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Proca equation

Consider action for 1-form A in D spacetime dimensions:

S =
∫
dDx

{
−1

4FµνF
µν − 1

2m
2AµAµ

}
(F = dA).

Field equation is Proca equation ∂µFµν = m2Aν, which is equiv-

alent to the two equations

(
2−m2

)
A = 0 & ∂ ·A = 0 .

The latter equation is a subsidiary condition. It implies that there

are only (D − 1) independent solutions of the form A = aeip·x

for given 3-momentum p. For D > 3 these solutions span an

irreducible representation of the rotation group SO(D − 1).

ø For D = 3 we get two one-dimensional irreps of SO(2).
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3D Proca

We can write the 3D Proca eq. as

P (m)P (−m)A = 0 , [P (m)]µ
ν = 1

2

(
δνµ − 1

mεµ
τν∂τ

)
.

Acting on solutions of the Proca equation, we have

P2(±m) = P (±m) ,

which shows that P (±m) are (on-shell) projection operators.

They project onto the irreducible Poincaré irreps.

ø Parity takes P (m) → P (−m). The two polarization states

propagated by Proca are a parity doublet.
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Aside: 3D Poincaré UIRs

ø 3D Poincaré group generated by 3-vectors Pµ and J µ. Massive

UIRs classified by Casimirs

−P2 ≡M2 , P · J ≡Mh

M is mass and h is “relativistic helicity”. Define |h| to be “spin”.

ø J is pseudovector, so parity takes h→ −h.

ø 2h /∈ Z ⇒ “Anyon” (by 3D spin/statistics theorem)

ø Spin not defined if M2 = 0, but still 3 UIRs: Boson & Fermion,

and “infinite spin” (analog of 4D “continuous spin”)
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Parity and helicity

ø In any parity preserving 3D free field theory, every state of

mass m and helicity h is paired with a state of the same mass

but helicity −h. In other words, states of spin s come in parity

doublets with helicities (s,−s).

ø If parity is violated, the degeneracy due to parity may be lifted.

A doublet of states of helicities ±s may now have masses m±

with m+ 6= m−.

ø Proca preserves parity. The two spin-1 states it propagates

are a parity doublet of helicities (1,−1).

ø We can generalize Proca equation to P (m+)P (−m−)A = 0.

This propagates helicity 1 with mass m+ and helicity −1 with

mass m−.
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Generalized 3D Proca

The generalized 3D Proca equation P (m+)P (−m−)A = 0 is the

field equation for the parity violating Lagrangian

L = −1
4FµνF

µν + m2

2µ ε
µνρAµ∂νAρ − 1

2m
2AµAµ ,

where

m2 = m+m− , µ =
m+m−
m−−m+

.

The limit in which m+ = m− is the limit in which µ = ∞ and

the parity-breaking “εA∂A” Chern-Simons term is absent.

ø We can decouple the helicity −1 mode by taking m− →∞ for

fixed m+ This yields the first-order equation P (m+)A = 0.
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Square root of 3D Proca

ø The first-order equation P (±m)A = 0 is equivalent to

F̃µ = ±mAµ ,
(
F̃µ = εµνρ∂νAρ

)

This is a kind of “square root” of the Proca equation that prop-

agates a single massive spin-1 mode of helicity ±1. It is the field

equation for the “self-dual” spin-1 Lagrangian

LSD = ±1
2mεµνρAµ∂νAρ − 1

2m
2AµAµ .

ø N.B. The
√

Proca equation still implies the subsidiary condition

∂ ·A = 0.
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TME

Any divergence free vector can be written locally as a curl, so

∂ ·A = 0 ⇒ Aµ = G̃µ , G̃µ ≡ 1
2ε
µνρ∂νBρ .

This is the general local solution.

ø Back-substitute in the
√

Proca equation to get the new equa-

tion P (m)G = 0. This is the field equation of Topologically

Massive Electrodynamics, defined by

LTME = −1
4GµνG

µν ± 1
2mεµνρBµ∂νBρ ,

(
Gµν = 2∂[µBν]

)

We now have have a gauge theory description of massive spin 1,

but only of one helicity (±1).
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Extended Proca

ø Let’s apply the same “trick” to 3D Proca. We solve the

subsidiary condition as before, A = G̃, and back-substitute into

Proca equation to get new equation
(
2−m2

)
G̃ = 0. This is a

3rd order equation that propagates (by construction) two spin-1

modes of mass m. It is also the field equation for the parity odd

Extended Proca Lagrangian

LEP = 1
2ε
µνρ

[
G̃µ∂νG̃ρ −m2Bµ∂νBρ

]
.

ø Higher derivative theories usually propagate “ghosts” (modes

of negative energy). That is the case here. Because the La-

grangian is parity odd, parity flips both helicity and the sign of

the energy: one of the two spin-1 states is a ghost.
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Aside: Ghosts vs Tachyons

There are various ways in which a free field theory may be un-

physical. It can have have either ghosts or tachyons. Both are

defined as unitary irreps of the Poincaré group.

ø Ghosts are Poincaré UIRs with P2 ≤ 0 (i.e. real M) but P0 < 0

(negative energy)

ø Tachyons are Poincaré UIRs with P2 > 0 (i.e. imaginary M).

Supersymmetry excludes tachyons because there are no tachy-

onic UIRs of the super-Poincaré group, but it does not exclude

ghosts. Ghosts can appear in supermultiplets. In this case, the

Hilbert space necessarily includes states of negative norm (be-

cause otherwise susy implies that P0 ≥ 0).
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Fierz-Pauli

ø The spin-2 Fierz-Pauli Lagrangian for symmetric tensor ϕ is

LFP = −1
2ϕµν G

µν,ρσϕρσ − 1
4m

2
(
ϕµνϕµν − ϕ2

)
, (ϕ = ϕµµ) ,

where G is the 2nd-order operator, symmetric under interchange

of its index pairs, such that Gϕ is the linearized Einstein tensor, so

the linearized Bianchi identity is ∂µGµν,ρσ ≡ 0. The field equations

are equivalent to the FP equations

(
2−m2

)
ϕµν = 0 , ∂µϕµν = 0 , ϕ = 0 .

Now there is a differential subsidiary condition (as for spin 1) but

also an algebraic subsidiary condition. These reduce number of

modes propagated to D(D + 1)/2 −D − 1 = (D − 2)(D + 1)/2.

For D > 3 this is traceless symmetric tensor irrep. of SO(D−1).
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3D FP

ø The number of modes propagated by spin-2 FP equations for

D = 3 is 2: i.e. a parity doublet of spin-2 modes. The FP

equations can be written as

[P (m)P (−m)]µ
νϕνρ = 0 , ϕµµ = 0 ,

where P (±m) are the spin-1 on-shell projection operators.

ø There is a parity-violating “generalized FP” theory as for

Proca. It propagates helicity ±2 with mass m±.

ø The linearized 3D Einstein operator can be written as

Gµνρσ = −1
2ε(µ

ηρεν)
τσ∂τ∂σ
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Linearized NMG

ø As for Proca, we can solve the differential constraint:

∂µϕµν = 0 ⇒ ϕµν = Gµνρσhρσ ≡ G(lin)
µν (h)

As a check, note that this equation can be interpreted as an

equation for a metric perturbation h given a source with stress

tensor ϕ. In 3D the metric is locally flat in the absence of a

source, so h must be pure gauge when ϕ = 0.

ø Substitute this solution into remaining FP equations to get

(
2−m2

)
G

(lin)
µν (h) = 0 , R(lin) = 0 .

These are the equations of linearized “New Massive Gravity”. By

construction, they propagate a parity doublet of spin-2 modes.
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NMG action

We can replace the two equations of linearized NMG by

G
(lin)
µν − 1

m2

[
2G

(lin)
µν − 1

4 (∂µ∂ν − ηµν2)R(lin)
]

= 0 .

The trace of [. . . ] is zero, so the trace implies R(lin) = 0. This

equation is what one gets by variation of the quadratic approxi-

mation to the NMG Lagrangian

LNMG =
√
|g|
[
−R+ 1

m2K
]
, K = RµνRµν − 3

8R
2 .

The Einstein Hilbert term has the “wrong sign” when compared

to the standard 3D GR action!

ø Changing the relative sign makes the spin-2 modes tachyons.

Changing the overall sign makes them ghosts.
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Auxiliary field form of action

ø We can rewrite the NMG action as

LNMG =
√
|g|
{
−R+ 2

m2

[
fµνGµν − 1

2

(
fµνfµν − f2

)]}

where fµν is a new symmetric tensor field, and f = gµνfµν. The

fµν field equation is algebraic:

fµν = Sµν , Sµν = Rµν − 1
4gµνR .

The S-tensor is the 3D Schouten tensor. Using this equation to

eliminate fµν we recover the 4th order action.

ø This shows that K = GµνSµν, which has special properties in

all dimensions.
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Unitarity

ø We may linearize about the Minkowski vacuum by setting

gµν = ηµν + hµν − 2
m2fµν and expanding to quadratic order in h

(the action is already quadratic in f). This gives

S
(2)
NMG[h, f ] = −S(2)

EH[h] + 2
m4SFP [f ;m] .

The Einstein-Hilbert term comes with the wrong sign but it prop-

agates no modes. The FP term propagates two spin-2 modes

of mass m. ⇒ NMG is unitary.

ø Any change in the relative coefficients of RµνRµν and R2 in

the NMG action leads to a change in the relative coefficients of

fµνfµν and f2 in SFP [f ], and this leads to an additional scalar

ghost. Unitarity requires “fine-tuning”.
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Scalar Massive Gravity

ø There is one other curvature-squared extension of 3D GR that

is unitary:

LSMG =
√
|g|
[
R+ 1

8m2R
2
]

The Einstein-Hilbert term now comes with the “right sign”. Lin-

earization shows that there is a single scalar mode of mass m.

This is a special case of 3D “f(R) gravity”.

ø General curvature squared extension of 3D GR is

L(a, b) =
√
|g|
[
σR+ 1

m2

(
aK + 1

8bR
2
) ]

Unitarity requires

{
either a = 0 & σ = 1 SMG
or b = 0 & σ = −1 NMG
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Renormalizability?

Expanding L(a, b) about Minkowski space, and adding a suitable

gauge-fixing term, we find

L(2)(a, b) + Lfix = 1
2h

µνOµνρσ(a, b)hρσ ,

where O is a linear combination of a spin-2 projection operator

P2 and a spin-0 projection operator P0. Inverting in each of the

two subspaces, we get the propagator

2m2

p2(ap2−m2σ)
P2 + 2m2

p2(bp2+m2σ)
P0

If both terms go like 1/p4 the model is renormalizable. Otherwise

it is non-renormalizable. So renormalizability requires ab 6= 0 .

But unitarity requires ab = 0 (SMG or NMG). The conclusion is:

Unitarity implies non-renormalizability!
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NMG for D > 3?

ø In D dimensions Sµν = 1
D−2

[
Rµν − 1

2(D−1)gµνR
]
, and we have

the identity

RµνρσRµνρσ − 4RµνRµν +R2 ≡WµνρσWµνρσ − 4(D − 3)GµνSµν

The LHS is the Gauss-Bonnet integrand, which is a total deriva-

tive for D = 4 and the Lovelock Lagrangian for D > 4.

ø In any dimension, the addition of GµνSµν leads to massive

spin-2 for “wrong-sign” EH term, but unless D = 3 there is, in

addition, a massless spin-2 ghost. With any other curvature-

squared term, there is also a scalar ghost.

ø There is a unitary D > 3 version of linearized NMG involving

a “dual graviton” field, but no non-linear extension is known.
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“Cosmological” NMG

ø Add a cosmological term to NMG to get

LCNMG =
√
|g|
[
σR+ 1

m2K − 2Λ0

]
(σ = ±1)

For Λ0 = 0 we know that we must choose σ = −1, but now we

allow for either sign (and either sign of m2) and seek maximally

symmetric solutions with Gµν = −Λgµν, i.e. with cosmological

constant Λ. One finds that

σΛ− Λ0 + 1
m2Λ2 = 0 ⇒ Λ = −2m2

[
σ ±

√
1 + Λ0/m

2
]

ø Must have λ0 ≡ Λ0/m
2 ≥ −1.

ø Even for Λ0 = 0 there is an (A)dS solution with Λ = −4m2σ.
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Linearization of CNMG

Given vacuum metric ḡ with cosmological constant Λ 6= 2m2σ,

linearize SNMG[g, f ] by setting

fµν = kµν + Λ
2m2gµν , gµν = ḡµν + hµν − 4

Λ−2m2σ
kµν .

This gives quadratic Lagrangian

L(2)
CNMG =

(
2m2σ−Λ

)
2m2 L(2)

EH(h) + 4
m2(Λ−2m2σ)

LFP (k;M) ,

where LFP (k;M) is the FP Lagrangian in the background metric

g with M2 = 1
2

(
Λ− 2m2σ

)
.

ø Unitarity (no ghosts or tachyons) ⇔ m2 > 0 & Λ > 2m2σ.
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dS vacua

ø In dS vacua, unitarity of FP theory imposes Higuchi bound:

M2 ≥ Λ. For NMG this is equivalent to Λ ≤ −2m2σ, which has no

Λ > 0 solution unless σ = −1, in which case the Higuchi bound

is Λ ≤ 2m2. In this case we have

σ = −1 , Λ = 2m2
[
1−
√

1 + λ0

]
, λ0 ≥ −1

ø Higuchi bound is saturated when λ0 = −1. In this vacua the

gravitons are “partially massless”. There is a gauge invariance

of the FP action in partially massless vacua that eliminates one

of the two propagating modes. However, this is an artefact of

linearization – there are still two local degrees of freedom but

only one appears in the linear theory.
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AdS vacua

ø The unitarity conditions m2 > 0 & Λ > 2m2σ have no Λ < 0

solution unless σ = −1, i.e. “wrong sign” EH term, and then

Λ = 2m2
[
1−
√

1 + λ0

]
, 0 ≤ λ0 < 3 ,

where λ0 < 3 is due to the NMG unitarity bound Λ > −2m2

ø At λ0 = 3 we have Λ = 2m2σ. In this case L(2)
NMG is not

diagonalizable. This case defines “critical” 3D gravity.

ø N.B. The Breitenlohner-Freedman bound for scalars in AdS

is M2 > Λ, which would allow −1 ≥ λ0 < 0 if it also applied to

spin-2 fields. However, Unitarity for spin-2 requires M2 ≥ 0.
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Factorizing FP in AdS

Let D̄ be the covariant derivative in the background AdS metric

ḡ with Λ = −1/`2, and define

[D(η)]µ
ν = `−1δνµ + η√

|g|
εµτνD̄τ .

The FP equations in AdS can be written, for traceless symmetric

tensor ϕ, in the factorized form

[D(η)D(−η)]µ
ρϕρν = 0 , η2 = 2/

(
1− 2m2`2σ

)
.

The unitarity bound Λ > 2m2σ can now be expressed as |η| ≤ 1.

ø Linearized Einstein equations saturate the bound. Transverse

traceless metric perturbation H satisfies [D(1)D(−1)]µ
ρHρν = 0.
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Factorizing NMG in AdS

In an appropriate gauge, the 4th order NMG equations take the

factorized form

[D(1)D(−1)D(η)D(−η)]µ
ρHρν = 0 , η2 ≤ 1 .

For η2 6= 1, this is equivalent to two second-order equations:

linearized Einstein and FP (as we saw from linearization of aux-

iliary field form of action). The FP equation propagates a parity

doublet of spin-2 modes, now in AdS3.

ø In the unitarity limit η2 = 1 we get the equation

[
D2(1)D2(−1)

]
Hρν = 0 .

This is the equation for linearized 3D critical gravity.
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Bulk vs Boundary unitarity

ø In asymptotically AdS space, the asymptotic symmetry group

is the 2D conformal group, with algebra VirL⊕VirR. The central

charges of the two Virasoro algebras are equal (cL = cR = c) if

parity is preserved. For NMG one finds that

c = 3`
2G3

(
σ − Λ

2m2

)
,

(
` = 1/

√
−Λ

)

where G3 is the 3D Newton constant.

ø Modern interpretation: CFT is holographic dual of 3D quan-

tum gravity with NMG as semi-classical limit, valid for c >> 1.

ø Unitarity of CFT requires c > 0, but the bulk unitarity condi-

tion Λ > 2m2σ implies c < 0. We have a clash between bulk and

boundary unitarity!
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Einstein-Cartan and Chern-Simons

In its “Einstein-Cartan” formulation, 3D GR involves only the 3-

vector 1-forms ea (dreibein) and ωa (spin connection) from which

we construct the torsion and curvature 2-forms

T a = dea + εabcωbec , Ra = dωa + 1
2ε
abcωbωc .

The EC action is the integral of the following 3-form Lagrangian

LEC = −σea ∧Ra + 1
6Λ0ε

abcea ∧ eb ∧ ec

This is also a Chern-Simons 3-form for the dS (Λ0 > 0), AdS

(Λ0 < 0) or Poincaré (Λ0 = 0) group. The field equations are

T a = 0 and Ra = 0. Assuming invertibility of eµa, these are

equivalent to the 3D Einstein equations.
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CS-like formulation of NMG

An alternative EC Lagrangian 3-form is L′EC = LEC + ha ∧ T a,

where ha is a Lagrange multiplier field for the constraint T a = 0.

The ωa field equation now determines ha, and the ea equation is

then again equivalent to the Einstein equations. Now consider

LNMG = L′EC + 1
m2

[
fa ∧Ra − 1

2ε
abcea ∧ fb ∧ fc

]
.

The 1-forms fa are auxiliary; field equation ⇒ fµν = Sµν, and

the [. . . ] term becomes GµνSµν. So LNMG is a Lagrangian 3-form

for NMG. It takes the Chern-Simons-like form

LNMG = 1
2grsA

r · dAs + 1
6frstA

r ·As ×At ,

where Ar are four flavours (r = 1, . . .4) of 3-vector 1-forms, grs

is a metric on “flavour space”, and frst are coupling constants.
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Hamiltonian NMG

A time/space split Aµ → (A0, Ai) leads to Lagrangian

L = −1
2ε
ijgrsAri · Ȧ

s
j +Ar0 ·Φr ,

where Φr are four 3-vector primary constraints. Equations of

motion imply secondary constraints εijfij = 0 and εijhij = 0. No

tertiary constraints, so we have 4×3+2 = 14 (local) constraints

on a phase space of (local) dimension 4× 3× 2 = 24.

There are 6 gauge invariances (Diff3 and Local Lorentz) so we

expect (and find) 6 “first class” constraints. The remaining

8 are “second-class”. Hence physical phase space has (local)

dimension 24 − 2 × 6 − 8 = 4. Agrees with linearized limit

(each mode adds 2 to dimension) and extends it to full theory:

⇒ no Boulware-Deser ghost.
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Towards ZDG

The CS-like formulation of NMG suggests that it might be a

limit of some theory with two dreibein 1-forms, ea and fa; the

ha field could then be a limit of a second spin-connection.

Let
(
eaI , ω

a
I

)
be a pair of EC 1-form fields (I = 1,2), with EC

Lagrangian 3-forms

LI = −σIMIe
a
1 ∧R

a
I −

1
6αIm

2MIεabce
a ∧ eb ∧ ec ,

where σI = (1, σ = ±1) and αI = (α1, α2) are arbitrary constants.

The masses MI = (M1,M2) are assumed to be positive.

ø L = L1 + L2 describes two uncoupled EC models with inde-

pendent EC gauge invariances. We need a coupling that breaks

this to the ‘diagonal’ EC gauge group.
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Zwei-Dreibein Gravity

Couple the two EC Lagrangians with

L12 = 1
2m

2M12εabc
(
β1e

a
1 ∧ e

b
1 ∧ e

c
2 + β2e

a
1 ∧ e

b
2 ∧ e

c
2

)
.

where M12 = (σM1M2)/(σM1 + M2), and βI = (β1, β2) are two

more parameters.

We now have the ZDG Lagrangian 3-form

LZDG (αI , βI , η;σ) = L1 + L2 + L12 (η = M1/M2) .

It depends on five continuous parameters and a sign.
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ZDG → NMG

Take σ = −1, and βI = (0,1) and

α1 = −λ0λ+ 1
λ , α2 = 2

(
1 + 1

λ

)
M1 = 2

(
1 + 1

λ

)
MP , M2 = 2

λMP .

ea2 = ea1 + λ
m2f

a , ωa2 = ωa1 − λh
a .

Substitute into LZDG and take λ→ 0 limit. Result is

LZDG → 2MP LNMG

When account is taken of the 3D Newton constant, MP is the

3D Planck mass for NMG.
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Linearization of ZDG

Linearize ZDG about a vacuum dreibein ēa with cosmological

constant Λ by setting

ea1 = ēa + ha1 , ea2 =γ
(
ēa + ha1

)
ωI = ω̄(ē) + vaI

Cancellation of linear term fixes both Λ and parameter γ in terms

of ZDG parameters (α1, α2). Diagonalizing L(2), and defining

Mcrit = σM1 + γM2, we get

L(2) = McritL
(2)
EH −

σγM1M2
Mcrit

LFP (M) ,

where M2 = m2 (β1 + γβ2) Mcrit
σM1+M2

.

ø Can now read off conditions for bulk unitarity.
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Physical parameter space of ZDG

Assume AdS vacuum. For ZDG, boundary CFT central charge

is c = 12π`Mcrit: boundary unitarity requires Mcrit > 0.

ø Bulk unitarity is compatible with Mcrit > 0 only if σ = 1. Then

all unitarity conditions are satisfied by

M1 = M2 , β1 = β2 = 1 , α1 = α2 = 3
2 + ζ , (ζ > 0)

and this gives a vacuum with γ = 1 and Λ/m2 = −ζ.

ø The unitarity conditions are inequalities on ZDG parameters

that have been satisfied but not saturated. No fine tuning is

needed to achieve both boundary and bulk unitarity.
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Summary and open questions

ø NMG is generally covariant ghost-free non-linear extension of

the 3D Fierz-Pauli theory for massive spin-2. It propagates a

parity doublet of massive gravitons, has no other local degrees

of freedom, and is unitary.

ø But (i) unitarity requires fine tuning, and so is potentially

unstable against quantum corections and (ii) BTZ black holes of

NMG have negative mass. Equivalently, c < 0 for holographically

dual CFT.

ø ZDG solves both problems, but no ghost-free parity-violating

extension of ZDG is known.

ø Can adS/CFT be established for ZDG beyond semi-classical

limit?
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