Cosmology with

nonminimal kinetic coupling and

a power-law potential

Skugoreva M. A., Sushkov S. V., Toporensky A. V.

Introduction

- Theories with nonminimal kinetic coupling of a scalar field and gravity belong to a class of the most general scalar-tensor theories. In the context of inflationary cosmology these models were proposed to use by Amendola in 1993.
- In theories of this type in the cosmological action there are combinations of various curvature tensor componets and derivatives of a scalar field $R \varphi_{,\mu} \varphi^{,\mu}$, $R_{\mu\nu} \varphi^{,\mu} \varphi^{,\nu}$ and others.
- The Lagrangian giving second-order equations of motion was dirived by **Horndesky in 1974.**
- The models with nonminimal kinetic coupling can discribe the inflationary stage in the early Universe and its late time accelerated expansion.

Purpose of the work

The purpose of this work was the investigation of cosmological dynamics in the model with nonminimal kinetic coupling of a scalar field and gravity with the Lagrangian of the form

$$L = \frac{1}{2} \sqrt{-g} \Big(m_{Pl} R - (g^{\mu\nu} - \kappa G^{\mu\nu}) \varphi_{,\mu} \varphi_{,\nu} - 2V(\varphi) \Big)$$

where
$$G^{\mu\nu} = R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu}$$
 – the Einstein tensor,

$$V(\boldsymbol{\varphi}) = V_0 \boldsymbol{\varphi}^N$$
,

N – real number.

Method of the investigation

For the derivation of exact cosmological solutions and the investigation of stability of them **the dynamical systems theory** can effectivly help that was written in the book «Dynamical systems in cosmology» of Wainwright and Ellis, 1997.

Scheme of the method

Introduction of new variables

$$(H, \varphi, \dots) \rightarrow (x, y, \dots)$$

$$\begin{cases} x' = f_1(x, y, ...) \\ y' = f_2(x, y, ...) \end{cases}$$

Finding of stationary point

$$\begin{cases} f_1 = 0 \\ f_2 = 0 \end{cases} \qquad (x_{stat1}, y_{stat1}, ...) \\ (x_{stat2}, y_{stat2}, ...) \\ \dots \end{pmatrix}$$

Investigation of a stability of stationary points

$$\begin{pmatrix} (\delta x)' \\ (\delta y)' \\ \dots \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & , , , \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & , , , \\ \dots \dots \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \\ \dots \end{pmatrix} \longrightarrow \lambda_1, \lambda_2, \lambda_3$$
eigenvalues

The metrics was used

$$ds^2 = -dt^2 + a^2(t) d^2 l$$
,

then Ricci scalar

$$R = 6\left(2\mathrm{H}^2 + \dot{H}\right)$$

Planck units were chosen

 $h = c = 8\Pi G = 1.$

Main equations

By varying the action with the named Lagrangian the equations of gravitational and scalar fields are got

$$3 H^{2} m_{Pl} = \frac{1}{2} \dot{\varphi}^{2} (1 - 9 \kappa H^{2}) + V(\varphi) \qquad ,(1)$$

$$R m_{Pl} = -\dot{\varphi}^{2} + 4 V(\varphi) - \kappa (3 \dot{\varphi}^{2} H^{2} + \frac{\dot{\varphi}^{2}}{2} R + 6 H \dot{\varphi} \ddot{\varphi}),(2)$$

$$(\ddot{\varphi} + 3 H \dot{\varphi}) (1 - 3 \kappa H^{2}) - 6 \kappa H \dot{H} \dot{\varphi} + V'(\varphi) = 0 ,(3)$$

where
$$m_{Pl} = \frac{1}{8 \Pi G} = 1$$
.

Dimensionless variables

We introduce new variables and the parameter:

$$x = \frac{\dot{\varphi}^2}{6H^2(1+\kappa\dot{\varphi}^2)},$$

$$y = -\frac{\kappa\dot{\varphi}^2}{2(1+\kappa\dot{\varphi}^2)},$$

$$z = \frac{V(\varphi)}{3H^2(1+\kappa\dot{\varphi}^2)},$$

$$m = \frac{\dot{\varphi}}{\varphi H}.$$

$$b = \frac{V'(\varphi)\varphi}{V(\varphi)} = \mathbf{N}$$

Taking derivatives of the introduced variables with respect to **In(a)**, the first-order system of differential equation is found:

$$\frac{\dot{x}}{H} = \frac{dx}{d(\ln(a))} = x' = 2x(X(1+2y)-Y) ,$$

$$\frac{\dot{y}}{H} = \frac{dy}{d(\ln(a))} = y' = 2Xy(1+2y) ,$$

$$\frac{\dot{z}}{H} = \frac{dz}{d(\ln(a))} = z' = z(bm-2Y+4Xy) ,$$

$$\frac{\dot{m}}{H} = \frac{dm}{d(\ln(a))} = m' = m(X-m-Y) ,$$

(4)

where
$$X = \frac{\ddot{\varphi}}{\dot{\varphi}H}$$
, $Y = \frac{\dot{H}}{H^2}$

From the system (4) we exclude y, X, Y using equations following from the initial system (1)-(3)

$$y=1-x-z ,$$

$$X = \frac{-6(x+z)(1-z)+b(x+z-2)mz}{2(5z^2+4x^2-9x(1-z)y^2-11z+6)} ,$$

$$Y = \frac{3(1-z)(2x+3z-3)+b(x+z-1)mz}{5z^2+4x^2-9x(1-z)-11z+6} .$$

Time dependencese a(t) is found from a stationary value Y and $\varphi(t)$ – from one of coordinates of a stationary point, which isn't equal to zero, for example,m:

as
$$Y = \frac{H}{H^2}$$
, then $\frac{dH}{H^2} = Y_{stat} dt$,
 $a(t) = a_0 |t - t_0|^{\frac{-1}{Y_{stat}}}$,
 $m_{stat} = \frac{\dot{\varphi}}{\varphi H} = \frac{\dot{\varphi}a}{\varphi \dot{a}}$, $\frac{\dot{\varphi}}{\varphi} = m_{stat} \frac{\dot{a}}{a}$,
 $\varphi(t) = \varphi_0 |t - t_0|^{-\frac{m_{stat}}{Y_{stat}}}$.

Stationary point, their character of stability and corresponding solutions a(t), $\varphi(t)$ for $N \neq 2$.

Coordinates

x = 0

y=1

z = 0

m=0

Character of stability

a(t),
$$\boldsymbol{\varphi}(\boldsymbol{t})$$

Unstable node Exists for $t
ightarrow t_0$

$$a(t) = a_0 |t - t_0|^{\frac{2}{3}}$$

$$\varphi(t) = \varphi_0 \pm \sqrt{-\frac{2}{3\kappa}} (t - t_0)$$

2

$$\begin{array}{l} x = -y = \frac{1}{2} \\ x = -y = \frac{1}{2} \\ z = 1 \\ m = 0 \end{array}, \begin{array}{l} \text{Complex type} \\ \text{Exists} \\ 0 < N < 2 \\ t \rightarrow \infty \end{array} \qquad a(t) = a_0 e^{\pm \sqrt{\frac{1}{3\kappa}(t-t_0)}} \\ a(t) = a_0 e^{\pm \sqrt{\frac{1}{3\kappa}$$

Coordinates

Character of stability

Saddle Exists for $N \leq 0,$ $t \rightarrow \infty$

a(t),
$$\varphi(t)$$

 $a(t) = a_0 |t - t_0|^{\frac{1}{3}}$
 $\varphi(t) = \pm 2 \ln \left| \frac{t - t_0}{t' - t'_0} \right|$

Unstable node Exists for 0 < N < 2 $\varphi(t) = \varphi_0 e^{\pm \frac{1}{3\sqrt{\kappa}}(t-t_0)}$ $e^{\pm \frac{1}{\sqrt{\kappa}}(t-t_0)}$

For N > 2 its power index is negative and this solution deverges into «Big Rip» singularity at t = t₀.

Conclusions

1. In the model of the Universe with nonminimal kinetic coupling whithout matter and the power-low potential $V(\varphi) = V_0 \varphi^N$ two asimptotically stable solutions exist:

1). for N > 2 – power-low solution, which have the singularity «Big Rip» and doesn't depend on coupling constant *K*.
 2). for 0 < N < 2 – solution with H=±1/√3 κ and power-low behaviour of φ(t).

2. For 0 < N < 2 unstable exponential solution exists $(H=\pm \frac{1}{3\sqrt{\kappa}})$ and we have the possibility of a transition trom it either to ossilations or to stable inflation depending on initial data.

3. The case of N = 2 is requed of the special research.