the modes deep inside the Hubble radius (k � aH) we can employ
the quasi-static approximation under which the dominant terms are
those including k2/a2, �m, and M2 � �K,��.

�̈m + 2H �̇m +
k2

a2
� � 0 and	 

k2

a2
� � �4⇥Ge�⇤m�m

where the e�ective gravitational coupling Ge� is

Ge� =
2M2

pl[(B6D9 �B2
7) (k/a)2 �B6M2]

(A2
6B6 + B2

8D9 � 2A6B7B8) (k/a)2 �B2
8M2

G

where	 
A6 = �2XG3,X � 4H (G4,X + 2XG4,XX ) �̇ + 2G4,� + 4XG4,�X

+4H (G5,� + XG5,�X) �̇� 2H2X (3G5,X + 2XG5,XX )

D9 = �K,X + derivative terms of G3, G4, G5

In GR, G4 = M2
pl/2, B6 = B8 = 2M2

pl, A6 = B7 = 0, D9 = �K,X Ge� = G

In the massive limit (M2 ��) with B6 � B8 � 2M2
pl we also have Ge� � G

In the massless limit M2 � 0 we have

Ge� =
2M2

pl(B6D9 �B2
7)

A2
6B6 + B2

8D9 � 2A6B7B8
G

The effect of modified gravity	

manifests itself.	 

De Felice, Kobayashi, 	

S.T. (2011).	 

See e.g.,  Starobinsky (1998), 	

                Boisseau et al (2000)	 

e.g., 	 

Schematically	

	 Ge� =

a0(k/a)2 + a1

b0(k/a)2 + b1



More general theories based on the EFF of dark energy  	 

This gives the second-order	

equations at linear order.	 

plus	 

This gives the spatial derivatives higher	

than second order.	 

In the presence of non-relativistic matter, the effective gravitational coupling can 	

be schematically expressed as 	 

Ge� =
a�2(k/a)�2 + a0 + a2(k/a)2 + a4(k/a)4

b�2(k/a)�2 + b0 + b2(k/a)2

Gleyzes et al (2013)	 
	 



   Constraints from large-scale structure 	 
	 

The galaxy power spectrum in the redshift space can be modelled as	 

The real space	

galaxy power	

spectrum	 

The cross power	

spectrum	 

The real space	

velocity power	

spectrum	 



Perturbation growth in two modified gravity models	 

(1) f(R) gravity	 (2) Covariant Galileons	 
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2/M9

 	 

Neveu et al (2013)	 

Okada, Totani, S.T. (2012)	 



Cosmological perturbations in general single-field inflation	 

L2 = a3Q


�̇2 � c2

s

(⇥�i)2

a2

�

In either EFF of inflation without higher derivatives or in Horndeski’s theory, 	

the second-order action for perturbations is  	 

d

dt
(a3Q�̇)� aQc2

s⇥
2� = 0

The curvature perturbation is conserved after the Hubble radius crossing, by 
which we obtain the scalar power spectrum 	 

P� =
H2

8�2Qc3
s

ns � 1 =
d lnP�

d ln k

����
csk=aH

The scalar spectral index:	 

Lt =
X

�=+,⇥

a3Qt


ḣ2

� �
c2
t

a2
(�h�)

2

�
The second-order tensor Lagrangian is	 

in the language 	

of EFF	 

The tensor-to-scalar ratio:	 r =
Pt

P�
� 16cs�sPt =

H2

2�2Qtc3
t

Qt =
1

4
(M2

⇤ f + 2m2
4), c2

t =
M2

⇤ f

M2
⇤ f + 2m2

4

where	 �s =
Qc2

s

M2
⇤ f + 2m2

4



Planck constraints on potential-driven slow-roll inflation �
S.T., J. Ohashi, S. Kuroyanagi,  A. De Felice (2013)	 

Potential−driven slow−roll inflation

ns
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r = 16�V

where	 



               Higgs inflation	 

There are several ways to accommodate Higgs for inflation.	 

Bezrukov and Shaposhnikov (2008)	 

Nakayama and Takahashi (2010),	

De Felice, S.T., Elliston, Tavakol (2011)	 

	 

Germani and Keghagias (2010)	


Kamada, Kobayashi, 	

Yamaguchi, Yokoyama (2010)	 



Planck constraints on Higgs inflation	 

Non−minimally coupled models
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L = X � �⇤n/n� ⇥⇤2R/2 L = X � �⇥n/n + Galileon terms



     Scalar non-Gaussianities	 

Planck constraints on the nonlinear estimator	 

1. Local shape	 f local
NL = 2.7± 5.8

k2

k3

In the Horndeski’s theory the local nonlinear parameter is 	 
Consistent with the Planck data as 	

long as the slow-roll conditions	

are satisfied.	 

k1

2. Equilateral shape	 f equil
NL = �42± 75 k1

k2

k3

The three-point correlation functions of scalar no-Gaussainities in the Horndeski’s theory	

or the EFF of inflation have been also derived.	 

�⇥(k1)⇥(k2)⇥(k3)⇥ = (2⇤)7�(3)(k1 + k2 + k3)(P�)
2A�(k1, k2, k3)Q3

i=1 k3
i

fNL =
10

3

A�P3
i=1 k3

i



Planck constraints on power-law k-inflation	 
The power-law inflation can be realized by the Lagrangian  	 

(dilatonic ghost condensate)	 

In this case the observables are	


0.02 0.04 0.06 0.08 0.1

cs >0.079

cs

Generally the k-inflation models 	

can be tightly constrained from 
the equilateral type NG. 	 

Constraints from NG	 



  Summary 	 
1. We have shown the correspondence between the Horndenski’s theory 

and effective field theory of inflation and dark energy. 	 

2. The full linear perturbation equations including higher spatial derivatives	

    were recently derived. 	 

3. Dark energy models such as f(R) gravity and Galileons can be tightly 	

    constrained from the redshift-space distortions in the galaxy surveys.  	 

4. Using the recent Planck data, our general formulas have been used to	

    place observational constraints on many single-field inflationary models.	 

The Vainshtein screening in the Horndeski’s theory was studied by Kase and me	

(also by Kimura et al).	 

Please listen to the Kase’s talk.	 


