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Prehistory

Most modifications of gravity change physics at high energies UV
- e.g. string theory, Kaluza-Klein theory

In gravity, high energy means high curvatures which means
early times

Thus string theory/KK modifications have little
impact on late-time cosmology

But its late time cosmology that we least
understand - Cosmic Acceleration

What if we have a modification of gravity at low energies IR?



The quintessential IR modification:
Dvali-Gabadadze-Porrati model

Imagine a brane in infinite § dimensions with a

THE DGP IDEA:

localized Einstein-Hilbert term on the brane .

»
More irrelevant More relevant
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Dominates in UV Dominates in IR

At low energies, we feel all § dimensions and so force of gravity
is 5d 1/7°
At high energies, brane kinetic term dominates,
and so force of gravity is 4d q /p2



Cosmology of DGP

(Gravitons can condense to form a condensate
whose energy density sources self-acceleration

pmatterNO HNm#O

DGP exhibits self-accelerating cosmological solutions
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Two signs correspond two two embeddings of the brane

Deftayet 2000

c.f. Cedric’s talk



Cosmology of DGP

Bad news: DGP has a ghost e ki
Charmousis et al 2006

Solution also sits at strong coupling threshold, quantum

stability? c.f. Cedric’s talk

One of the motivations for (Galileon models was to find self-
acceleration without the ghost
Nicolis, Ratazzi, Trincherini 2008

Not necessarily Galileons as scalar fields (covariant Galileon) but also
has remnants of higher spin fields (DGP, cascading gravity; massive
gravity) - in this latter case Galileon symmetry is exact with gravity!



Cosmology of IR modifications

Infrared modifications can be used to weaken the
strength of gravity at large (cosmological) distances

But thats not all!

/ Screening/Self-tuning mechanism

Self-acceleration? l

Degravitation mechanism?



Cosmology of IR modifications

(Gravitons can condense to form a condensate whose
energy density compensates the cosmological constant

Screening or self-tuning mechanism - The Cosmological
Constant can be LARGE with the cosmic acceleration

SMALL

c.f. Christos’s talk - Fab Four self-tuning



No degravitation/screening
for DGP

FRW is completely local relation between energy density and

Hubble rate
1
H? T mH = 0
307,

As long as the FRW equation is local we can never use IR
modification to resolve the OLD cosmological constant
problem

In higher than 5D full evolution is expected to be non-local in 4D

Srl;




Screening/Selt-tuning in massive gravity

mass term

Graviton condensate:
Spacetime is Minkowski in presence of an arbitrary large A

A oL
L e,

Equivalent Statement: The cosmological constant can be reabsorbed into a
redefinition of the metric and coupling constants - and is hence a
redundant operator



Degravitation = Dynamical Relaxation
Dynamical evolution to screened solution

Arkani-Hamed, Dimopoulos, Dvali, Gabadadze 2002
Dvali, Hofmann, Khoury 2007

e Can we modity gravity in the IR such that low
energy sources couple more weakly to gravity?

e A cosmological constant is the most low energy
thing we can write as 9, A = (

e DGP is not sufhiciently IR modified, need

Friedman equation which is more non-local

» Possible solution - generalize DGP to higher
dimensions - Cascading Gravity



Gravity in Higher Dimensions

In 4+n dimensional spacetime, gravitational potential
scales as

1
Tl—l—n

Vil

weaker gravity

we want to achieve this in the IR

1 1
V(T) AT > V(’]") ~ ,,,,1—|—n

T

UV, small r IR, large r



Gravity in Higher Dimensions

w1

Form of gravity potential i

Kallen-Lebman spectral v () = Z 4 / i ds?p(s?)
representation i

€

r

corresponds to propagator

Z ®.©,
Gr(k) = L /0 ds®p(s?)

] | (1—-2)

k2 —ie k2 +m2(k) — ie

we can interpret m>(k) as an effective mass for the graviton

1
k2 4+ s2 — q¢

N.B. I have neglected the tensor structure but all the
massive modes in the spectral rep have the Fierz-Pauli tensor structure
and the massless bave the Einstein tensor structure



Gravity in Higher Dimensions

oLy / A ot

k2 — je k2 4 52 — i€
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k2 —de k2 4+ m2(k) — ie
a=1/2 s5d
2 2( 1.2712\o o ~ 0 6d
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de Rham, Hofmann, Khoury, AJT (2008)

led to 6 or higher dim’s to provide Degravitation
Z =0 for infinite extra dimension



How can we achieve 4D to 6D transition?
Answer: Cascading Gravity!

More irrelevant More relevant
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Dominates in UV Dominates in IR

Gravity transitions from 4D to 5D to 6D

Brane on Brane solves UV divergence problem of codimension 2
branes (c.f. Christos’ talk)

de Rham, Dvali, Hofmann, Khoury, Pujolas, Redi, AJ'T 2008



Does cascading model realize dynamical
relaxation?
Criterion 1: Screening/Self-tuning

Existence of a Minkowski vacuum solution in the presence of a
cosmological constant on the 3-brane

=

similar properties found in 7 dimensional cascading model =
3-Brane on a 4-Brane on a 5-Brane in 7d

de Rham, Khoury, AJT 2009

Tension creates deficit

angle in bulk




Does cascading model realize
degravitation?

Criterion 2:

Dynamical and causal process by which we can relax to this
solution

At linearized level it works - Dvali, Hofmann, Khoury 2007

Nonlinearly: much harder to check! As yet no
one has demonstrated this mainly due to
complexity of problem

One strong motivation for considering Massive Gravity is as a toy model
of higher dimensional gravity models (eg Cascading Gravity) that
potentially exhibit degravitation



Why Massive (Gravity?

Simpler! Departure from GR is governed by
essentially a single parameter - Graviton Mass

GAIN: Nonlinear theory easier it |
than Higher dimensional LOSS: Diff invariance

framework

Vainshtein Screening mechanism ensures
recovery of GR in limit 1 — ()

This ensures massive gravity can be easily made to be
consistent with most tests of GR (effectively placing an

upper bound on m) without spoiling its role as an IR
modification



Ghost-free Massive Gravity
c.f. Claudia and Eugeny’s talks

L= M/~ @g (PR +2m°U(g, ) + L

Kﬁ(gaf) =0, — \/g'uafow U(g, H) = Us + aslls + asldy
U, = (IK]* - [K7]),
Us = ([K]* = 3[K]IK?] +2[K7)
Uy = ([K]* - 6[K°][K]° + 8[L7][K] + 3[K?)° — 6[K7])

de Rham, Gabadadze, AJT 2011



Properties of Mass terms
Equivalent representation:

1 2
Mass terms are £ = 2\/9( Zﬁn ) + Lm
characteristic
polynomials Det[1 + AX] = Z \1 1y
Finite number of
allowed interactions Xili= \/ ghaf.

in any dimension

Interactions protected by a Non-renormalization theorem
de Rham et al 2012/2013

Generalized to arbitrary (dynamical - bigravity)
reference metrics by Hassan, Rosen 2011



Cosmology of massive gravity:
A basic tension

dRGT removes the Boulware-Deser ghost (6th), but it does not
guarantee that all § remaining degrees of freedom are ghost free

Representation theory of de Sitter group gives the Higuchi bound for

b massive Spin 2 reps
m”~ =0 GR. 2dof

m2 — 9H 2 Partially massless theory 4 d.o.f.

c.f. Paul Townsend talk
m2 > 2H2 Massive § d.o.f.

For every cosmological solution we need to check
carefully if helicity-zero mode is unitary or not

. St Not obviously relevant
since it is not guaranteed

for Minkowski reference
Not guaranteed a problem, o metric which breaks de

. _ oyama et al 2005 .
e.g. in DGP bound always satisfied charmousis et al 2006 Sitter symmetry



Decoupling limit cosmology

c.f. Claudias talk

We can take a decoupling limit of massive gravity (and bigravity see
later) where after diagonalization massive gravity is equivalent to a free
helicity-2 particle, and a helicity-1 coupled to a helicity-o particle

de Rham et al 2010
Mpilanck — 00 m — 0 A° = (Mplanckm2)1/3

Helicity-o interactions are true Galileons i.e. preserve
Galileon symmetry

Since Galileon symmetry is EXACT we only require that
0,0, 7 is homogeneous and isotropic to describe FRW



Decoupling limit cosmology

de Rham, Gabadadze, Heisenberg, Pirtzkhalava 2010

The generic solution form for the helicity zero mode near x=0
which is isotropic in this limit is

T~ A(t) + B(t)x*

N.B. there is NO equivalent of this in covariant Galileon/Hordenski because
there symmetry is broken

. 1
distis= i T (LR O ETE e d £ [1 . §H2X2:| deal= (mw i th”W) datdz”

Equations of motion fix A and B - for example for pure cc source B=constant

A = —Bt*



Decoupling limit cosmology

de Rham et al 2010
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Decoupling limit cosmology
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In S.A. branch helicity zero does not couple to matter perts
- no vDVZ discontinuity - no Vainshtein

Screening/Self-tuning

(Degravitating) Branch 3
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Decoupling limit cosmology

More generally - Decoupling limit implies existence of isotropic
and inhomogeneous cosmological solutions for massive gravity
which for suitable range of parameters are free from Higuchi
bound (no-ghost in helicity zero sector)

Absence of Higuchi bound frees up possibility for background
Vainshtein effect - consistency with standard expansion history at
early times

All these solutions are in the Decoupling Limit - they all map to
solutions in the full nonlinear theory - however very hard to find!



Full theory - A No-Go

The simplest model (ARGT model - Massive Gravity in Minkowski)

does not support spatially flat (or closed) cosmological solutions
which are FRW meaning homogeneous and isotropic

Argument is simple: as in GR we have Friedman equation and
Raychaudhuri equation - the 2nd follows from 1st by diff invariance

But in MG diff invariance is broken and so 2nd does not follow from
1st - consistency of two imposes condition on scale factor

ds* = —N*(t)dt* + a*(t)dz*

aa?

N
D’Amico, d.e Rham, Dubovsky, Gabadadze, 2 N Bl az) it
Pirtskhalava, AJT 2011

H e ( Tlla it S IN(Da° - Baf - a)>




Resolution 1

Accept inhomogeneities:

D’Amico, de Rham, Dubovsky, Gabadadze, Pirtskhalava, AJT
"Massive Cosmologies’ 2011

Not as bad as it sounds! Vainshtein mechanism should
guarantee inhomogeneities unobservable before late times

c.f. Eugeny’s talk
Inhomogenities only appear on scale set by inverse graviton mass

Observational constraints on inhomgeneities as current Hubble
scale are actually very weak



Resolution 1

Inhomogeneities/Anisotropies can be hidden inside
Stueckelberg fields which do not directly couple to matter,
only indirectly through Mplanck suppressed terms

Volkov 2011/2012/2013,
Koyama 2011,

Even if metric is perfectly Gumrukcuoglu et al 2011,
homogeneous+isotropic, Gratia, Hu, Wyman 2012,
inhomogeneities show up in Kobayashi et al 2012,
cosmological perturbations, but can DeFelice 2011/2013,
easily be small Gumrukcuoglu 2012,

Tasinato et al :2012.2013,
Maeda + Volkov 2013



Resolution 11
Or modify assumptions to allow FRW:-

Open Universe solutions: Gumrukcuogli et al 2011 (however
unstable) Vakili et al 2012

* Make reference metric de Sitter - AJ'T and Fasiello - 2012
(for decoupling limit see de Rham, Renaux-Petel 2012) (also
unstable - see later)

* Make reference metric dynamical - Bigravity/Bimetric

von Strauss et al 2011
Comelli et al 2011, 2012
Volkov 2011

Akrami et al 2012
Koshravi et 2012

Berg et al 2012

no-ghost instabilities - see later

see Marco Crisostomz1’s talk



Resolution 11

Or significant modifications of theory to allow for FRW~

Quasi-dilaton massive gravity (unstable)
D’Amico, Gabadadze, Hui, Pirtskhalava 2012

Generalized quasi-dilaton massive gravity (stable!)

De Felice, Gumrukcuoglu, Mukohyama 2013

Lorentz violating massive gravity

Comelli, Nesti, Pilo 2013

Varying M
A Wh et al 2013, Leon et al 2013

Multi-vierbeins ity S \tH
Tamanini, Saridakis, Koivisto 2013

Extended massive gravity

Hinterbichler, Stokes, Trodden 2013

Nonlocal massive gravity . |
Jaccard, Maggiore, Mitsou 2013

Modesto, Tsujikawa 2013



Massive gravity with FRW reference metric

Deriving Friedman equation

Fasiello and AJT - 2012
Nice approach is with Stuckelberg fields

1he0
ds? = —N?dt* + a(t)2d52 d52 id _¢O dtQ il b2(¢0)d3—3)2
Ky(g,f) =0, — \/g“af(w cg in de Sitter b(¢0) — oHpe"
i -0
il WG il o
g f ( Oz b(ﬁz) 5@3) g lf b} (6\2 [)(Zp‘)yéw)

If metric transits from acceleration to
decceleration we need ¢° to change sign

At this point one of the eigenvalues of
\/g~1f vanishes
Problem? Answer - vierbein formulation can accommodate
changes of sign




Nibbelink et al

Vi e r b e in fO rmulat i O n Chamseddine, Mukhanov, Volkov

Hinterbichler and Rosen

| . i { S a
The vierbein formulation is analytic in the ¢ WHIBHU

/ vierbein

Mass term is  Det [e + AAL f20,,¢°]

As long as it is possible to solve the equation for the
Lorentz Stuckelberg fields A  ApA' =7

BMQA2f§8u¢d 17l e“bA2f§8u¢d =0

6 equations for 6 unknown Lorentz transtormations

Even when ¢° =0 we can solve for A} = ...00¢.

Recently emphasized explicitly by Gratia, Hu, Wyman 2013



Dressed Mass and Higuchi

4
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Generalized Higuchi bound is m?(H) > 2H*

arises from coeflicient of kinetic term for helicity zero mode

ﬁhelicityzero X m2 (H) (mZ (H) iy 2H2) (87‘-)2




Partially Massless Gravity

Coefhcient of kinetic term in general is proportional to

9 1 9 |

) m2 H H H
Ay 2 | B AN A

(H) 2M?2 H By BQHf 531{]%

m

It we make the special choice

B1=083=0 [a=1

de Rham and Renaux-Petel 2012

H2

m*(H) — 2H* = m(m2 — 2H?%)
and so if we choose !
i 2 S m*(H) = 2H"

Kinetic term vanishes regardless of matter source!!!

Unfortunately partially massless (bi)gravity does not work for vectors!



Higuchi versus Vainshtein

Higuchi = m*(H)
P
Vainshtein
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Blgrawty resolves Higuchi

1 i
L=zv=g|M ZZﬁn (9717) +5FMf
Stability bound
et bt N
~ 2 il 2
1 > 2H
il <H/MP> f

Massive gravity bound in the limit M f — OQ, M P, H f finite.

f)+ Ly



Hy H
Not possible before: ﬁf =>> M—P not directly invoking m

Friedman side

I} 3 n_ 3 (n—3)
1 3m?p H . 1 308n41 H

UL n . 2 —
= pla) + ) (3—n)lnl (Hf> T B il (3—n)ln! \ H;

n=0 Lk n=0

m? X O(l) < H > it’s the only direct requirement on m, but now:

Inthe 7 > el regionwith (31 7% 0  solve for m? Hs, bound reads:

M; = Mp
3H? > 2H" \/

The stability vs observations tension is resolved in bigravity !



Stable Self-accelerating Solution

Set: B3 =0 = fs; B1 =2Mp

6
5 1 AL mAM?,
willtitey el b RS ey
H f
Model Bo B, B. Bs By Om x;""in p-value log-evidence
ACDM free 0 0 0 0 free  546.54 0.8709 -278.50
(B1,09) 0 free 0 0 0 free  551.60 0.8355 -281.73

Observationally viable!
Akrami, Koivisto,

Stability bound? It reduces to Sandstad (2012,2013)

Stable as well.
see Marco Crisostomi’s talk for more discussion



Decoupling limit of Bigravity

Fasiello, AJT 2013

In Massive Gravity - Mass term breaks a single copy of local
Diffeomorphism Group down to a global Lorentz group

Dif f(M) — Global Lorentz

In Bigravity - Mass term breaks two copies of local
Diffeomorphism Group down to a single copy of Dift group

Dif f(M) x Dif f(M) — Dif f(M)aiagonal



Decoupling limit of Bigravity

Dif f(M) x Dif f(M) — Dif f(M)giagonal

Thus Bigravity also is best understood with Stueckelberg fields for
broken difts which in turn lead to a Galileon field in its decoupling
limit - dominates interaction in bigravity model

Dynamical metric 1 Dynamical metric 11
A B
g,ul/(aj) F,LLV i fAB(¢)8,U¢ 8U¢
¢ =z - 1 O m(x)

mMPlanck



Decoupling limit of Bigravity

Fasiello, AJT 2013

1 A 1 A
Shelicity—Q/O T /d43§’ {_Zhuygﬁfhaﬁ w Zv’uyg,guﬁvaﬁ
A3 M,A3
+ fh’“’(a:)XW | 25%3 vualz® + AF30%w] (s + Hf)YW}

—n)In!
M 6’a8b7r ZZO 2
i Ag Y — _1 571 s (77_|_ H)(n—l)nél—n
e s () 1)

Two massless spin-two fields coupled to a Galileon in a highly
non-minimal way!



No Partially Massless (Bi)gravity

de Rham, Hinterbichler, Rosen, AJT 2013
Fasiello, AJT 2013
The decoupling limit of bigravity and I
. . . . e i Ha [elaNdY b7t
massive gravity gives the following helicity-1/ il
helicity-o interactions

f Ondo, AJT 2013
Shelidieg 1 /0 = _gaggcg" (2G%(6 + M)Pw®,0% 4 (6 + I1)%(8 + IT)] [w®w?s + 62w aw®,))
Wab = / e e_2u€—uﬂaa/ Ga’b’e_unb/b Gab T aaBb 17} abBa T wa6(5 T H)Cb 301 (5 i H)acwcb
0

helicity-1

Partially massless (bi)gravity should have only (7) 4 propagating
degrees of freedom - helicity-o must be pure gauge - above action
shows that is not the case!



Iwo metrics means two ways to
introduce Galileon!

Fasiello, AJT 2013
But there are two ways to introduce Stuckelberg fields!

Dynamical metric 1 Dynamical metric 11

Gy (T) FMV i fAB(¢)aM¢A8V¢B

sttt (o T e a.
OR

Dynamical metric 1 Dynamical metric 11

éAB(i') Tl g,ul/(Z)aAZuﬁBZV fAB(f)

o=+




Dual Galileons fields

"Galileon Duality’ - de Rham, Fasiello, AJT 2013

For every Galileon field 7(z)
we define the Dual Galileon field via the implicit

infinite order in derivatives non-local field redefinition
4 = ¢ (z) = z* + 047 (z)

arlsZ i (ml s 2 -+ 0 o(x)
Explicitly this is

1 1
o(xz) = —w(z) + 5(877)2 — iﬁawﬁbﬂﬁaﬁbﬂ + infinite number of terms. ..

or for spherical symmetry

o) = ~m(r) + 3 o (@m)")

n—>2>




Dual Galileons Lagrangians

Galileon operators: il ree(00m) 1Pt

For every Galileon field Lagrangian in D spacetime

dimensions
£(W) s Cgﬁg(ﬂ') T 03£3(7T) S C4£4(7T) ST,

admits a dual formulation as a Galileon
L(p) = p2L2(p) + p3L3(p) + pala(p) + ...

with distinct coefficients
D+1

1 k(d—k+1)!
i ;::2(_1)ka (n —(k)!(d— ni—l)!




Quasi-Dilaton Massive Gravity
D’Amico et al 2012

Same argument can be applied to generic cosmological
solutions on quasi-dilaton massive gravity
W m

M2 2 i 1 A
Sk :/d4:13 2Pl i [R a2 ng(?,uo'ﬁya' I (UQ(/C) i C¥3U3(/C) 10 O&4Z/f4(/C))]
Pl

i / gl AT

Iauy it 55 17 ea/MPI \/g’uaﬁa¢aﬁu¢b77ab

Generically we find a nonzero kinetic term for helicity zero
mode showing that the general cosmological solutions are

healthy!

However has its own instabilites, D’Amico et al 2013



Generalized quasi-dilaton

Previous problems resolved by De Felice, Mukohyama 2013

MI:Q’I 4 - W L
§= =B [ d'oy/—g| R — 24 — —>8,0040
1 Pl

+2m3(£2 + asls + agly)|.

CH — St _ o0/Mp ( g1 f)u Massive gravity with
f f y/ dynamical mass and
A ey I L couplings and a
fuw = fuv M2.m2 il 70000 dynamical reference
P1"""g

metric

Cosmological solutions free of instabilities



Summary

Massive Gravity is a useful toy model to understand higher
dimensional theories

Potentially exhibit both Self-Acceleration and Self-tuning
(Degravitation)

FRW (fully homogeneous and isotropic) solutions are a problem
in Massive Gravity. Inhomogenous/anisotropic solutions do exist
- not all stable but some are!

For Partially Massless Gravity - Higuchi bound is automatically
satisfied for any choice of matter - Unfortunately decoupling
limit makes it easy to see absence of partially massless (bi)gravity

For Massive Gravity on a fixed FRW reference metric, bound is
in conflict with Vainshtein mechanism

For Bigravity, bound is almost always satisfied regardless of the

choice of matter as long as H < Hf



