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What are the origins of early time (inflation) and late time
(dark energy) cosmic accelerations?

1. For inflation, the exact scale-invariant spectrum is ruled out at
more than 5sigma C.L. from the Planck data.

This means that inflation should have a dynamics to
end the epoch of cosmic acceleration.

2. The dark energy equation of state is constrained to be
w=—1.131013 (Planck +BAO)

m) We donot have the strong evidence for dynamical dark
energy, but the cosmological constant has a mild tension
with the recent data.
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Inflationary models
Many inflationary models have been proposed so far.

® Curvature inflation (first model of inflation)

The higher-order curvature term leads to inflation.
Lagrangian: f(R) = R+ R*/(6M?) Starobinsky (1980)

® <“Old” inflation

Inflation occurs due to the first-order phase transition of a vacuum.
Kazanas (1980), Sato (1981), Guth (1981)

@® Slow-roll inflation  Inflation is driven by the potential energy of a scalar field.

New, chaotic, power-law, hybrid, natural, extra-natural, eternal, D-term,
F-term, brane, oscillating, tachyon, hill-top, KKLMMT, ... (too many)

_ Inflation is driven by the kinetic energy of a scalar field.

Ghost condensate, DBI, Galileon,...

@ Inflation in extended theories of gravity.

Brans-Dicke, non-minimal couplings, derivative couplings.,....
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Dark energy models

1. Modified matter models

@ Quintessence: Acceleration driven by the potential energy V(¢) of a field ¢
Slow-roll inflation L=X — V(gb) X =—g"0,00,¢/2

@ K-essence: Acceleration driven by the kinetic energy X of a field ¢
K-inflation L=K(¢p,X) e.g. Dilatonic ghost condensate:

K=—-X +ce’X?
2. Modified gravity models

@ f (RC}u gravity: The Lagrangian is the function of a Ricci scalar R.

rvature inflation

@ Scalar-tensor gravity: £ = F(¢)R + K(¢, X)

Higgs inflation
@ DGP model: Acceleration by the gravitational leakage to extra dimensions.

@ Galileon gravity: The Lagrangian is constructed to satisfy the Galilean

Galileon inflation symmetry 0,¢ — 0,,¢ + b, in the flat spacetime.
Suchas XUl

® Massive gravity
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Most general single-field scalar-tensor theorr with
second-order equations of motion: Horndeski’s theory

Horndeski (1974)
S = /d4x\/—_g[G2(gb,X) . Gg(gb,X)[lqb 4+ £4 4 £5] Deffayet et al (2011)

Charmousis et al (2011)
Kobayashi et al (2011)

Ly =Gs(¢, X) R+ Gyx [(O¢)° — (V,V.u0) (VFVY9)]
£ = G5(6,X) Gy (V#979) ~ £G5,x[(06)° = 3(036) (Vu Vo) (V#976) + 2(V4V0) (VV56) (V7V,16)]

This action covers most of the single-field inflation and dark energy models proposed in literature.
® LCDM: Go=—-A, G3=0, Gi=M3/2, G5=0
® Quintessence and K-essence: G»=Gy(¢,X), G3=0, Gi=M}/2, G5=
® f(R) gravity and scalar-tensor gravity: G, = F(¢), Gz =0, G5=0
® Galileon: Gy = —,X, Gy = X/M°, Gy=M23/2—ciX? /M, G5 =3c;X?/M°

® Gauss-Bonnet coupling ¢(¢)G
Gy =8W () X33 -1nX), G5=44(¢)X(7—3InX)
Gy =42 (9)X(2-InX), Gs=-4M(p)InX
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Horndeski’s paper in 1973

At the age of 25 when he was the PhD student of Lovelock,
he wrote this valuable paper.
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Abstract

Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor,
a scalar field and their derivatives of arbitrary order are considered. The most general
second-order Euler-Lagrange tensors derivable from such a Lagrangian in a four-
dimensional space are constructed, and it is shown that these Euler-Lagrange tensors
may be obtained from a Lagrangian which is at most of second order in the derivatives
of the field functions.



Horndeski became an artist in 1981 when he saw Gogh’s arts!

Before he became an artist, Mr. Horndeski was a
tenured professor of applied mathematics at the
University of Waterloo in Ontario, Canada.

While on sabbatical in the Netherlands in 1981,
he saw a van Gogh exhibition and was deeply moved.

Gregory Horndeski

"I was never that interested in art," he states.

Horndeski was born in 1948 and " T'hen I stumbled onto van Gogh. I never knew art

he gotthe PhD degreein 1973 could be like that. T had always thought of it as very

representational and not very interesting. But then [

s A S thought, 'This is something I eventually want to do.'
Adtis's Reception When I saw van Gogh I was sure I could paint."

6:00 ~ 8:00pm, Saturday, February 11, 2012

Horndeski: The First Three Years as a physicist
Paros (Greece), September 23-28, 2013

Horndeski: The First Thirty Years



Relation between Horndeski’s theory and effective field theory
of inflation and dark energy

The Horndeski’s theory belongs to a sub-class of effective field theory
described by the action

S = /d4x\/—gL(N, K,S8,R,Z;t)

where the 3+1 splitting in unitary gauge is performed with the ADM metric

ds® = —N?dt* + hy; (dz* + N'dt) (dz’ + N’dt) Nia | /

e ' \%fy
; '| / - Ltsdt

dx'

Extrinsic curvature: K=

The Lagrangian depends on the Lapse N
as well as the 4 scalar quantities

K=K, S=K, K",
R=0CR= (3)RZ’ = (3)RW(3)RW

x! xl+dxi

K, is the extrinsic curvature and

() R is the 3-dimensional Ricci scalar.
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Expansion of the Lagrangian up to second order in the
perturbations on the flat cosmological background Gleyzes et al

(2013)
L=L—F—3HF+ (F+LyN)0N+ LréR ‘ Up to first order

1 .
4+ (§LNN — ]—“) ON? + LyrONOR + -+ - . ‘ Second order terms

where F =2HLs+ Lg Lk = OL/OK etc.

The Lagrangian up to first order gives rise to the background equations

L—F—3HF=0, F+Ly=0
We describe the spatial metric in terms of curvature perturbations, as
hij = a*(t)e* 5y ¢: curvature perturbations

The second order Lagrangian does not contain the terms (such as (V?¢)?) which give

rise to the equations of motion higher than the second order, provided that

4H?Lss + 4HLsk + Lk +2Ls =0 Horndeski’s theory
2HLsr + Lkr =0 should satisfy these
ALprr +3Lz =0 conditions.
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Second order action for cosmological perturbations

. )2
Ly =aQ {CQ —c (85;) ]

where
Q= (Ly+ Lyy/2—3HB —6H?Ls)D* +6Ls
1d
2 pr— B — —_
QCS =2 [adt (CLM) LR]
and

The conditions for the avoidance of scalar ghosts and Laplacian instabilities are
Q>0 >0

S

The curvature perturbation obeys the second order equation of motion

%(agQé) —aQcio*C =0



. Weinberg (2008)
Effective field theory (EFF) language Cheuns et al (2008)
12 4 —3
S = / d*z\/=q [ Ag* fR—A—cq™ + %(5900)2 — %53’5900
M3 o Moo oy Fi@)ps 00, T5@)nse - ME)p2 . A2@)pu @) v
- SHOK? — 20K 0K, + THOR6™ + —2ORK + T-OR? + ZOR OR )

where ¢%° =-1/N?

The conditions for the absence of higher spatial derivatives translate to

Mg = —M22, ms =0, 33Xy = -8\

Under these conditions the EFF Lagrangian with second order equations
of motion at linear order reads

2 4 3 :
- M. FIOR = At) — c(t)g™ + M; (1) (5g%)2 — m3(t) 5K 5% This should cover
- ) 22 E » the Horndeski’s
— mi(t) (6K* — 6K*, OK",) + m4T(t) ®R g% | Lagrangian.
where
1 .
mi = ms | m3 = Z(I\[g — M2) ma = 3



In fact, the Horndeski’s theory can be accommodated in the

EFF Lagrangian
2 4 3
I — ]\g* ()R — A(t) — e(t)g™ + AIQQ(t) (5g%)2 — ’7?32( ) 5K 5%
TR ST mi(t) 3)p 5 00
— mj(t) (6K? — 6K*, 6K",) + T( JRog% |

with the additional condition

2 2
my = my

The Horndeski’s theory automatically satisfies the other conditions
for the avoidance of higher spatial derivatives:

M?? = —M22, ms =0, 3o =—8)\;

When m3 # m3, higher-order derivatives are expected to appear

beyond linear order.
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Gleyzes et al

Dictionary between EFF and Horndeski’s theories (513

In unitary gauge where the uniform field hypersurfaces are constant time hypersurfaces,
the unit vector orthogonal to hypersurfaces is

= —¢.u/V2X where X = —¢*¢,,/2 = ¢*/(2N?)
Using the property such as K, = hjn,.,, we can express the field derivatives in terms of

three dimensional quantities, say

w/K——
+2X

For example, one of the Horndeski’s Lagrangian
Ly = Gy(¢, X)R + G x[(Op)* — ¢ ¢,
can be expressed as

Ly =GR+ (2XGyx — Gy)(K* = 8) — 2V2X Gy 4K

* From this we can evaluate the EFF parameters like
N

2

m3 = ! (LS —2Lgr —2H%*Lss —2HLsk — lLKK>
2 > mi = Thi = —2XG4,X

2

1y

= LNR ,




In summary, the Horndeski’s theory corresponds to the EFF Lagrangian

M? M3 (t)
2 2

— m3(t) (OI& — 0K¥F, 5[\"'/#) 77142“) BR g% |

L= ()R — A(t) — c(t)g™ +

(5g 00)2 _ 771%’2( >()I 5g%

with the functions
M?f =2G, — 2XG5 4 — 2XG5.x0¢

A=XGyx —Go+ (¢ +3HP)XGsx + -

¢=XGyx — (¢ —3HP)XGyx —2XCsy+ -

My = X?Gaxx + = (¢+3H¢)XG3X+3HX Gyxx® — X2Gapx + -
mi = 20X G5 x + 200Gax + - -

m2 =l = —2XGyx +2XGsy — HX G5 xd + XG5 x¢

We only need the three variables f, A, ¢ to describe the background evolution and

the three additional variables My, m3, m3 to describe the linear perturbations.
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Background equations of motion
In the presence of matter with the density p,, and the pressure P,,, we have
A+c=3M*(fH?>+ fH) — pm,
A—c=M2fH+3fH?>+2fH + f)— P,
These equations can be written in the forms
3M§1H2 = PDE t Pm
M2 (2H + 3H?) = —Ppp — P,
where
pop = 3HA(MZ — M2f) — 3M2fH + ¢+ A Satisfying the continuity equation
Pop = —(2H +3H?)(M2% — M2 f) + MZ(2Hf + f) +c— A poE + 3H (ppr + Pog) = 0

The dark energy equation of state is given by

Pog . 2H( Mgl — M2f) — M2(f — Hf) — 2¢ Inmodified gravity one can realize

WpE = = - - the phantom equation of state without
2(M2 — M2f)—3M2fH A : s
pRE SHA(My, f) = 3MIfH +c+ having ghosts and instabilities.




Dark energy equation of state: modified gravity models

(1) f(R) gravity

(2) Covariant Galileons

Hu and Sawicki (2007)

(R/Ro)*"
(R/Ro)* +1

f(R)=R— AR
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Deffayet et al (2009)
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The equation of state wpg < —1 is a good signature to discriminate modified gravity models

from the ACDM.
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Discrimination between dark energy models from
cosmological perturbations

The dark energy models can be further distinguished from the observations
of large-scale structure, weak lensing, CMB (ISW effect) etc.

LSS Weak lensing CMB

Perturbed metric: {ds® = —(1 + 2W)dt* + a*(t)(1 + 2®)d;;dx' da’ (Newtonian gauge)

Non-relativistic matter:  |Pm = pm (t) + dpm (t, X)

with the four velocity u” = (1 — ¥, V')

v is the rotational-free velocity potential.
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Matter perturbations in the Horndeski’s theory

6 = 8pm/pm and 0 = V2v obey

5= —@ / a— 3 * The growth rate of matter perturbations
is related with the peculiar velocity.

0 =—HO+ (k*/a)¥

0

. o . 3aH
We introduce the gauge-invariant density contrast: @, = 0 +

k2
. . L2 . .
o+ 2Him + —3 T = 3 (I + zm) where [ = (aH/K2)0 — @

The two gravitational potentials ® and —W are generally different:
Be® + BV = —B~o 0, There are other perturbation equations.

See De Felice, Kobayashi, S.T. (2011).
where

Bs = 4[Gy — X(¢ G5 x + Gs.4)]

By = 4[Gy — 2XGyx — X(HP G5 x — Gs.4)]

Br = 4Gy xHp — 4(Gyx +2XGCyxx)p+4Gap —8XGagx + 4(Gs.6 + XC5.4x)0
—4H[(Gs.x + XG5 xx)b — Gs.6 + XG5.4x]0 + 4X[G5.4p — (H? + H)G5 x]

In GR (G4 = Mgl/Z) one has Bg = Bg = 2]\451 and B7 = 0. * d=_U
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De Felice, Kobayashi,

Quasi-static approximation on sub-horizon scales ¢\ 5g7).

For the modes deep inside the Hubble radius (k > aH) we can employ

the quasi-static approximation under which the dominant terms are

those including k*/a?, &,,, and M? = —K 4. See e.g., Starobinsky (1998),
Boisseau et al (2000)

. . k2 k2
) b, +2H0y, + 5V ~0 and ¥ = —47Geapmdm
a

where the effective gravitational coupling G.g is Schematically
2
Gog = 2M§1[(B6D9 — B7) (k/a)” — BeM?] G — ao(k/a)® + a;
(A2Bg + B2Dg — 2AB7Bsg) (k/a)® — B2M? T bo(k/a)? + by

AG = —2XG3’X —4H (G4’X —l— 2XG4’X)() qb + 2G4,¢ + 4XG4’¢X
+4H (G5,¢ + XG57¢X) ¢ — 2H?X (3G5,X + 2XG57X)()

where

Dg = —K x + derivative terms of G3, Gy, G5
In GR, G4 = M2 /2, Bg = By =2M?2, Ag = B; =0, Dy = —K x wmmp Geg =G
In the massive limit (M? — oo0) with Bg ~ Bg ~ 2M§1 we also have Geg >~ G

In the massless limit M2 — 0 we have

2M?(BgDg — B2 The effect of modified gravit

Geft = — pl(26 0~ B7) G - ifests itself Y
AZ2Bgs + B5Dg — 2A¢B7 Bg manitests itselt.

.8, Geg =4G/3 in f(R) gravity




More general theories based on the EFF of dark energy

N
2 74 3(¢
I — M, (t)R — A(t) — c(t)g® + M((ngO)Q _ ms(t) 6K 6g% This gives the second-order
2 22 2 > equations at linear order.
— mi(t) (OK? — 0K*, 6K",) + "142(” ®R g% |
J
plus

Lisg = —m 4( t)o K2 + m5( ) CRSK + A(t) 2J0R2 —m—s This gives the spatial derivatives higher
> 2 than second order.

In the presence of non-relativistic matter, the effective gravitational coupling can
be schematically expressed as

=2 2 4
G — a—s(k/a)"% + ag + az(k/a)® + as(k/a) ‘ Gy = ay = by = 0 in Horndeski’s theory
_Q(k/a)_z + b() + bg(k’/a)2

Gleyzes et al (2013)

For the theories with a4 # 0, Geg — a4(k/a)? /by in the small-scale limit, so such theories

should be tightly constrained.
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Constraints from large-scale structure

The galaxy perturbation 9, is related with oy,
via the bias factor b, i.e., 0, = bo,.

0 = V20 is related with fp, = 0, /(H6m) via
0/(aH) >~ — frn0m

The galaxy power spectrum in the redshift space can be modelled as

s _ 2 4 i is the cosine of the angle of the
Pg (k) T ng(k) + 2'“’ Pg@(k) + P P@Q (k) k vector and along the line of sight.

/ | |

og is the rms mass

The real space The cross power The rc'aal space 0 S
galaxy power spectrum velocity power uctuations in spheres
spectrum spectrum within the radius
2 8h~! Mpc.
(bos)? (bog)(fmos) (fmos)

T'he redshift space distorsions are known as an
additive component by observing bog and f,,0%.
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Perturbation growth in two modified gravity models
Okada, Totani, S.T. (2012)

(1) f(R) gravity (2) Covariant Galileons

R/Rg)*" _ _ 3
f(R):R—ARo(R(/]é )ST)LH (n>0) G2 = C2X So= o
0 Gy = M2 — e, X2 /MS, G5 =3c;X2/M°
0 e T T 2 1k 0.8 '
[f(R),n=2,k '=30h" Mpc 2= 122 — ] ' —1.347, p=0.442 ——
A A= 5.00 ] Covarlant Gallleon((:; o pned E=0.433 -
0.55 | : 1 Lk '=30n" Mpc (|||) a=1.347, p=0.424 -------
0.5
o
% 045
0.4
03s5F 1
o3b—ule o] 03l
0 0.5 1 0 0.5 1

The growth rate of matter perturbations is quite large,

There are some allowed parameter spaces but there is still a viable parameter space if we do not

for larger values of n and A. assume the existence of late-time de Sitter attractor.

Neveu et al (2013)
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Cosmological perturbations in general single-field inflation

In either EFF of inflation without higher derivatives or in Horndeski’s theory,
the second-order action for perturbations is

. . 2
fa= Q|- )

] — %(a?’Qé) —aQc9*¢ =0

The curvature perturbation is conserved after the Hubble radius crossing, by
which we obtain the scalar power spectrum

dIn P,
dlnk cok—aH

H?
. . s _ 1 _
P = I Yow ﬂ The scalar spectral index: = =

The second-order tensor Lagrangian is
MZf
of EFF

: 2 1 .
L; = Z a>Q, [hi — %(8@)2] Q: = Z(Mff +2m3), = NEf e in the language

A=+, X

H2

: Py
— mmm)  The tensor-to-scalar ratio: = 5. = 10cs€
2120, ¢} ¢

Pt:

QC?
W €s = —5 >
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Planck constraints on potential-driven slow-roll inflation

S.T.,J. Ohashi, S. Kuroyanagi, A. De Felice (2013)

Potential-driven slow-roll inflation
10" . . . . . . . Ng — 1= —6€V -+ 2’)’]V
Planck+WP+BAO-+high L F—T
Planck+WP+BAO —
where
\power law inflation o M_Sl Vy 2 - §1V,¢w¢>
N V=" v W=
AN -
\ 1. Chaotic inflation with n = 2,1,2/3
o 2/3 \ is under an observational pressure.
2 ' \
= \ 2. In natural inflation with the potential
jargo—field | V(gp) = Vo[l + cos(¢/ f)], the scale f
......... S ma.'"fleld.‘. iS Constrained tO be
; ‘ 5.1Mp < f <79M, (68 % CL).
P2 .
: R mflatlo.n | 3. The hybrid models are outside
very | the 95% CL border.
: |+ small
3 t | field , hybrid2 | 4. Very small-field models such as
10 1 I | " 1 | T Ll | 1 1
}

0.94 0.95 0.96 0.97 0.98 0.99

n
s

1.01 V(g) = Vo(1 — e=*?)? are most favoured.
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Higgs inflation

The Higgs potential V(¢) = X\(¢* — v?)?/4 (v ~ 100 GeV) can be accommodated for inflation?
The self coupling X is about 0.1, but the WMAP normalization gives the constraint A ~ 10713,

There are several ways to accommodate Higgs for inflation.

1. Nonminimal coupling: £ = X — V(¢) — £¢?R/2  Bezrukov and Shaposhnikov (2008)

A~ 10719¢2 for [£] > 1 In this limit ng =1 —2/N and r = 12/N? (ns ~ 0.96, r ~ 1073).
[same as those in the model f(R) = R+ R?/(6M?)]

. . . . Nakayama and Takahashi (2010),
2. Running kinetic coupling: £ = w(¢)X — V(¢) De Felice, S.T., Elliston, Tavakol (2011)

The evolution of the field slows down with the coupling w(¢) = ¢™ or w(¢) = e+?.

This leads to the suppressed tensor-to-scalar ratio.

3. Derivative coupling to the Einstein tensor: £ =X — V(¢) + G**0,00,¢/(2M?) Germani and Keghagias (2010)

_ . r is smaller than the value 0.262
s = 0'972’ r = 0.083 in standard inflation

A =6x 107%%(M,/M)*
(N = 60)

4. Galileon-like field self-interaction: £ = X — V(¢) — e¢" XOg/M3+n  Kamada. Kobayashi.

Yamaguchi, Yokoyama (2010)

Forn=0 )—=924x% 10_26<Mp1/M)4 ns = 0.965, r =0.164
(N = 60)



r0.05

L=X—X"/n—EQ’R/2

Planck constraints on Higgs inflation

L =X — \¢"/n + Galileon terms L=X—X\¢"/n+G"0,$0,0/(2M?)

100 Non'—mlnlmally 'coupled mo'dels I'Dotentl'al—drlv'en Galllleon |r1flat|or? Field—derivative coupling models
(@) n=2 (a) n=2, G, ' ' ' ' ' '
(b) n=4 (b) n=2, G, (a) n=2
=0 025} (c) n=2, G, 025 | (b) n=4
o (d) n=4, G, '
_______ - b)
» - () n=4, G, (
10 | ™ 0.2 (f) n=4, G, o2l
i 0 smallerM \ ______
‘,: Lg 0.15 } § 015} smaller M e ~
17=-2.0x10"° i =
-2 ] ; \\
F 0.1 L \
10 €201 0.1 \
£=-6.0 (@)}
x1073 :‘
§=—1041 0.051 | 0.05 |
\
10—3 L ) e : 0 W . . . )\ l" - . . . Lt :
0.94 0.95 0.96 0.97 0.9¢ 0.945 095 0955 0.96 0.965 0.97 0.975 0.98 0.945 095 0.955 0.96 0.965 0.97 0.975 0.98
nS ns nS
12/N? ﬁ Same as the Starobinsky’s model f(R) = R+ R*/(6M*)
T =

The potential which fits the data well has a form V(¢) = Vo(1 — e=%¢)?

in the Einstein frame.



Scalar non-Gaussianities

The three-point correlation functions of scalar no-Gaussainities in the Horndeski’s theory
or the EFF of inflation have been also derived.

AC(kla k27 k3>
Hz 1 k’?

10 A
3 Z’L 1 z

(C(k1)¢(ka)C (k) = (2m)76 (ky + ko + k3)(Pc)?

Jar =

Planck constraints on the nonlinear estimator

local
1. Local shape ) N = 2.7E58 kifl ks

In the Horndeski’s theory the local nonlinear parameter is 2

E Consistent with the Planck data as
NEY = T —(1—-ns) <1 ~— long as the slow-roll conditions
are satisfied.

De Felice and S.T. (2013)
equil __ k
2. Equilateral shape | ==  fyp —42£75 kA3

In the Horndeski’s theory or the EFF of inflation, the equilateral nonlinear parameter

can be large for ¢ < 1.
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Planck constraints on power-law k-inflation

The power-law inflation can be realized by the Lagrangian

P=—X + ce?®X? (dilatonic ghost condensate)
In this case the observables are
1 — . 2463 . 1920§ equil 85 1 5) 2 65
e 7 VP I TRV

__——+— Constraints from NG

> :
¢ >0.079 The constraint on c¢g from
S

ns and r is not compatible
with the bound ¢, > 0.079

coming from NG.

5 -, Generally the k-inflation models
0_02/0_64 0.66 0.08 0.1 can be tightly constrained from

C the equilateral type NG.

S
Constraints from ng and r



Summary

1. We have shown the correspondence between the Horndenski’s theory
and effective field theory of inflation and dark energy.

2. The full linear perturbation equations including higher spatial derivatives
were recently derived.

3. Dark energy models such as f(R) gravity and Galileons can be tightly
constrained from the redshift-space distortions in the galaxy surveys.

4. Using the recent Planck data, our general formulas have been used to
place observational constraints on many single-field inflationary models.

The Vainshtein screening in the Horndeski’s theory was studied by Kase and me
(also by Kimura et al).

ﬂ Please listen to the Kase’s talk.



