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Modifying gravity
& Extra dimensions (s’crlwg—theorg, braneworlds)
* Massive gravity
+ Horava-Lifshitz gravity
* Scalartensor theortes (galileons-Horndenski)

O  Modifying gravity means changing the dynamical behavior of the
theory

O  Astmple but still remarkable modification of gravity: Lovelock theory

* d>4 but still giving second order field equations which are
divergent free
* the Lagrangian Ls constructed out of the sum higher powers of the
curvature 2-form, wp to powers R in the curvature
o d=5and d=6 it reduces to the Gauss-Bonnet (GB)
combination, which involves quadratic curvature tnvariants

24 /dda:\/—g [R —2A +aG| where G = R? —4RaﬁRo‘ﬁ +Ra@75RO‘5’Y5

2




Here we will concentrate on theories with scalar fielos which remain
tnvariant under a conformal transformation (c.t.)

why scalar tensor theories???
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the stmplest modification, tnvolving only one more d.o.f.
from string theory point of view the gravitow is accompanied by the dilaton
Kaluza-Klein theory and braneworlds

Resent Lnterest in selftunning senartos

why conformal tnvariance???
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Juv = () (x)guy dss = (SE‘)dS
GR is not nvariant under conformal transformations

Conformal transformation is a localized scale transformation

GR due to G is wot renormalisable. Maybe conformal invariance is
importawt

useful laboratory for black hole physics
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we have the following Lagrangian: L= ( ¢*R +

applying the transformation we see that we end up in the same form of the
Lagranglan
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the coefficlent e @ Lmportant
we could also ada a proper self-lnteracting term without

spotling the invariance of the Lagrangian

* itsformis pa<z where again the proper power plays a key role

O Cawn we construct more general actlons???




More General Conformal Invariance

we have already seen conformal transformations in d-dimensions
Gur = ()G $=0Q°7 (z)¢
A special conformal frame...
Guv = $72g,,,
Flrst tests...

B~ ok e e conformally tnvariant term
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O  This case of change of frame creates conformally invariant actions, since the
wmetrie Ls invariant by construction




can we construct more general actions that are still conformally
bnvariant???

Let us start with the Riemann tensor...

Rpa',ul/ = Rpa,ul/ 2 (5[[;53] 5? 51/]9 > <vav59)
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Applying the afore mentioned change of frame we get
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Now we can see that the above tensor, after a LOT of algebra, remains
Lnvariant under the transformation
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Since c.t.’s are Like Local scale transformations we should be able to define
a covariant derivative that transforms appropriately and produces the
previous tensor, which is suitable to construct gauge tnvariant actions

[D/M DV] Ve = aﬁ,uz/vﬁ
we now have the building blocks twn order to write a general action. A suitable

actlon that s cow—formaLLg Lnvariant has to be a Linear combination of terms
of the form
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where Xgll,','_';;ip LS an lnvartant tewsor
we demand second order field eqs —s ¢ wust appear at most Linearly

This condition restricts the invariant tensor to be fully antisymmetric

so that the only allowed Possibil,itg Ls that Lt turns out to be proportiowaL
to the generalized Kronecker delta

d—2p
CYIRLLICY 7, B Qp -2 .
51...32; = W’p(sgl...@pp Qp = Vp op+1




Finally the most general action that is conformally tnvariant and leads
to second order field equations for the scalar field is given by

——Z[p where 1<k<[—1]

with [x] givew by the integer part, stands for the higher power of the
nonminimal couplings anol
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Notice that the action can be mapped to the Lovelock action for a suitably
rescaled metric
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Field equations and a special factorization
The field equation £y = 0 cawn be obtained by extremizing the action
wnder variations of the scalar field
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where
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Alternatively the field equation can be written as £y = — Z apEap =0
where ng = 531..'a2pR6162 ey R/BQP—lngp p=0
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stands for the dimensional continuation of the Eyler density from 2p to d
dimensions




e o
N[=g 0GR =g HGen s oghe

Tyy =

so that it reduces to Ty = ¢2c§W

=
The stress-energy temsor transforms e
homogeneously with conformal weight -d, and T qb% £,
also the trace of the E.M.T. vanishes on shell 2

The field equation and the E.M.T. can be factorized according to
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where the coefficlents c¢;’s are related to the a;’s through the relation




+ The standard conformally coupled scalar field: k=1
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* R=2is the most general case in d=5 and d=6
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Nown-trivial solutions

; 5 (O )
Configurations of constant rescaled curvature IR, g = —cd,, g

wot only solve the field equation but also have a vanishing 8.M.T., so
they can be regarded as won-trivial vacua.
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the solution is given by =

* regularity requires that ¢ <0 and in odd dimensions the integration

constant (¢ has to be posit’wc.
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* valwe of the action: [ — — Z[p with 10 = V/7Qq_17p(—E)P~
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For the case of @ unit spheve S ds® = db” + sin® 0dQ5_, -

the solution i< given by o ( :
cos O + 6\/1 — ECQE)

s
* regularity requiresthat e = 1 and cC'i—2 <0
k

* value of the action: [ = — Z[p with I; = (—1)dlg

p=0



Conclustons

we have presented a generalization of the standard action for the
conformally coupled scalar field with second order field egs.

C.l. strongly restricts the possible non-minimal couplings with higher
powers of the curvature in the action

Configurations of constant rescaled curvature, correspond to non-trivial
vacua of the theory (vanishing of the scalar field equation and tdentically
vanishing E.M.T.)

n Buclidean constant curvature spaces, this class of solutions describe
nstantons, since they are regular everywhere and possess finite action




O A generalization of the YAMARE problem...

simtlartties with Lovelock theory are not a colnctdence

the YAMABE problem could be extended to Lovelock theory tn
the following sense:

Given a compact Riemannian manifold (M,g) of dimension n>3, s there a wmetric
conformal to g such that the linear combination of the dimensional continuation
the Lower-dimensional Euler denstities Ls constant?

Thank you




