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Most modifications of gravity change physics at high energies UV 
- e.g. string theory, Kaluza-Klein theory

In gravity, high energy means high curvatures which means 
early times

Thus string theory/KK modifications have little 
impact on late-time cosmology

But its late time cosmology that we least 
understand - Cosmic Acceleration

What if we have a modification of gravity at low energies IR?

Prehistory



Imagine a brane in infinite 5 dimensions with a
 localized Einstein-Hilbert term on the brane

At low energies, we feel all 5 dimensions and so force of gravity 
is 5d

At high energies, brane kinetic term dominates,
and so force of gravity is 4d 

The quintessential IR modification: 
Dvali-Gabadadze-Porrati model
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DGP exhibits self-accelerating cosmological solutions

Cosmology of DGP

Deffayet 2000

H2 ⌥mH =
1

3M2
pl

⇢

Gravitons can condense to form a condensate 
whose energy density sources self-acceleration

⇢matter ⇠ 0 H ⇠ m 6= 0

Two signs correspond two two embeddings of the brane

c.f. Cedric’s talk



Bad news: DGP has a ghost Koyama et al 2005
Charmousis et al 2006

Cosmology of DGP

Solution also sits at strong coupling threshold, quantum 
stability? c.f. Cedric’s talk

One of the motivations for Galileon models was to find self-
acceleration without the ghost

Not necessarily Galileons as scalar fields (covariant Galileon) but also 
has remnants of higher spin fields (DGP, cascading gravity, massive 
gravity) - in this latter case Galileon symmetry is exact with gravity!

Nicolis, Ratazzi, Trincherini 2008



Infrared modifications can be used to weaken the 
strength of gravity at large (cosmological) distances

But thats not all!

Screening/Self-tuning mechanism

Degravitation mechanism?

Self-acceleration?

Cosmology of IR modifications



Gravitons can condense to form a condensate whose 
energy density compensates the cosmological constant

Screening or self-tuning mechanism - The Cosmological 
Constant can be LARGE with the cosmic acceleration 
SMALL

Cosmology of IR modifications

c.f. Christos’s talk - Fab Four self-tuning 



No degravitation/screening 
for DGP

FRW is completely local relation between energy density and 
Hubble rate

As long as the FRW equation is local we can never use IR 
modification to resolve the OLD cosmological constant 

problem

H2 ⌥mH =
1

3M2
pl

⇢

In higher than 5D full evolution is expected to be non-local in 4D

H2 + F (H) ⇠ 8⇡G

3
G(⇤)⇢



Gµ⌫ +m2 @LM

@gµ⌫
= �⇤gµ⌫

Graviton condensate:
Spacetime is Minkowski in presence of an arbitrary large 

m2 @LM

@gµ⌫
= �⇤gµ⌫gµ⌫ =

✓
1 + f

✓
⇤

m2

◆◆
⌘µ⌫

⇤

Gµ⌫ = 0

Equivalent Statement: The cosmological constant can be reabsorbed into a 
redefinition of the metric and coupling constants - and is hence a 

redundant operator

mass term

Screening/Self-tuning in massive gravity



• Can we modify gravity in the IR such that low 
energy sources couple more weakly to gravity?

• A cosmological constant is the most low energy 
thing we can write as 

• DGP is not sufficiently IR modified, need 
Friedman equation which is more non-local

• Possible solution - generalize DGP to higher 
dimensions - Cascading Gravity

Degravitation = Dynamical Relaxation
Dynamical evolution to screened solution

@µ⇤ = 0

Arkani-Hamed, Dimopoulos, Dvali, Gabadadze 2002
Dvali, Hofmann, Khoury 2007



In 4+n dimensional spacetime, gravitational potential 
scales as

weaker gravity

we want to achieve this in the IR

UV, small r IR, large r

V (r) ⇠ 1

r1+n

V (r) ⇠ 1

r V (r) ⇠ 1

r1+n

Gravity in Higher Dimensions



Gravity in Higher Dimensions
Form of gravity potential

Ka!en-Lehman spectral 
representation

corresponds to propagator

N.B. I have neglected the tensor structure but a! the 
massive modes in the spectral rep have the Fierz-Pauli tensor structure 
and the massless have the Einstein tensor structure

we can interpret             as an effective mass for the graviton m2(k)
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led to 6 or higher dim’s to provide Degravitation

de Rham, Hofmann, Khoury, AJT (2008)
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Gravity in Higher Dimensions



More relevantMore irrelevant

Dominates in IRDominates in UV

Gravity transitions from 4D to 5D to 6D

Brane on Brane solves UV divergence problem of codimension 2 
branes (c.f. Christos’ talk)

de Rham, Dvali, Hofmann, Khoury, Pujolas, Redi, AJT 2008

How can we achieve 4D to 6D transition?
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Answer: Cascading Gravity!



Criterion 1: Screening/Self-tuning
Existence of a Minkowski vacuum solution in the presence of a 

cosmological constant on the 3-brane

Tension creates deficit 
angle in bulk

similar properties found in 7 dimensional cascading model = 
3-Brane on a 4-Brane on a 5-Brane in 7d

de Rham, Khoury, AJT 2009

Does cascading model realize dynamical 
relaxation?



Criterion 2:
Dynamical and causal process by which we can relax to this 

solution

At linearized level it works - Dvali, Hofmann, Khoury 2007

Nonlinearly: much harder to check! As yet no 
one has demonstrated this mainly due to 

complexity of problem

Does cascading model realize 
degravitation?

One strong motivation for considering Massive Gravity is as a toy model 
of higher dimensional gravity models (eg Cascading Gravity) that 
potentially exhibit degravitation



Vainshtein Screening mechanism ensures 
recovery of GR in limit m ! 0

Simpler! Departure from GR is governed by 
essentially a single parameter - Graviton Mass

This ensures massive gravity can be easily made to be 
consistent with most tests of GR (effectively placing an 
upper bound on m) without spoiling its role as an IR 
modification

Why Massive Gravity?

GAIN: Nonlinear theory easier 
than Higher dimensional 

framework
LOSS: Diff invariance



de Rham, Gabadadze, AJT 2011

Ghost-free Massive Gravity

to inflation[31–34]. This theory as a whole also appears to be part of a larger family of
massive theories of gravity[30] some of which first emerged in the study of AdS4/CFT3

correspondence.

2 dRGT Massive Gravity

The theory of massive gravity defined on an arbitrary reference metric fµν is just a
straightforward generalization of the theory proposed in [20]. The Lagrangian takes
the form of Einstein gravity with matter plus a potential that is a scalar function of
the two metrics

L = M2
Pl

√

− (4)g
(

(4)R + 2m2U(g, f)
)

+ LM . (2.1)

The most general potential U that has no ghosts [20] is build out of characteristic
polynomials of the eigenvalues of the tensor

Kµ
ν (g, f) = δµν −

√

gµαfαν (2.2)

so that
U(g,H) = U2 + α3U3 + α4U4, (2.3)

where the αn are free parameters, and

U2 =
(

[K]2 − [K2]
)

, (2.4)

U3 =
(

[K]3 − 3[K][K2] + 2[K3]
)

, (2.5)

U4 =
(

[K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]
)

, (2.6)

where [. . .] represents the trace of a tensor with respect to the metric gµν . The absence
of ghost for this theory for a Minkowski background metric was shown in the decoupling
limit in [17, 18, 20], fully non-linearly beyond the decoupling limit in [21, 22], as well
as in the Stückelberg and helicity languages in [23, 24].

Varying with respect to the metric gµν we find the equations of motion

Gµν +m2Xµν = M−2
pl Tµν (2.7)

where

Xµν = −
[

Kgµν −Kµν + η

(

K2
µν −KKµν +

1

2
gµν
(

[K]2 − [K2]
)

)

(2.8)

+6ρ

(

K3
µν −KK2

µν +
1

2
Kµν

(

[K]2 − [K2]
)

−
1

6
gµν
(

[K]3 − 3[K][K2] + 2[K3]
)

)

]

.

Using the Bianchi identities, we obtain the following constraint on the metric

m2∇µXµν = 0, (2.9)

Here we have defined the coefficients α and β which are related to those of (2.3) by
α3 = −(−η + 1)/3 and α4 = −ρ/2 + (−η + 1)/12.
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c.f. Claudia and Eugeny’s talks



Properties of Mass terms

Mass terms are 
characteristic 
polynomials

Finite number of 
allowed interactions 
in any dimension

Interactions protected by a Non-renormalization theorem
de Rham et al 2012/2013

     Generalized to arbitrary (dynamical - bigravity) 
reference metrics by Hassan, Rosen 2011

Det[1 + �X] =
DX

n=0

�n Un(X)
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Equivalent representation:



Cosmology of massive gravity: 
A basic tension

dRGT removes the Boulware-Deser ghost (6th), but it does not 
guarantee that all 5 remaining degrees of freedom are ghost free

Representation theory of de Sitter group gives the Higuchi bound for 
massive spin 2 reps

For every cosmological solution we need to check 
carefully if helicity-zero mode is unitary or not 
since it is not guaranteed

Koyama et al 2005    
Charmousis et al 2006

Not guaranteed a problem, 
e.g. in DGP bound always satisfied

Not obviously relevant 
for Minkowski reference 
metric which breaks de 
Sitter symmetry

m2 = 0

m2 = 2H2

m2 > 2H2

G.R.    2 d.o.f.

Partially massless theory 4 d.o.f.

Massive  5 d.o.f.
c.f. Paul Townsend talk



Decoupling limit cosmology
c.f. Claudias talk       

 We can take a decoupling limit of massive gravity (and bigravity see 
later) where after diagonalization massive gravity is equivalent to a free 
helicity-2 particle, and a helicity-1 coupled to a helicity-0 particle

MPlanck ! 1 m ! 0 ⇤3 = (MPlanckm
2)1/3

Helicity-0 interactions are true Galileons i.e. preserve 
Galileon symmetry

Since Galileon symmetry is EXACT we only require that 
is homogeneous and isotropic to describe FRW@µ@⌫⇡

de Rham et al 2010



tion, it leads to the usual ΛCDM - like cosmological expansion of the background
in the sub-horizon approximation used here. This is clear form the fact that the
stress-tensor (24) gives rise to a de Sitter background as was shown in the previous
subsection. Hence, in the comoving coordinate system – which differs from the one
used above – the invariant de Sitter space will be the self-accelerating solution.

All this can be reiterated by performing an explicit coordinate transformation
to the comoving coordinates. This will be done in two steps. In the so-called Fermi
normal coordinates, the FRW metric can be locally written in space and for all
times, as a small perturbation over Minkowski space-time:

ds2 = −[1 − (Ḣ +H2)x2]dt2 +

[

1−
1

2
H2x2

]

dx2 =
(

ηµν + hFRW
µν

)

dxµdxν , (25)

where the corrections to the above expression are suppressed by higher powers of
H2x2. The Fermi normal coordinates, on the other hand, are related to those used in
(14) (in which the FRWmetric is a small conformal deformation of Minkowski space-
time), by an infinitesimal gauge transformation [15]. The latter does not change the
expression (24), since T π

µν is invariant under infinitesimal gauge transformations in
the decoupling limit. On the other hand, the Fermi normal coordinates can be
transformed into the standard comoving coordinates (tc,xc) as follows [15]

tc = t−
1

2
H(t)x2, xc =

x

a(t)

[

1 +
1

4
H2(t)x2

]

. (26)

The stress-tensor of a perfect fluid, Tµν = diag(ρ(tc), a2(tc)p(tc)δij), transforms under
this change of coordinates (at the leading order inH2x2) into the following expression

Tµν =

(

ρ −H(ρ+ p)xi

−H(ρ+ p)xi pδij

)

,

where all quantities in the latter expression are evaluated at time t. Note that the
off-diagonal entries of the stress-tensor for the cosmological constant vanish in the
Fermi normal coordinates, the same is true for T π

µν as well. Hence, in all coordinate
systems used the expressions for the stress-tensor on the self-accelerated solution is
given by (24).

Not surprisingly, the corresponding cosmological equations coincide with the
conventional ones for the ΛCDM model, with the cosmological constant set by the
mass of the graviton

H2 =
ρ

3M2
Pl

+
C2m2

3
, (27)

Ḣ +H2 =
ä

a
= −

1

6M2
Pl

(ρ+ 3p) +
C2m2

3
. (28)

Here ρ and p denote the energy and pressure densities of matter and/or radiation,
and C2 ≡ 6q

[

−1
2 + a2q + a3q2

]

is a constant that appears in (24).
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The generic solution form for the helicity zero mode near x=0 
which is isotropic in this limit is 

⇡ ⇠ A(t) +B(t)x2

Equations of motion fix A and B - for example for pure cc source B=constant
A = �Bt2

N.B. there is NO equivalent of this in covariant Galileon/Hordenski because 
there symmetry is broken

Decoupling limit cosmology
de Rham, Gabadadze, Heisenberg, Pirtzkhalava 2010 



This solution is closer to the usual GR de Sitter configuration and only exists if
a22 ≥ 3a1a3. The stability of this solution can be analyzed as previously by looking
at fluctuations around this background configuration,

π =
1

2
qdS Λ

3
3 x

2 + φ , (51)

hµν = −
1

2
H2

dS x
2 ηµν + χµν , (52)

Tµν = −ληµν + τµν . (53)

To second order in fluctuations, the resulting action is then of the form

L(2) = −
1

2
χµνEαβ

µν χαβ +
6H2

dSMPl

Λ3
3

(a2 + 3a3qdS)φ!φ+
1

MPl
χµντµν . (54)

It is interesting to point out again that the helicity-0 fluctuation φ then decouples
from matter sources at quadratic order (however the coupling reappears at the cubic
order). Stability of this solution is therefore ensured if the parameters satisfy one of
the following three constrains, (setting a1 = −1/2 and λ̃ > 0)

a2 < 0 and −
2a22
3

≤ a3 <
1− 3a2λ̃− (1− 2a2λ̃)3/2

3λ̃2
, (55)

or

a2 <
1

2λ̃
and a3 >

1− 3a2λ̃+ (1− 2a2λ̃)3/2

3λ̃2
, (56)

or

a2 ≥
1

2λ̃
and a3 > −

2

3
a22 . (57)

These are consistent with the results (22) found for the self-accelerating solution in
the absence of a cosmological constant. Moreover, the requirement of stability of
helicity-1 fluctuations does not impose further bounds on the parameters (see, dis-
cussions at the end of section 3.2). Notice here that in the presence of a cosmological
constant, the accelerating solution can be stable even when a3 = 0. This branch of
solutions therefore connects with the usual de Sitter one of GR.

4.2.3 Diagonalizable action

In section 3 we have emphasized the importance of the contribution of X(3)
µν for

the stability of the self-accelerating solution. However, in the presence of a nonzero
cosmological constant, this contribution is not a priori essential for stability of either
the degravitating or the de Sitter branches. Furthermore, since the helicity-0 and
-2 modes can be diagonalized at the nonlinear level when a3 = 0, as was explicitly
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the absence of a cosmological constant. Moreover, the requirement of stability of
helicity-1 fluctuations does not impose further bounds on the parameters (see, dis-
cussions at the end of section 3.2). Notice here that in the presence of a cosmological
constant, the accelerating solution can be stable even when a3 = 0. This branch of
solutions therefore connects with the usual de Sitter one of GR.

4.2.3 Diagonalizable action

In section 3 we have emphasized the importance of the contribution of X(3)
µν for

the stability of the self-accelerating solution. However, in the presence of a nonzero
cosmological constant, this contribution is not a priori essential for stability of either
the degravitating or the de Sitter branches. Furthermore, since the helicity-0 and
-2 modes can be diagonalized at the nonlinear level when a3 = 0, as was explicitly

16

theory discussed in the previous section, the nonlinear dynamics in a generic model
of massive gravity is governed by the scale

Λ5−4α
" = MPlm

4(1−α) . (31)

In such models, it has been shown [27] that the helicity-0 (π) and -2 (h̄µν) modes
satisfy the following equations in the decoupling limit,

−Eαβ
µν h̄αβ = −

1

MPl
Tµν , (32)

3!π −
18

Λ5−4α
"

(

3!(!1−απ)2 + · · ·
)

= −
T

MPl
, (33)

where the physical metric is given by gµν = ηµν +(h̄µν +πηµν)/MPl. In the presence
of a cosmological constant, Tµν = −ληµν , the solution for the helicity-2 mode is

h̄µν = −
λ

6MPl
xβx

β ηµν , (34)

which is the usual GR solution. One can now check the condition for the existence of
a (nearly) static solution towards which the geometry can relax at late times. In the
language of the decoupling limit, this would happen if the helicity-0 mode compen-
sates the helicity-2 mode contribution πηµν = −h̄µν to maintain the geometry flat
gµν = ηµν . However the configuration π = λx2/6MPl is precisely the solution of (33)
when the higher interactions vanish, i.e. 6MPl!π = −T = 8λ. As shown in [27],
such interactions cancel for π ∼ x2 only if α < 1/2, hence implying that a generic
theory of massive gravity amended with a nonzero CC can only have a static solu-
tion when α < 1/2. In particular, in this language the DGP model [4] corresponds
to α = 1/2 (see Ref. [7], but also [39]) hence explaining why this model does not
bear static solutions with a brane tension, while promoting it to higher dimensions
corresponds to a theory with α → 0 for which the usual codimension-two conical
solutions can accommodate a tension without acceleration, [40, 41, 42, 43, 44].

The above results hold true for a generic theory of massive gravity. We now
focus the analysis of the ghostless theory [16] reviewed in section 2, which strictly
speaking are not captured by the above α parametrization. The key difference in
the ghostless case is that interactions for the helicity-0 mode are governed by the
larger coupling scale Λ3 > Λ". The form of these interactions in the ghostless theory,
as well as the specific couplings to matter, play a crucial role in accommodating a
degravitating branch of solutions, and this without being plagued by any instability
at least in the decoupling limit.

4.2 Degravitation in ghostless massive gravity

For convenience we start by recalling the decoupling limit Lagrangian of (9) coupled
to an external source

L = −
1

2
hµνEαβ

µν hαβ + hµν
3
∑

n=1

an

Λ3(n−1)
3

X(n)
µν [Π] +

1

MPl
hµνTµν . (35)
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background plus 
perturbations split

in terms of the dimensionless quantity λ̃ = λ/Λ3
3MPl. Notice that as long as the

parameter a3 is present, Eq. (42) has always at least one real root. There is therefore
a flat solution for arbitrarily large cosmological constant.

Let us now briefly comment on the stability of the flat solution, as this has
important consequences for the relaxation mechanism behind degravitation. We
consider the field fluctuations above the static solution,

π =
1

2
q0Λ

3
3 x

2 − φ/κ , (43)

Tµν = −ληµν + τµν , (44)

where q0 is related to λ via (42) and the coupling κ is determined by

κ = 2(a1 + 2a2q0 + 3a3q
2
0) . (45)

To the leading order, the action for these fluctuations is then simply given by

L(2) = −
1

2
hµνEαβ

µν hαβ −
1

2
hµνX(1)

µν [Φ] +
1

MPl
hµντµν , (46)

with Φµν = ∂µ∂νφ. The stability of this theory is better understood when working
in the Einstein frame where the helicity-0 and -2 modes decouple. This is achieved
by performing the change of variable,

hµν = h̄µν + φηµν , (47)

which brings the action to the following form

L(2) = −
1

2
h̄µνEαβ

µν h̄αβ +
3

2
φ!φ+

1

MPl

(

h̄µν + φ ηµν
)

τµν . (48)

Stability of the static solution is therefore manifest for any region of the parameter
space for which κ is real and does not vanish. As already mentioned, if a3 "= 0 there
is always a real solution to (42), which is therefore stable for κ "= 0. Furthermore,
direct calculations to the 6th order show that the helicity-1 fluctuations will have a
positive kinetic term as long as κ/(q0 − 1) > 0. This suggests the presence of a flat
late-time attractor solution for degravitation. The special case a3 = 0 is discussed
separately below.

4.2.2 de Sitter branch

In the presence of a cosmological constant, the field equations (40) and (41) also
admit a second branch of solutions; these connect with the self-accelerating branch
presented in section 3, and we refer to them as the de Sitter solutions. The param-
eters for these solutions should satisfy

a1 + 2a2qdS + 3a3q
2
dS = 0 , (49)

H2
dS =

λ

3M2
Pl

+
2Λ3

3

MPl

(

a1qdS + a2q
2
dS + a3q

3
dS

)

. (50)
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This solution is closer to the usual GR de Sitter configuration and only exists if
a22 ≥ 3a1a3. The stability of this solution can be analyzed as previously by looking
at fluctuations around this background configuration,

π =
1

2
qdS Λ

3
3 x

2 + φ , (51)

hµν = −
1

2
H2

dS x
2 ηµν + χµν , (52)

Tµν = −ληµν + τµν . (53)

To second order in fluctuations, the resulting action is then of the form

L(2) = −
1

2
χµνEαβ

µν χαβ +
6H2

dSMPl

Λ3
3

(a2 + 3a3qdS)φ!φ+
1

MPl
χµντµν . (54)

It is interesting to point out again that the helicity-0 fluctuation φ then decouples
from matter sources at quadratic order (however the coupling reappears at the cubic
order). Stability of this solution is therefore ensured if the parameters satisfy one of
the following three constrains, (setting a1 = −1/2 and λ̃ > 0)
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2λ̃
and a3 >

1− 3a2λ̃+ (1− 2a2λ̃)3/2

3λ̃2
, (56)

or

a2 ≥
1

2λ̃
and a3 > −

2

3
a22 . (57)

These are consistent with the results (22) found for the self-accelerating solution in
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helicity-1 fluctuations does not impose further bounds on the parameters (see, dis-
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The above results hold true for a generic theory of massive gravity. We now
focus the analysis of the ghostless theory [16] reviewed in section 2, which strictly
speaking are not captured by the above α parametrization. The key difference in
the ghostless case is that interactions for the helicity-0 mode are governed by the
larger coupling scale Λ3 > Λ". The form of these interactions in the ghostless theory,
as well as the specific couplings to matter, play a crucial role in accommodating a
degravitating branch of solutions, and this without being plagued by any instability
at least in the decoupling limit.

4.2 Degravitation in ghostless massive gravity

For convenience we start by recalling the decoupling limit Lagrangian of (9) coupled
to an external source
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2
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∑
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MPl
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with Φµν = ∂µ∂νφ. The stability of this theory is better understood when working
in the Einstein frame where the helicity-0 and -2 modes decouple. This is achieved
by performing the change of variable,
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which brings the action to the following form
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h̄µνEαβ

µν h̄αβ +
3

2
φ!φ+

1

MPl

(
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)
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Stability of the static solution is therefore manifest for any region of the parameter
space for which κ is real and does not vanish. As already mentioned, if a3 "= 0 there
is always a real solution to (42), which is therefore stable for κ "= 0. Furthermore,
direct calculations to the 6th order show that the helicity-1 fluctuations will have a
positive kinetic term as long as κ/(q0 − 1) > 0. This suggests the presence of a flat
late-time attractor solution for degravitation. The special case a3 = 0 is discussed
separately below.

4.2.2 de Sitter branch

In the presence of a cosmological constant, the field equations (40) and (41) also
admit a second branch of solutions; these connect with the self-accelerating branch
presented in section 3, and we refer to them as the de Sitter solutions. The param-
eters for these solutions should satisfy

a1 + 2a2qdS + 3a3q
2
dS = 0 , (49)
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Pl
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2Λ3
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MPl

(
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More generally - Decoupling limit implies existence of isotropic 
and inhomogeneous cosmological solutions for massive gravity 
which for suitable range of parameters are free from Higuchi 
bound (no-ghost in helicity zero sector)

Absence of Higuchi bound frees up possibility for background 
Vainshtein effect - consistency with standard expansion history at 
early times

All these solutions are in the Decoupling Limit - they all map to 
solutions in the full nonlinear theory - however very hard to find!

Decoupling limit cosmology



The simplest model (dRGT model - Massive Gravity in Minkowski) 
does not support spatially flat (or closed) cosmological solutions 

which are FRW meaning homogeneous and isotropic

Argument is simple: as in GR we have Friedman equation and 
Raychaudhuri equation - the 2nd follows from 1st by diff invariance

 But in MG diff invariance is broken and so 2nd does not follow from 
1st - consistency of two imposes condition on scale factor

where overdot denotes the time derivative ∂0. We emphasize that the quantity ḟ
appears in the Lagrangian only linearly. The same remains true if we keep nonzero
α3 and α4 - it is just the special structure of the terms L(n)

der(K), n = 2, 3, 4 in (12),
that ensures that ḟ enters only linearly! This is a consequence of the fact that in the
decoupling limit the equations of motion of this theory have no more than two time
derivatives acting on the helicity-0 field in particular (and on any field in general)
[3]. Away from the decoupling limit this is related to the constraint that was found
in Refs. [1, 4, 5]. Here we see the constraint for the FRW metric to all orders, by
taking variation of (14) w.r.t. f :

m2∂0(a
3 − a2) = 0 . (15)

This constraint makes time evolution of the scale factor impossible. As we have noted
above, keeping the K3 and K4 terms in (12) can only modify the polynomial function
of a on which ∂0 acts in (15). Therefore, there are no nontrivial homogeneous and
isotropic solutions in the theory of massive GR, defined by (12).

It is also instructive to show the absence of FRW solutions in the unitary gauge,
for which φa = δaµx

µ, and no f field appears in the action to begin with. In this gauge,
the most general homogeneous and isotropic ansatz involves the lapse function N(t),

ds2 = −N2(t)dt2 + a2(t)d%x2 , (16)

and the Lagrangian (12) with α3 = α4 = 0 reads

L = 3M2
Pl

(

−
aȧ2

N
−m2(a3 − a2) +m2N(2a3 − 3a2 + a)

)

. (17)

As can be straightforwardly verified, the condition (15) in this case arises as the
requirement of consistency of the equations of motion for the two fields, a and N
in (17). More specifically, one can obtain (15) by taking the difference between the
time-derivative of the e.o.m. for N and the e.o.m. for a. Technically, this is so
because the second term on the r.h.s. of (17) has no factors of N in it and the
constraint arises as the direct result of the Bianchi identity of GR.

We briefly note that the homogeneous and isotropic solutions would not be for-
bidden if the mass term were not an explicit constant, but instead emerged as a
VEV of some field-dependent function; i.e., if we replaced m2 → m2(σ) in (12),
where σ is a scalar field that also has its own kinetic and potential terms. Then,
variation w.r.t. f would give rise to a constraint

∂0(m
2(σ)(a3 − a)) = 0 , (18)

that relates time evolution of the scale factor to that of the σ field, but it does not
forbid homogeneous and isotropic solutions. Hence, the absence of the homogeneous
and isotropic solutions is an intrinsic property of massive GR with an explicit mass
term, as in (12). By this property it could potentially be distinguished observation-
ally from the theory with a dynamical mass m2(σ). Moreover, for the latter theory
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Full theory - A No-Go

D’Amico, de Rham, Dubovsky, Gabadadze, 
Pirtskhalava, AJT  2011



Accept inhomogeneities:

D’Amico, de Rham, Dubovsky, Gabadadze, Pirtskhalava, AJT 
`Massive Cosmologies’ 2011

Not as bad as it sounds! Vainshtein mechanism should 
guarantee inhomogeneities unobservable before late times

Inhomogenities only appear on scale set by inverse graviton mass

Resolution 1

Observational constraints on inhomgeneities as current Hubble 
scale are actually very weak

c.f. Eugeny’s talk



Resolution 1

Volkov 2011/2012/2013, 
Koyama 2011, 

Gumrukcuoglu et al 2011, 
Gratia, Hu, Wyman 2012, 

Kobayashi et al 2012, 
DeFelice 2011/2013, 

Gumrukcuoglu 2012, 
Tasinato et al :2012.2013, 

Maeda + Volkov 2013

Inhomogeneities/Anisotropies can be hidden inside 
Stueckelberg fields which do not directly couple to matter, 

only indirectly through Mplanck suppressed terms

Even if metric is perfectly 
homogeneous+isotropic, 
inhomogeneities show up in 
cosmological perturbations, but can 
easily be small



Or modify assumptions to allow FRW:
Open Universe solutions: Gumrukcuogli et al 2011 (however 
unstable) Vakili et al 2012

* Make reference metric de Sitter - AJT and Fasiello - 2012 
 (for decoupling limit see de Rham, Renaux-Petel 2012) (also 
unstable - see later)

* Make reference metric dynamical - Bigravity/Bimetric
von Strauss et al 2011
Comelli et al 2011, 2012
Volkov 2011
Akrami et al 2012
Koshravi et 2012
Berg et al 2012

Resolution II

see Marco Crisostomi’s talk

no-ghost instabilities - see later



Or significant modifications of theory to allow for FRW:

Quasi-dilaton massive gravity (unstable)

Generalized quasi-dilaton massive gravity (stable!)
De Felice, Gumrukcuoglu, Mukohyama 2013 

Comelli, Nesti, Pilo  2013
Lorentz violating massive gravity

D’Amico, Gabadadze, Hui, Pirtskhalava 2012
 

Multi-vierbeins
Tamanini, Saridakis, Koivisto 2013

Extended massive gravity
Hinterbichler, Stokes, Trodden 2013

Varying Mass 
Wu et al 2013, Leon et al 2013

Nonlocal massive gravity
Jaccard, Maggiore, Mitsou 2013

Modesto, Tsujikawa 2013

Resolution II



Nice approach is with Stuckelberg fields
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1.2 Perturbations 2
1.3 A worked example in two dimensions 4

1 Introduction

1.1 Background

Let us consider FRW solutions in massive gravity on a fixed FRW geometry such as
de Sitter. For simplicity I will assume k = 0. We denote the dynamical metric as

ds2 = �N2dt2 + a(t)2d~x2 (1.1)

and the reference metric as

ds2 = ��̇0
2
dt2 + b2(�0)d~x2 (1.2)

where �0 is the time-Stuceklberg field. If the fixed metric is de Sitter then we have
b(�0) = eHb�

0
with Hb constant.

The constraint that comes from the variation of the action with respect to �̇0 has
a branch (the normal branch) of solutions for which

aH = bHb (1.3)

or
ȧ

N
=

ḃ

�̇0
(1.4)

The acceleration of the a scale factor is properly calculated as

1

N

d

dt

✓
ȧ

N
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The term is square brackets is the acceleration of the reference metric which for de
Sitter would always be positive. Thus if the dynamics of the a metric switched from
acceleration to deceleration, this must be accompanied by a change of sign of �̇0 which
is equivalent to saying that the lapse of the reference metric must vanish.

This looks like a problem because when we evaluate the tensorKµ
⌫ = �µ⌫ �

p
gµ!⌘!⌫

we need to say how to evaluate Qµ
⌫ =

p
gµ!⌘!⌫ . Now since

g�1f =

 
�̇0

2

N2 0j
0i

b(�0)2

a2
�ij

!
(1.6)
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there is an ambiguity in how we take the square root. Fortunately this ambiguity
is resolved in the vierbein formulation of massive gravity, which is analytic in the
Stückelberg fields. This tells us that the correct way to take the square root, regardless
of the sign of �̇ is

p
g�1f =

 
�̇0

N
0j

0i
b(�0)
a

�ij

!
(1.7)

With this choice the action for FRW solutions of massive gravity is analytic in �̇0 and
since it is constructed out of characteristic polynomials of K it is linear in �̇0 and so no
problem arises in having �̇0 pass though zero. Implicity what we have done is chosen
a +p for the zeroth eigenvalue for �̇0 > 0 and the �p for �̇0 < 0. In the vierbein
formulation this choice would have been automatic and now ambiguity would have
arisen.

1.2 Perturbations

There is still a lingering worry that whilst this prescription is fine for the background,
there may be a problem at the level of perturbations. The argument for this is as
follows, let us denote the eigenvalues of Q by q0, q1, q2, q3 where at the background
level

q̄0 =
�̇0

N
(1.8)

q̄i =
b

a
(1.9)

When we add perturbations we have

q↵ = q̄↵ + ✏q(1)↵ + ✏2q(2)↵ + . . . (1.10)

The problem comes from the fact that in the diagonalized representation

p
Q =

0

BB@

p
q0 0 0 0
0

p
q1 0 0

0 0
p
q2 0

0 0 0
p
q3

1

CCA (1.11)

and yet at the point where q̄0 = 0 we seem to have
p
q0 =

p
✏

q
q
(1)
0 which is not analytic

in the assumed expansion parameter implying that perturbation theory is ill-defined.
The resolution is that at the same point where q̄0 = 0 we also have q

(1)
0 = 0 so

that we actually get the perfectly fine form
p
q0 = ✏

q
q
(2)
0 + O(✏2). Given this

p
Q

is analytic in the perturbation expansion parameter ✏ and that is su�cient to ensure
that the equations for perturbations are well defined, despite q̄0 passing through zero
eigenvalue.

The proof of this is very simple. Denote

�0 = �+ ✏��0 (1.12)

�i = xi + ✏��i (1.13)
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to inflation[31–34]. This theory as a whole also appears to be part of a larger family of
massive theories of gravity[30] some of which first emerged in the study of AdS4/CFT3

correspondence.

2 dRGT Massive Gravity

The theory of massive gravity defined on an arbitrary reference metric fµν is just a
straightforward generalization of the theory proposed in [20]. The Lagrangian takes
the form of Einstein gravity with matter plus a potential that is a scalar function of
the two metrics

L = M2
Pl

√

− (4)g
(

(4)R + 2m2U(g, f)
)

+ LM . (2.1)

The most general potential U that has no ghosts [20] is build out of characteristic
polynomials of the eigenvalues of the tensor

Kµ
ν (g, f) = δµν −

√

gµαfαν (2.2)

so that
U(g,H) = U2 + α3U3 + α4U4, (2.3)

where the αn are free parameters, and

U2 =
(

[K]2 − [K2]
)

, (2.4)

U3 =
(

[K]3 − 3[K][K2] + 2[K3]
)

, (2.5)

U4 =
(

[K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]
)

, (2.6)

where [. . .] represents the trace of a tensor with respect to the metric gµν . The absence
of ghost for this theory for a Minkowski background metric was shown in the decoupling
limit in [17, 18, 20], fully non-linearly beyond the decoupling limit in [21, 22], as well
as in the Stückelberg and helicity languages in [23, 24].

Varying with respect to the metric gµν we find the equations of motion

Gµν +m2Xµν = M−2
pl Tµν (2.7)

where

Xµν = −
[

Kgµν −Kµν + η

(

K2
µν −KKµν +

1

2
gµν
(

[K]2 − [K2]
)

)

(2.8)

+6ρ

(

K3
µν −KK2

µν +
1

2
Kµν

(

[K]2 − [K2]
)

−
1

6
gµν
(

[K]3 − 3[K][K2] + 2[K3]
)

)

]

.

Using the Bianchi identities, we obtain the following constraint on the metric

m2∇µXµν = 0, (2.9)

Here we have defined the coefficients α and β which are related to those of (2.3) by
α3 = −(−η + 1)/3 and α4 = −ρ/2 + (−η + 1)/12.
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Deriving Friedman equation
Massive gravity with FRW reference metric

Fasiello and AJT - 2012

If metric transits from acceleration to 
decceleration we need        to change sign�̇0

At this point one of the eigenvalues of
vanishes 

p
g�1f

Problem? Answer - vierbein formulation can accommodate 
changes of sign



The vierbein formulation is analytic in the �a

Mass term is 

As long as it is possible to solve the equation for the 
Lorentz Stuckelberg fields

Det
⇥
eaµ + �⇤a

bf
b
c@µ�

c
⇤

eµa⇤b
cf

c
d@µ�d � eµb⇤b

cf
c
d@µ�d = 0

Even when �̇0 = 0 we can solve for �⇤a
b = . . . @��c

⇤a
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vierbein

6 equations for 6 unknown Lorentz transformations

Nibbelink et al 
Chamseddine, Mukhanov, Volkov

Hinterbichler and Rosen
Vierbein formulation
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Dressed Mass and Higuchi

Generalized Higuchi bound is 

arises from coefficient of kinetic term for helicity zero mode

in these two theories, i.e. solutions where both the dynamical and the reference metric
are homogenous and isotropic.

Finding observationally relevant cosmological solutions in these theories has re-
ceived considerable attention [19–45]. In massive gravity with a Minkowski reference
metric, it was shown that no homogeneous and isotropic spatially flat solutions arise
[46]. However, it was argued in [46] that observationally consistent inhomogenous so-
lutions should exist (see also [47–54] for different approaches). Unfortunately these
inhomogenous/anisotropic solutions have been hard to find except in special cases and
many of these special cases have been shown to be infinitely strongly coupled. One sim-
ple resolution is to look at massive gravity theories with an FRW reference metric [55]
or for bigravity theories in which FRW solutions are allowed [21, 24, 24, 25, 30, 35, 45].
It is these classes of solution that we shall be interested in for this work.

We will see that generically the FRW solutions in bigravity and massive gravity
with an FRW reference metric (FRW massive gravity) are theoretically well defined
in the sense that cosmological perturbations admit nonzero positive kinetic terms for
all 5 degrees of freedom. However, for FRW massive gravity, when we go into the
observationally relevant Vainshtein region [56–58] for which the normal Friedmann
equation is recovered, the helicity-0 mode becomes a ghost. This result follows because
these solutions begin to violate a generalization of a cosmological bound on the mass
of graviton first discovered by Higuchi [59] (see also [60, 61])

This generalization of the Higuchi bound to FRW massive gravity was derived in
[55] and in this manuscript we will give two independent simpler derivations of this
result. The first derivation makes use of the minisuperspace action to look for the
instability, the second utilizes the massive (bi)gravity Λ3 decoupling limit. The result
obtained in [55] was that the Higuchi bound in massive gravity for an arbitrary FRW
reference metric f and arbitrary matter coupled to the dynamical metric g is

m̃2(H) ≥ 2H2 (1.1)

where the dressed mass m̃(H) is given by

m̃2(H) =
m2

2M2
p

H

Hf

[

β1 + 2β2
H

Hf
+ β3

H2

H2
f

]

, (1.2)

H is the dynamical Hubble parameter, and Hf is that of the reference metric f . The
βn’s are the parameters in the mass potential.

The problem is that it is essentially impossible to satisfy this bound in the Vain-
shtein region in which the modified gravity contributions to the Friedmann equation
are subdominant. This arises because both the Friedmann equation and the bound are
polynomials of the same order in H . On the one hand, recovery of standard cosmology
requires that the mass is small compared to a polynomial in H ; on the other hand the
bound requires that the mass is large compared to another a polynomial of the same
order in H .

In this manuscript we shall show that this tension between the Higuchi bound
and the Vainshtein mechanism is generically resolved in bigravity theories, even when
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m̃2(H) > 2H2

L
helicityzero

/ �m̃2(H)(m̃2(H)� 2H2)(@⇡)2

so that U0 = 1 and U1 = [K]. The Lagrangian may also be written in the form

L =
1

2

√
−g

[

M2
p R−m2

4
∑

n=0

βn Un(X)

]

+ LM , (2.8)

where Xµ
ν =

√
gµαfαν . The relationship between the βn coefficients and the αn is given

in Eq.(2.14). The mass term is invariant under the simultaneous interchange g ↔ f
and βn ↔ β4−n.

As we shall see in detail, the generalization of the Higuchi bound can already be
seen at the level of the minisuperspace action, in particular in the representation of
massive gravity which includes the Stückelberg fields. The Stückelberg fields for diffeo-
morphisms are introduced by replacing the reference metric fµν(x) by its representation
in an arbitrary coordinate system ΦA(x)

ds2f = fAB(Φ
C)∂µΦ

A∂νΦ
Bdxµdxν . (2.9)

The ΦA(x) are the Stückelberg fields (or Goldstone modes for the broken diffemor-
phisms) and essentially encode the additional degrees of freedom that a massive gravi-
ton has over a massless one. These additional degrees of freedom are, in the high
energy limit, decomposable into 2 helicity-1 modes and 1 helicity-0 mode. Explicitly,
writing ΦA(x) = BA(x)/(mMp) + ∂Aπ(x)/Λ3

3, then Ba has the interpretation of the
helicity-1 mode in the high energy limit, and π is the additional helicity-0 mode. Since
the bound comes from identifying the sign of the kinetic term of the helicity-0 mode,
it is essentially enough to keep track of the Φ0 ∼ ∂tπ term (we may for instance choose
a gauge for which B0 = 0 to aid in this identification).

However as is well known, in massive gravity, either part or all of the kinetic term
for the helicity-0 mode actually comes from a mixing of Φ0 and the metric gµν . In
perturbations, this shows up in the fact that a scalar part of gµν couples to Φ0 and
hence π̇. In the minisuperspace limit, the only scalar part of the metric is the scale
factor itself a(t)2. Thus we can identify the sign of the kinetic term for perturbations
around a background that identifies kinetic term for δa, the mixing between δa and
δΦ0, and any independent kinetic term for the helicity-0 which enters as δΦ02. This
method is significantly simpler than our previous complete calculation [55] and leads
quite quickly to the same result.

2.1 Minisuperspace Derivation

Thus, we begin with the action for minisuperspace for the dRGT model on a given
FRW background written in an arbitrary gauge by means of the introduction of a
Stueckelberg field for the broken time diffeomorphisms. The reference metric is given
by

ds2f = −φ̇2dt2 + b(φ)2d'x2 , (2.10)

2Although the lapse N(t) is also a scalar, it is a Lagrange multiplier for a constraint and drops
out of the action if the constraint is solved.
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Varying the action with respect to φ imposes, as a consequence of the special relation
between the coefficients An and Bn, the constraint

(

2
∑

n=0

β̂n+1

(2− n)!n!

(

b

a

)n+1
)

(

H

b
−

Hf

a

)

= 0 , (2.18)

where

Hf =
ḃ

φ̇b
=

b,φ
b
. (2.19)

At first sight there appear to be two branches of solutions to this equation. However, if
we choose the term in the first parenthesis to vanish, the kinetic term for the helicity-1
mode vanishes and all such solutions are infinitely strongly coupled. Thus the only
acceptable solution is

b

a
=

H

Hf
. (2.20)

From now on, we will work in the normal branch for which this relation is true (branch
2 in the language of [25]). This allows us to write the contribution to the Friedmann
equation in the form

ρm.g. =
3
∑

n=0

Bn

(

H

Hf

)n

=
3
∑

n=0

3m2βn

(3− n)!n!

(

H

Hf

)n

. (2.21)

To determine the kinetic term for the helicity zero mode we will utilize some of the
properties of the minisuperspace action. Starting from the action

S = V3

∫

dtNa3
[

−3M2
p

(

ȧ2

N2a2

)

−
φ̇

N

3
∑

n=0

An

(

b(φ)

a

)n

−
3
∑

n=0

Bn

(

b(φ)

a

)n

− ρ(a)

]

,

(2.22)
we now perturb it to second order in δa, δN, δφ. As δN appears only algebraically in
the action, it can be integrated out. After these steps the action takes the form:

S(2) = V3

∫

dt

[

δφ2

(

−
b2φ
2

3
∑

n=0

Bnn(n− 1)
bn−2

an−3
+

ȧ bφ
2

3
∑

n=0

An(3− n)n
bn−1

an−2
(2.23)

+
bφ

12M2
paȧ

2

(

3
∑

n=0

nBn
bn−1

an−3

)2

−
Hfbφ
2

3
∑

n=0

Bnn
bn−1

an−3



+ δφ δȧ2 (..) + δa2 (..)

]

,

where bφ = db(φ)/dφ. We see that, with the sign of the kinetic term of the helicity zero
mode in mind, we need only worry about the δφ2 coefficient (it is δφ that is carrying
the helicity zero mode, δφ ∼ δπ̇ ) in the above S(2): integrating out δN removes any
δȧ2-proportional term in the action for fluctuations so that the last two terms in (2.24)
need not be specified, i.e. we do not need to diagonalize.

– 8 –

Varying the action with respect to φ imposes, as a consequence of the special relation
between the coefficients An and Bn, the constraint

(

2
∑

n=0

β̂n+1

(2− n)!n!

(

b

a

)n+1
)

(

H

b
−

Hf

a

)

= 0 , (2.18)

where

Hf =
ḃ
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ȧ bφ
2

3
∑

n=0

An(3− n)n
bn−1

an−2
(2.23)

+
bφ

12M2
paȧ
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mode in mind, we need only worry about the δφ2 coefficient (it is δφ that is carrying
the helicity zero mode, δφ ∼ δπ̇ ) in the above S(2): integrating out δN removes any
δȧ2-proportional term in the action for fluctuations so that the last two terms in (2.24)
need not be specified, i.e. we do not need to diagonalize.
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Normal 
branch
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b

a
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)
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H
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Hf

a
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ḃ

φ̇b
=

b,φ
b
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Hf
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Coefficient of kinetic term in general is proportional to 

If we make the special choice

and so if we choose

Kinetic term vanishes regardless of matter source!!!

de Rham and Renaux-Petel 2012 

Partially Massless Gravity

in these two theories, i.e. solutions where both the dynamical and the reference metric
are homogenous and isotropic.

Finding observationally relevant cosmological solutions in these theories has re-
ceived considerable attention [19–45]. In massive gravity with a Minkowski reference
metric, it was shown that no homogeneous and isotropic spatially flat solutions arise
[46]. However, it was argued in [46] that observationally consistent inhomogenous so-
lutions should exist (see also [47–54] for different approaches). Unfortunately these
inhomogenous/anisotropic solutions have been hard to find except in special cases and
many of these special cases have been shown to be infinitely strongly coupled. One sim-
ple resolution is to look at massive gravity theories with an FRW reference metric [55]
or for bigravity theories in which FRW solutions are allowed [21, 24, 24, 25, 30, 35, 45].
It is these classes of solution that we shall be interested in for this work.

We will see that generically the FRW solutions in bigravity and massive gravity
with an FRW reference metric (FRW massive gravity) are theoretically well defined
in the sense that cosmological perturbations admit nonzero positive kinetic terms for
all 5 degrees of freedom. However, for FRW massive gravity, when we go into the
observationally relevant Vainshtein region [56–58] for which the normal Friedmann
equation is recovered, the helicity-0 mode becomes a ghost. This result follows because
these solutions begin to violate a generalization of a cosmological bound on the mass
of graviton first discovered by Higuchi [59] (see also [60, 61])

This generalization of the Higuchi bound to FRW massive gravity was derived in
[55] and in this manuscript we will give two independent simpler derivations of this
result. The first derivation makes use of the minisuperspace action to look for the
instability, the second utilizes the massive (bi)gravity Λ3 decoupling limit. The result
obtained in [55] was that the Higuchi bound in massive gravity for an arbitrary FRW
reference metric f and arbitrary matter coupled to the dynamical metric g is

m̃2(H) ≥ 2H2 (1.1)

where the dressed mass m̃(H) is given by

m̃2(H) =
m2

2M2
p

H

Hf

[

β1 + 2β2
H

Hf
+ β3

H2

H2
f

]

, (1.2)

H is the dynamical Hubble parameter, and Hf is that of the reference metric f . The
βn’s are the parameters in the mass potential.

The problem is that it is essentially impossible to satisfy this bound in the Vain-
shtein region in which the modified gravity contributions to the Friedmann equation
are subdominant. This arises because both the Friedmann equation and the bound are
polynomials of the same order in H . On the one hand, recovery of standard cosmology
requires that the mass is small compared to a polynomial in H ; on the other hand the
bound requires that the mass is large compared to another a polynomial of the same
order in H .

In this manuscript we shall show that this tension between the Higuchi bound
and the Vainshtein mechanism is generically resolved in bigravity theories, even when
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Unfortunately partially massless (bi)gravity does not work for vectors!



Higuchi versus Vainshtein

In order for the H dependent m2 contribution in the Friedmann equation (2.16)
to be subleading (Vainshtein regime) we require:

m2

2M2
p

[

3β1
H

Hf
+ 3β2

H2

H2
f

+ β3
H3

H3
f

]

! 3H2 . (2.29)

This is immediately at odds with the stability (Higuchi) condition. We can see why
by combining the two inequalities into the single statement

[

3

2
β1

H

Hf
+ 3β2

H2

H2
f

+
3

2
β3

H3

H3
f

]

"

[

3β1
H

Hf
+ 3β2

H2

H2
f

+ β3
H3

H3
f

]

. (2.30)

Eq. (2.30) is essentially impossible to satisfy. If the β1 term dominates the inequality is
violated, if the β2 dominates it is saturated and if β3 dominates it is only just satisfied
since 3/2 > 1. However, this is not enough, there needs to be a large hierarchy between
the two sides otherwise there will be O(1) modifications to the Friedmann equation
[55]. Considering that the combined inequality must hold over different cosmological
epochs, one comes to the realization that there is no room in the parameter space of
FRW massive gravity for it to simultaneously satisfy the requirements of stability and
consistency with observations.

We stress that this does not rule out massive gravity as a theory of current cos-
mological expansion. There are many paths one can follow in the search for solutions
to massive gravity that, if not exactly FRW, at least resemble FRW in appropriate
regions, see e.g. [46]. We choose here to instead demand exactly FRW solutions and
move on to give full dynamics to the reference metric f , thus entering into the realm
of bigravity theories.

3 Generalizing the Bound to Bigravity

The action for bigravity models which are free from the Boulware-Deser ghost is a
simple extension of that for massive gravity [11]

S =

∫

d4x
1

2

[

M2
p

√
−g R[g] +M2

f

√

−f R[f ]−m2
4
∑

n=0

βn Un(X)

]

+ LM . (3.1)

It is straightforward to generalize the previous argument to the case of bigravity. We
denote the now dynamical second metric f as

ds2f = −Ñ2dt2 + b2d"x2. (3.2)

The minisuperspace action is now

S = V3

∫

dta3
[

−3M2
p

(

ȧ2

Na2

)

− Ñ
3
∑

n=0

An

(

b

a

)n

−N
3
∑

n=0

Bn

(

b

a

)n

−Nρ(a)

+ V3

∫

dtb3 −Ñ ρ̃(b)− 3M2
f

(

ḃ2

Ñb2

)]

(3.3)
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Decoupling limit of Bigravity

In Massive Gravity - Mass term breaks a single copy of local 
Diffeomorphism Group down to a global Lorentz group

Diff(M) ! Global Lorentz

In Bigravity - Mass term breaks two copies of local 
Diffeomorphism Group down to a single copy of Diff group 

Diff(M)⇥Diff(M) ! Diff(M)
diagonal

Fasiello, AJT 2013



Diff(M)⇥Diff(M) ! Diff(M)
diagonal

Thus Bigravity also is best understood with Stueckelberg fields for 
broken diffs which in turn lead to a Galileon field in its decoupling 

limit - dominates interaction in bigravity model
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Decoupling limit of Bigravity

and perform the scaling or decoupling limit,

Mp → ∞ , Mf → ∞ , m → 0 (4.6)

while keeping

Λ3 = (m2Mp)
1
3 → constant and Mp/Mf constant . (4.7)

In addition, the scaling is done such that the β̂n are kept constant where βn = M2
p β̂n.

The resulting action in the Λ3 decoupling limit can be split into two contributions

lim
Mp→∞ ,Λ3 constant

Sbigravity = Shelicity−2/0 + Shelicity−1/0 (4.8)

where Shelicity−1/0 contains only interactions between the helicity-1 and helicity-0 de-
grees of freedom [76]5:

Shelicity−1/0 = −
β̂1

4
δµνρσabcd

(

1

2
Ga

µω
b
νδ

c
ρδ

d
σ + (δ + Π)aµ[δ

b
νω

c
ρω

d
σ +

1

2
δbνδ

c
ρω

d
αω

α
σ]

)

−
β̂2

8
δµνρσabcd

(

2Ga
µ(δ + Π)bνω

c
ρδ

d
σ + (δ + Π)aµ(δ + Π)bν [ω

c
ρω

d
σ + δdσω

c
αω

α
ρ]
)

−
β̂3

24
δµνρσabcd

(

(δ + Π)aµ(δ + Π)bν(δ + Π)cρω
d
αω

α
σ + 3ωa

µG
b
ν(δ + Π)cρ(δ + Π)dσ

)

,

where

ωab =

∫

∞

0

du e−2ue−uΠa
a′

Ga′b′e
−uΠb′

b (4.9)

=
∑

n,m

(n+m)!

21+n+mn!m!
(−1)n+m (ΠnGΠm )ab ,

is the solution of

Gab = ∂aBb − ∂bBa = ωac(δ + Π)cb + (δ + Π)a
cωcb , (4.10)

Πab is defined as

Πab =
∂a∂bπ

Λ3
3

. (4.11)

Similarly Shelicity−2/0 contains the interactions of the helicity-2 and helicity-0 modes
and is given by

Shelicity−2/0 =

∫

d4x

[

−
1

4
hµν Êαβ

µν hαβ −
1

4
vµν Êαβ

µν vαβ

+
Λ3

3

2
hµν(x)Xµν +

MpΛ3
3

2Mf
vµA[x

a + Λ−3
3 ∂aπ](ηAν + ΠA

ν )Y
µν

]

, (4.12)

5As in [76] we take the standard definitions of the Kronecker deltas: δµνρσabcd = εµνρσεabcd. More
generally we have δµνρabc = 1

1!
εµνρdεabcd and δµνab = 1

2!
εµνcdεabcd.
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where Êαβ
µν is the Lichnerowicz operator defined on a background Minkowski space-time

with the convention (Êh)µν = −1
2

(

!hµν − ∂α∂µhα
ν − ∂α∂νhα

µ + ∂µ∂νh− ηµν(!h− ∂a∂bhab)
)

.
The tensors Xµν and Y µν are defined by

Xµν = −
1

2

4
∑

n=0

β̂n

(3− n)!n!
εµ...εν...(η + Π)nη3−n , (4.13)

and

Y µν = −
1

2

4
∑

n=0

β̂n

(4− n)!(n− 1)!
εµ...εν...(η + Π)(n−1)η4−n , (4.14)

where we have used a short hand notation in which the indices of (η + Π) and η are
contracted between the pairs of Levi-Civita symbols ε in order.

In this representation the dependence of the action on vµν is nontrivial due to π
dependence in vµA[xa + Λ−3

3 ∂aπ](ηAν + ΠA
ν ) term. We can however undo this with a

coordinate transformation in the last term to write an equivalent representation:

Shelicity−2/0 =

∫

d4x

[

−
1

4
hµν Êαβ

µν hαβ −
1

4
vµν Êαβ

µν vαβ

+
Λ3

3

2
hµν(x)Xµν +

MpΛ3
3

2Mf
vµν(x

a)Ỹ µν

]

, (4.15)

where

Ỹ µν = −
1

2

4
∑

n=0

β̂n

(4− n)!(n− 1)!
εµ...εν...η(n−1)(∂Z)4−n , (4.16)

and where (∂Z)aν = ∂µZa(x) and the function Za(x) is defined via the implicit relation

Za(xb + Λ−3
3 ∂bπ(x)) = xa . (4.17)

The fact that we have performed the coordinate transformation in only the last term
might seem strange, however it is allowed because the integration variable is a dummy
variable. Essentially we are using the four dimensional version of the identities
∫

∞

−∞

dx (f(x) + h(x)) =

∫

∞

−∞

dxf(x) +

∫

∞

−∞

dxh(x) =

∫

∞

−∞

dxf(x) +

∫

∞

−∞

dZ h(Z)

=

∫

∞

−∞

dx

(

f(x) +
dZ(x)

dx
h(Z(x))

)

. (4.18)

where Z(x) is a monotonic function satisfying Z(±∞) = ±∞.
To elucidate the meaning of this remember that the diff Stückelberg fields are

defined in the decoupling limit as Φa(x) = xa + Λ−3
3 ∂bπ(x), thus the relation (4.17) is

Za(Φb(x)) = xa , (4.19)

in other words the function Za is the inverse function, i.e. inverse coordinate transfor-
mation to Φa. The function Φa provides a map from the coordinates of the metric g
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might seem strange, however it is allowed because the integration variable is a dummy
variable. Essentially we are using the four dimensional version of the identities
∫

∞

−∞

dx (f(x) + h(x)) =

∫

∞

−∞

dxf(x) +

∫

∞

−∞

dxh(x) =

∫

∞

−∞

dxf(x) +

∫

∞

−∞

dZ h(Z)

=

∫

∞

−∞

dx

(

f(x) +
dZ(x)

dx
h(Z(x))

)

. (4.18)

where Z(x) is a monotonic function satisfying Z(±∞) = ±∞.
To elucidate the meaning of this remember that the diff Stückelberg fields are

defined in the decoupling limit as Φa(x) = xa + Λ−3
3 ∂bπ(x), thus the relation (4.17) is

Za(Φb(x)) = xa , (4.19)

in other words the function Za is the inverse function, i.e. inverse coordinate transfor-
mation to Φa. The function Φa provides a map from the coordinates of the metric g
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and perform the scaling or decoupling limit,

Mp → ∞ , Mf → ∞ , m → 0 (4.6)

while keeping

Λ3 = (m2Mp)
1
3 → constant and Mp/Mf constant . (4.7)

In addition, the scaling is done such that the β̂n are kept constant where βn = M2
p β̂n.

The resulting action in the Λ3 decoupling limit can be split into two contributions

lim
Mp→∞ ,Λ3 constant

Sbigravity = Shelicity−2/0 + Shelicity−1/0 (4.8)

where Shelicity−1/0 contains only interactions between the helicity-1 and helicity-0 de-
grees of freedom [76]5:

Shelicity−1/0 = −
β̂1

4
δµνρσabcd

(

1

2
Ga

µω
b
νδ

c
ρδ

d
σ + (δ + Π)aµ[δ

b
νω

c
ρω

d
σ +

1

2
δbνδ

c
ρω

d
αω

α
σ]

)

−
β̂2

8
δµνρσabcd

(

2Ga
µ(δ + Π)bνω

c
ρδ

d
σ + (δ + Π)aµ(δ + Π)bν [ω

c
ρω

d
σ + δdσω

c
αω

α
ρ]
)

−
β̂3

24
δµνρσabcd

(

(δ + Π)aµ(δ + Π)bν(δ + Π)cρω
d
αω

α
σ + 3ωa

µG
b
ν(δ + Π)cρ(δ + Π)dσ

)

,

where

ωab =

∫

∞

0

du e−2ue−uΠa
a′

Ga′b′e
−uΠb′

b (4.9)

=
∑

n,m

(n+m)!

21+n+mn!m!
(−1)n+m (ΠnGΠm )ab ,

is the solution of

Gab = ∂aBb − ∂bBa = ωac(δ + Π)cb + (δ + Π)a
cωcb , (4.10)

Πab is defined as

Πab =
∂a∂bπ

Λ3
3

. (4.11)

Similarly Shelicity−2/0 contains the interactions of the helicity-2 and helicity-0 modes
and is given by

Shelicity−2/0 =

∫

d4x

[

−
1

4
hµν Êαβ

µν hαβ −
1

4
vµν Êαβ

µν vαβ

+
Λ3

3

2
hµν(x)Xµν +

MpΛ3
3

2Mf
vµA[x

a + Λ−3
3 ∂aπ](ηAν + ΠA

ν )Y
µν

]

, (4.12)

5As in [76] we take the standard definitions of the Kronecker deltas: δµνρσabcd = εµνρσεabcd. More
generally we have δµνρabc = 1

1!
εµνρdεabcd and δµνab = 1

2!
εµνcdεabcd.
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Two massless spin-two fields coupled to a Galileon in a highly 
non-minimal way!



No Partially Massless (Bi)gravity

The decoupling limit of bigravity and 
massive gravity gives the following helicity-1/
helicity-0 interactions

de Rham, Hinterbichler, Rosen, AJT 2013
Fasiello, AJT 2013

The latter of course follows from the fact that the limit is well defined at the level of
the action.

Unfortunately both this result and the result of Section 4 rule out the conjectured
partially massless bigravity for the same reasons as given in [75] (see also [73] and [91]).
Even keeping the ratio of the two Planck scales fixed Mf/Mp, the Λ3 decoupling limit of
partially massless bigravity gives the same helicity-1/helicity-0 interactions as partially
massless gravity. It is consistent to take this limit because even though m → 0, the
Higuchi bound is not violated in the limit since we also scale H2 ∼ R ∼ 1/Mp ∼ m2.
The helicity-1/helicity-0 interactions are not affected by the dynamics of the second
metric since the additional degrees of freedom represented by vµν are weakly coupled
in this limit. The problem interactions in the candidate partially massless theories are
the same in bigravity and massive gravity

Shelicity−1/0 = −
1

8
δµνρσabcd

(

2Ga
µ(δ + Π)bνω

c
ρδ

d
σ + (δ + Π)aµ(δ + Π)bν [ω

c
ρω

d
σ + δdσω

c
αω

α
ρ]
)

(6.7)

where

ωab =

∫

∞

0

du e−2ue−uΠa
a′

Ga′b′e
−uΠb′

b , (6.8)

is the solution of

Gab = ∂aBb − ∂bBa = ωac(δ + Π)cb + (δ + Π)a
cωcb . (6.9)

There are no additional free parameters to adjust the cofficients of the interactions.
The conjectured symmetry of partially massless (bi)gravity requires that the helicity-0
mode becomes pure gauge so that there are only 4 (in massive gravity) or 4+2 (in
bigravity) dynamical degrees of freedom. However as argued in [75] the presence of
helicity-1/helicity-0 interactions negates this. In a nonzero background field for Gab a
kinetic term will be generated for π and there will be 5 or 5+2 propagating degrees of
freedom. This implies that there is no hidden symmetry (it is essentially an accident
of the linearized theory around backgrounds which contain no vector perturbations).
It is plausible that there exists a modification to the kinetic term of the conjectured
partially massless theories that resolves this issue.

7 Conclusions

In this work we set out to provide a simple and consistent derivation of the stability
condition on the kinetic term of the helicity-0 mode in ghost-free massive gravity and
bigravity theories, when both metrics are spatially flat FRW. First, we confirmed the
realization [55] that exact spatially flat FRW solutions in massive gravity with an FRW
reference metric are ruled out on the basis of combined and, as it turns out, conflicting
inequalities stemming from stability and observational constraints. This is what we
call the Higuchi vs Vainshtein (H-V) tension characterizing a natural set of candidate
cosmological solutions for massive gravity.
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Partially massless (bi)gravity should have only (7) 4 propagating 
degrees of freedom - helicity-0 must be pure gauge - above action 
shows that is not the case! 

Ondo, AJT 2013
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and perform the scaling or decoupling limit,

Mp → ∞ , Mf → ∞ , m → 0 (4.6)
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Λ3 = (m2Mp)
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In addition, the scaling is done such that the β̂n are kept constant where βn = M2
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Similarly Shelicity−2/0 contains the interactions of the helicity-2 and helicity-0 modes
and is given by
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Two metrics means two ways to 
introduce Galileon!

But there are two ways to introduce Stuckelberg fields!

OR
Dynamical metric I Dynamical metric II

Fµ⌫ = fAB(�)@µ�
A@⌫�

B
Dynamical metric I Dynamical metric II

gµ⌫(x)

x̃

A = �

A(x) = x

A + @

A
⇡(x)

fAB(x̃)G̃AB(x̃) = gµ⌫(Z)@AZ
µ
@BZ

⌫

x

µ = Z

µ(x̃) = x̃

µ + @

µ
⇢(x̃)

Fasiello, AJT 2013



Dual Galileons fields

For every Galileon field ⇡(x)

we define the Dual Galileon field via the implicit 
infinite order in derivatives non-local field redefinition

`Galileon Duality’ - de Rham, Fasiello, AJT 2013

x̃

A = �

A(x) = x

A + @

A
⇡(x)

x

µ = Z

µ(x̃) = x̃

µ + @

µ
⇢(x̃)

Explicitly this is 
⇢(x) = �⇡(x) +

1

2

(@⇡)

2 � 1

2

@

a
⇡@

b
⇡@a@b⇡ + infinite number of terms . . .

or for spherical symmetry
⇢(r) = �⇡(r) +

1X

n=2

(�1)n

n!
@n�2
r ((@r⇡)

n)



Dual Galileons Lagrangians

For every Galileon field Lagrangian in D spacetime 
dimensions  

admits a dual formulation as a Galileon

L(⇡) = c2L2(⇡) + c3L3(⇡) + c4L4(⇡) + . . .

L(⇢) = p2L2(⇢) + p3L3(⇢) + p4L4(⇢) + . . .

pn =
1

n

D+1X

k=2

(�1)kck
k(d� k + 1)!

(n� k)!(d� n+ 1)!

with distinct coefficients

Galileon operators: Ln(⇡) = ⇡✏✏(@@⇡)n�1⌘D�n+1



Same argument can be applied to generic cosmological 
solutions on quasi-dilaton massive gravity  

2.2 Adding the quasi-dilaton

We would like to promote the purely gravitational sector of the ghost-free massive GR to

a theory, invariant under the global rescalings of the four scalars φa w.r.t. the physical

coordinates, xµ (or, to put it in a different way, the dilatations in the internal space). To

this end, we introduce a canonically normalized field σ, and impose the global invariance,

realized in the Einstein frame as in (1). The extended massive gravity action which respects

this symmetry reads,

SE =

∫

d4x
M2

Pl

2

√
−g

[

R−
ω

M2
Pl

gµν∂µσ∂νσ −
m2

4

(

U2(K̃) + α3U3(K̃) + α4U4(K̃)
)

]

+

∫

d4x
√
−gLm(gµν ,ψ) ,

(9)

where we have defined

K̃µ
ν = δµν − eσ/MPl

√

gµα∂αφa∂νφbηab . (10)

Note that the global symmetry (1) constrains the coupling of σ to gravity up to deriva-

tive terms. We will choose this symmetry as a guiding principle for constructing matter

couplings as well. In particular, we will couple the matter fields to the Einstein-frame

metric gµν in the minimal way, without any direct coupling to the Stückelberg fields φa.

This significantly constrains the interactions of σ with matter, allowing only for irrelevant

derivative interactions, which we will ignore in what follows.

Note that the global symmetry (1) is a linear combination of the global subgroup of

diffeomorphisms, xµ → e−αxµ, and dilatations, which are also a symmetry of the purely

gravitational sector and are realized in the Einstein frame as

xµ → eαxµ , gµν → e−2αgµν , σ → σ −MPlα , φa → eαφa . (11)

For constructing the couplings to matter however, we choose to explicitly break the di-

latation invariance (11), retaining (1) as the exact global symmetry of the action 6.

One interpretation of the theory (9) is the following. In massive gravity, we introduce

6In fact, the choice of (1) as the guiding principle for coupling the theory to matter can easily be
motivated from phenomenological considerations. Indeed, we cannot allow any O(1) coupling of matter
to σ, if it is to be stabilized/hidden from the experimental tests of gravity. One can easily see this from
the following reasoning. Massive gravity without the dilaton possesses a built-in property of screening
extra scalars from observations - the Vainshtein mechanism [35], which originates from the continuity of
the theory in the m → 0 limit, leading to the agreement of predictions of a massive theory with GR in
the massless limit. But if σ is to couple to matter, the massless limit of (9) will feature a free dilaton,
gravitationally coupled to external sources, modifying GR at O(1). In fact, even without coupling σ to
matter there still is a potential problem of hiding (one combination of) the scalars π and σ from solar
system tests. We will however show in Sec. 4 that the Vainshtein mechanism successfully takes care of
this issue.
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Generically we find a nonzero kinetic term for helicity zero 
mode showing that the general cosmological solutions are 

healthy!

However has its own instabilites, D’Amico et al 2013

D’Amico et al 2012
Quasi-Dilaton Massive Gravity



Generalized quasi-dilaton
Previous problems resolved by De Felice, Mukohyama 2013

2

invariant under (1). We then build the following terms,
which provide a mass to the graviton.

L2 ≡
1

2
([K]2 − [K2]) , (7)

L3 ≡
1

6
([K]3 − 3[K][K2] + 2[K3]) , (8)

L4 ≡
1

24
([K]4 − 6[K]2[K2] + 3[K2]2

+ 8[K][K3]− 6[K4]) , (9)

where square brackets denote a trace.
Note that the dependence of the extended fiducial met-

ric (4) on the time-derivative of the quasidilaton alters
the Hamiltonian structure of the system, and one might
worry about possible reappearance of the Boulware-Deser
(BD) ghost [11]. Fortunately, the type of theory consid-
ered in the present paper falls into a wider class of models
that was claimed to be free from the BD ghost [12].

After introducing a canonical kinetic term for the qua-
sidilaton field σ, we are ready to write down the full
Lagrangian as

S =
M2

Pl

2

∫

d4x
√
−g

[

R− 2Λ−
ω

M2
Pl

∂µσ∂
µσ

+2m2
g(L2 + α3L3 + α4L4)

]

. (10)

This action can be further extended, e.g. by introducing
shift-symmetric covariant Galileon-type kinetic terms for
the quasidilaton field, or/and by introducing other mas-
sive gravity Lagrangians with different values of ασ, α3,

and α4. One can also add an extra term ξ
√

−f̃e4σ/MPl

invariant under (1). In the present paper, however, we
shall focus our attention to the simplest extension pro-
vided by (10).

In the limit ασ → 0, the action (10) reduces to the one
in the original theory of quasidilaton, but it was shown
in [13, 14] that the original theory suffers from ghost
instability in the scalar sector. In the following we shall
show that the inclusion of the ασ term can render the
extended quasidilaton theory stable.

The background. Let us consider here a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) ansatz
for the theory defined in Eq. (10), that is

ds2 = −N(t)2dt2 + a(t)2δijdx
idxj , (11)

φ0 = φ0(t) , (12)

φi = xi , (13)

σ = σ̄(t) . (14)

The extended fiducial metric (4) then reduces to

f̃00 = −n(t)2 , f̃ij = δij , (15)

where

n(t)2 ≡
(

φ̇0
)2

+
ασ

M2
Plm

2
g

e−2σ̄/MPl ˙̄σ
2
. (16)

We introduce the following quantities characterizing the
background solution.

H ≡
ȧ

Na
, (17)

X ≡
eσ̄/MPl

a
, (18)

r ≡
n

N
a . (19)

We consider here a to be a dimensionless quantity, so as
n, N , X , ω, r and ασ. Also [φa] = M−1, [H ] = M ,
and [σ] = M . As we shall see below, the three indepen-
dent equations of motion for the background allow for an
attractor solution on which H , X , and r are constants.

Varying the action w.r.t. φ0(t) and then setting n(t) =
1 leads to

∂t[a
4 X(1−X)J ] = 0 , (20)

where

J ≡ 3 + 3(1−X)α3 + (1−X)2α4. (21)

This implies that X(1−X)J ∝ 1/a4 → 0 as the universe
expands (i.e. a → ∞). We thus have three cases: X = 0,
X = 1 and J = 0. We would not consider the case with
X = 0 since it would lead to a strong coupling [8]. The
case with X = 1 is not interesting since it does not lead to
a self-accelerating solution but corresponds to a solution
driven by the bare cosmological constant Λ. Therefore,
in this paper we shall consider the case with

J = 0. (22)

This, together with

r = 1 +
ωH2

m2
gX

2[α3(X − 1)− 2]
, (23)

(

3−
ω

2

)

H2 = Λ+ ΛX , (24)

leads to a self-accelerating solution. Here,

ΛX ≡ m2
g(X − 1)[6− 3X

+ (X − 4)(X − 1)α3 + (X − 1)2α4] . (25)

Eq. (24), together with the requirement that
∂(H2)/∂Λ > 0, or, in other words, the positivity
of the effective Newton’s constant for the background
evolution, implies that

ω < 6 . (26)

This study shows that it is possible, in general, for this
theory to possess self accelerating solutions with effective
cosmological constant given by ΛX . It should be noticed
that the new component in the extended fiducial metric
(4), i.e. the term proportional to ασ, does not enter in
the background dynamics. However, the parameter ασ,
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Introduction. Since the pioneering work of Fierz and
Pauli in 1939 [1], it has been a long-standing question in
theoretical physics whether a graviton can have a non-
vanishing mass. Recently a fully nonlinear theory of mas-
sive gravity was found by de Rham, Gabadadze and Tol-
ley (dRGT) [2, 3] and has provided a positive answer to
this fundamental question.

The study of massive gravity is motivated not only
by the above mentioned theoretical question but also by
the observed acceleration of cosmic expansion, one of the
greatest mysteries in modern cosmology. There is a pos-
sibility that a finite graviton mass might be the source
of accelerated expansion of the universe. In this respect,
it is important to establish a theoretically consistent and
observationally viable cosmological scenario in massive
gravity. However, it was recently shown that all homoge-
neous and isotropic cosmological solutions in the dRGT
theory are unstable [4].

This no-go result suggests two possible directions: (i)
to break either homogeneity [5] or isotropy [6, 7] of
the cosmological background, or (ii) to extend the the-
ory [8, 9] (see also [10] for a non self-accelerating bi-
gravity extension). The purpose of the present paper is
to explore the second possibility and to establish a stable
self-accelerating homogeneous and isotropic cosmologi-
cal solution. The hope is that this theory will provide a
theoretically acceptable setup to start studying the phe-
nomenology of this theory and its potential imprints in
the experimental data.

The model. The quasidilaton, denoted hereafter as σ,
is an additional scalar field in the context of an extended
dRGT massive gravity [8], introduced to realize a new
global symmetry

σ → σ + σ0 , φa → e−σ0/MPl φa , (1)

where φa (a = 0, · · · , 3) are four scalar fields called Stück-
elberg fields and σ0 is an arbitrary constant. The theory
also enjoys the Poincare symmetry in the space of Stück-

elberg fields

φa → φa + ca , φa → Λa
bφ

b , (2)

so that φa enter the action only through the so called
Minkowski fiducial metric defined as

fµν = ηab∂µφ
a∂νφ

b . (3)

We extend the quasidilaton theory by adding a new
type of coupling between the massive graviton and the
quasidilaton. This is achieved by replacing fµν in the
action of the original theory with

f̃µν ≡ fµν −
ασ

M2
Plm

2
g
e−2σ/MPl∂µσ∂νσ , (4)

where ασ is a new coupling constant 1 and mg is the
graviton mass introduced in (10) below. Note that the
factor e−2σ/MPl in the second term was introduced so
that fµν and f̃µν share the same scaling property under
(1):

fµν → e−2σ0/MPl fµν , f̃µν → e−2σ0/MPl f̃µν . (5)

Having defined f̃µν in this way, a building block for the
action of extended quasidilaton massive gravity is con-
structed as

Kµ
ν = δµν − eσ/MPl

(
√

g−1f̃

)µ

ν

, (6)

where g−1 represents the inverse gµν of the physical met-
ric gµν . It is easy to see from (5) that the tensor Kµ

ν is

1 We expect ασ = O(1). In other words, the (technically natural)
suppression scale of the new term is Λ2 ∼ (MPlmg)1/2 and thus
is higher than Λ3 ∼ (MPlm

2
g)

1/3. The reason for this is because
the original quasidilaton (i.e. the theory with ασ = 0) in the Λ3

decoupling limit enjoys an enhanced Galileon symmetry [8].
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so that φa enter the action only through the so called
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Plm
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where ασ is a new coupling constant 1 and mg is the
graviton mass introduced in (10) below. Note that the
factor e−2σ/MPl in the second term was introduced so
that fµν and f̃µν share the same scaling property under
(1):
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Having defined f̃µν in this way, a building block for the
action of extended quasidilaton massive gravity is con-
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(
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, (6)

where g−1 represents the inverse gµν of the physical met-
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1 We expect ασ = O(1). In other words, the (technically natural)
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Massive gravity with 
dynamical mass and 
couplings and a 
dynamical reference 
metric

Cosmological solutions free of instabilities



Summary
• Massive Gravity is a useful toy model to understand higher 

dimensional theories

• Potentially exhibit both Self-Acceleration and Self-tuning 
(Degravitation)

• FRW (fully homogeneous and isotropic) solutions are a problem 
in Massive Gravity. Inhomogenous/anisotropic solutions do exist 
- not all stable but some are!

• For Partially Massless Gravity - Higuchi bound is automatica!y 
satisfied for any choice of matter - Unfortunately decoupling 
limit makes it easy to see absence of partially massless (bi)gravity

• For Massive Gravity on a fixed FRW reference metric, bound is 
in conflict with Vainshtein mechanism

• For Bigravity, bound is almost always satisfied regardless of the 
choice of matter as long as H ⌧ Hf


