Holographic perfect fluidity, TMG and gravitational duality

Marios Petropoulos

CPHT – Ecole Polytechnique – CNRS

7th Aegean Summer School - Beyond Einstein's theory of gravity

September 2013

Highlights

Motivations

Stationary fluids

Fluids and holography

Papapetrou-Randers fluids & TMG

Papapetrou–Randers fluids beyond TMG

Outlook

Bibliography

Framework: holographic applications

- Holographic fluids: hydrodynamic approximation of finite-T and finite-µ states of a boundary CFT
 - universal bound $\eta/s \geq \hbar/4\pi k_{B}$ [1,2]
 - ► general fluid/gravity correspondence [3, 4]
- Reminder: bulk geometries solve (in lowest order in α')
 Einstein's Eqs. boundaries have a priori no gravitational dofs
- ► Still: "gravitational dynamics" of the boundary is relevant
 - ► as an external input for controlling the bulk
 - ► in HS AdS₄/CFT₃ [see comments by Misha Vasiliev]
- Guideline: bulk gravitational duality

Many aspects rooted in (modified) gravity [subject of the school]

More specifically

3 + 1 bulk $\rightarrow 2 + 1$ boundary

- ▶ Determine holographically classes of transport coefficients → bonus (usually corr. functs. in ω, k → 0 [see Diana Vaman's lectures])

Note: not to be confused with recent activity on 2 + 1 bulk $\rightarrow 1 + 1$ boundary AdS₃/CFT₂ with TMG, EWG, NMG, ZDG solutions in the bulk [see Paul Townsend's lectures]

Highlights

Motivations

Stationary fluids

Fluids and holography

Papapetrou–Randers fluids & TMG

Papapetrou–Randers fluids beyond TMG

Outlook

Bibliography

On vector-field congruences 🛯

Vector field u with $u_{\mu}u^{\mu} = -1$ and space–time variation $\nabla_{\mu}u_{\nu}$

$$\nabla_{\mu}u_{\nu} = -u_{\mu}a_{\nu} + \sigma_{\mu\nu} + \frac{1}{D-1}\Theta h_{\mu\nu} + \omega_{\mu\nu}$$

- h_{µν} = u_µu_ν + g_{µν}: projector/metric on the orthogonal space
 a_µ = u^ν∇_νu_µ: acceleration
- $\sigma_{\mu\nu}$: symmetric traceless part shear
- $\Theta = \nabla_{\mu} u^{\mu}$: trace expansion
- $\omega_{\mu\nu}$: antisymmetric part vorticity

$$\omega = rac{1}{2} \omega_{\mu
u} \mathsf{d} x^{\mu} \wedge \mathsf{d} x^{
u} = rac{1}{2} (\mathsf{d} \mathsf{u} + \mathsf{u} \wedge \mathsf{a})$$

Fluid dynamics

Fluids in gravitational backgrounds $g_{\mu\nu}$ *described in terms of* u, ε, p *all inside* $T_{\mu\nu}$ *satisfying Euler equations*

 $\nabla_{\mu}T^{\mu\nu}=0$

plus equation of state (involving T, s)

Perfect fluids: $T_{perf}^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} + p h^{\mu\nu}$

$$\begin{cases} \nabla_{\mathbf{u}} \varepsilon + (\varepsilon + p) \Theta = 0\\ \nabla_{\perp} p - (\varepsilon + p) \mathbf{a} = 0 \end{cases}$$

General fluids: viscous part – in 2 + 1 *dim* & *at* $O(\nabla u)$ [6]

$$T_{\mathsf{visc}}^{\mu\nu} = -\left(2\eta\sigma^{\mu\nu} + \zeta h^{\mu\nu}\Theta + \zeta_{\mathsf{H}}\epsilon^{\rho\lambda(\mu}u_{\rho}\sigma_{\lambda}^{\nu)}\right)$$

Landau frame: all corrections are transverse

Conformal fluids: $\varepsilon = 2p, \zeta = 0, \ldots$

Transverse, traceless and conformal corrections

Transport coefficients: dissipative and non-dissipative Zero frequency & momentum limit of correlation functions Equilibrium – backgrounds with a time-like Killing field

Fluids at equilibrium: stationary states without external forces – evolution without dissipation

- Kinematics & pressure/density distributions tight to the geometry
- Hard to achieve/study because of transport (dissipative and non-dissipative)

Special situation: perfect equilibrium

Stationary states with conspiring kinematics and transport coefs.

 $T^{\mu\nu} = T^{\mu\nu}_{\rm perf}$

The fluid is not perfect - the equilibrium is perfect

Simple example: Minkowski background Fluid

- in inertial motion no a^{μ} , Θ , $\sigma^{\mu\nu}$, $\omega^{\mu\nu}$
- with constant T and p
- is in global equilibrium

The fluid is not assumed perfect – even for viscous fluids kinematics implies $T^{\mu\nu} = T^{\mu\nu}_{perf}$ and Euler Eqs. are satisfied Reason: all rank-2 tensors built out of $\nabla^n u$ vanish in this

background

\exists less trivial backgrounds allowing for less trivial perfect equilibrium states?

Specific situation (motivated by holography)

- Conformal fluids reduces the set of allowed tensors
- Backgrounds with a normalized time-like Killing vector as e.g. Papapetrou–Randers

Killing vector field of constant norm: a remarkable congruence

$$abla_{(\mu}\xi_{
u)}=0$$
 $\xi_{\mu}\xi^{\mu}=-1$

- accelerationless geodesic
- shearless $\sigma = 0$
- expansionless $\Theta = 0$
- carries vorticity

$$\omega = \frac{1}{2} \mathsf{d}\xi \Leftrightarrow \omega_{\mu\nu} = \nabla_{\mu}\xi_{\nu}$$

Perfect equilibrium \leftrightarrow *alignement of the velocity* u *with the Killing* ξ

$$\nabla p = 0 \begin{cases} \varepsilon = 2p \\ \nabla_{u}\varepsilon = 0 \\ \nabla_{\perp}p = 0 \end{cases}$$

geodesic, shearless & expansionless fluid with vorticity at constant pressure/density

Non-perfect equilibrium

$$\begin{cases} \mathsf{u} = \xi + \delta \mathsf{u}(x) \\ p = p_0 + \delta \mathsf{p}(x) \end{cases}$$

out of our scope

Conditions for perfect equilibrium

Interplay between the geometry and the fluid transport properties

- Dangerous tensors: rank-2, transverse, traceless, conformal tensors built out of ∇ⁿξ and geometrical tensors (e.g. Ricci, Cotton–York) with non-zero divergence geometry
- Conditions: vanishing of transport coefficients coupled to dangerous tensors – statement about the microscopic theory

Realized in a wide class of holographic fluids

- Specific boundary geometries: perfect-Cotton geometries
- Handle on microscopic properties: infinite sequence of vanishing transport coefficients

Highlights

Motivations

Stationary fluids

Fluids and holography

Papapetrou–Randers fluids & TMG

Papapetrou–Randers fluids beyond TMG

Outlook

Bibliography

Holography in a nutshell

Applied beyond the original framework – type IIB string on $AdS_5 \times S^5 \rightarrow$ maximal susy YM in D = 4 – usually in the classical gravity approximation without backreaction

- Bulk with $\Lambda = -3k^2$: asymptotically AdS d = D + 1-dim \mathcal{M}
- ▶ Boundary at $r \rightarrow \infty$: asymptotic coframe E^{μ} $\mu = 0, ..., D-1$

$$\mathrm{d} s_{\mathrm{bulk}}^2 \approx \frac{\mathrm{d} r^2}{k^2 r^2} + k^2 r^2 \eta_{\mu\nu} E^{\mu} E^{\nu} = \frac{\mathrm{d} r^2}{k^2 r^2} + k^2 r^2 g_{\mu\nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$$

Where is the fluid and where are its data?

Via holography: boundary field theory at finite T and μ Fluid \equiv hydrodynamic approximation of the boundary state Fluid: described in terms of $T_{\mu\nu}$ in a background $g_{\mu\nu}$, – data read off from the large-r expansion of $\theta^{\mu}_{[7,8]}$ θ^{a} : bulk orthonormal coframe (η : + – ++, Λ = –3 k^{2})

$$ds^2_{bulk} = \eta_{ab} \theta^a \theta^b$$

with a gauge choice s.t. $\theta^r = \frac{dr}{kr}$, $\theta^\mu = \theta^\mu_{\ \nu} dx^\nu$, $\mu = 0, 1, 2$

Holography: Hamiltonian evolution from data on the boundary subject to a regularity condition on the horizon – captured in Fefferman–Graham expansion for large r [9]

$$\theta^{\mu}(r,x) = kr E^{\mu}(x) + \frac{1}{kr}F^{\mu}_{[2]}(x) + \frac{1}{k^2r^2}F^{\mu}(x) + \cdots$$

Independent 2 + 1 boundary data: vector-valued 1-forms E^{μ} and F^{μ}

- ► E^{μ} : boundary orthonormal coframe allows to determine $ds^{2} = \eta_{\mu\nu}E^{\mu}E^{\nu} = g_{\mu\nu}dx^{\mu}dx^{\nu}$
- ► F^{μ} : stress current one-form allows to construct the vev of the boundary stress tensor ($\kappa = \frac{3k}{8\pi G}$)

 $\mathsf{T} = \kappa F^{\mu} e_{\mu} = T^{\mu}_{\ \nu} E^{\nu} \otimes e_{\mu}$

The rest $F_{[2]}^{\mu}$, $B_{[2]}^{\mu}$, ...: Schouten, Cotton, ...

Back to the original question

► $\exists 2 + 1 \text{ boundary geometries } ds^2 s.t.$

 $ds^2 \& T^{perf}_{\mu\nu} \\ \downarrow FG$

exact regular 3 + 1 Einstein geometry?

- ► If yes:
 - the holographic boundary fluid behaves as a perfect fluid
 - information on its transport properties is made available
- Answer: perfect-Cotton boundary geometries

Highlights

Motivations

Stationary fluids

Fluids and holography

Papapetrou–Randers fluids & TMG

Papapetrou–Randers fluids beyond TMG

Outlook

Bibliography

Fluids in Papapetrou–Randers backgrounds

Stationary geometries with unique normalized time-like Killing congruence – fluid lines

$$\mathrm{d}s^2 = -\left(\mathrm{d}t - b_i\mathrm{d}x^i\right)^2 + a_{ij}\mathrm{d}x^i\mathrm{d}x^j$$

► Killing field: $\partial_t \leftrightarrow u = -dt + b$ with vorticity $\omega = \frac{1}{2}db$

• Perfect fluidity: comoving fluid – aligned with ∂_t

Analysing perfect fluidity: tensors in 2 + 1 dimensions

- Vorticity: $\omega_{\mu\nu} = -\frac{q}{2}\eta_{\mu\nu\rho}u^{
 ho}$, q scalar field
- Curvature: $R_{\mu\nu}$

• Cotton–York: $C^{\mu\nu} = \eta^{\mu\rho\sigma} \nabla_{\rho} \left(R^{\nu}_{\sigma} - \frac{1}{4} R \delta^{\nu}_{\sigma} \right)$

In summary

$$ds^{2} = -u^{2} + d\ell^{2} \quad u = -dt + b \quad R = \hat{R} + \frac{q^{2}}{2}$$
$$R_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{q^{2}}{2}u^{2} + \frac{\hat{R} + q^{2}}{2}d\ell^{2} - udx^{\rho}u^{\sigma}\eta_{\rho\sigma\mu}\nabla^{\mu}q$$

$$C_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{1}{2} \left(\hat{\nabla}^2 q + \frac{q}{2}(\hat{R} + 2q^2)\right) \left(2u^2 + d\ell^2\right)$$
$$-\frac{1}{2} \left(\hat{\nabla}_i\hat{\nabla}_j q dx^i dx^j + \hat{\nabla}^2 q u^2\right)$$
$$-\frac{u}{2} dx^{\rho} u^{\sigma} \eta_{\rho\sigma\mu} \nabla^{\mu}(\hat{R} + 3q^2)$$

with

$$\mathcal{T}^{\mathsf{perf}}_{\mu
u}\mathsf{d}x^{\mu}\mathsf{d}x^{
u}=p\left(2\mathsf{u}^{2}+\mathsf{d}\ell^{2}
ight)$$

Special PR backgrounds

Critical points of topologically massive gravity (TMG)

$$R_{\mu
u}-rac{R}{2}g_{\mu
u}+\lambda g_{\mu
u}=rac{1}{\mu}C_{\mu
u}$$

- Absence of dangerous tensors
- Perfect equilibrium guaranteed for any comoving conformal fluid – no constraint on transport coefficients

Next non-trivial generalization of Minkowski space-time

Solving TMG with PR [see Philippe Spindel's talk]

•
$$q = \frac{2\mu}{3}$$
: constant vorticity

•
$$\hat{R} = 6\lambda - 2\mu^2/9$$
: $d\ell^2$ is S^2 , \mathbb{R}^2 or H_2

Squashed 3-dim maximally symmetric space-times with $\mathbb{R} \times SU(2), \mathbb{R} \times H(2), \mathbb{R} \times SL(2, \mathbb{R})$ isometry Petrov type D_t homogeneous spaces: TMG monopoles

Example: Gödel

A concrete example

Warped AdS_3 : fibration over H_2

$$ds^{2} = - (dt - 2n(\cosh \sigma - 1)d\varphi)^{2} + \frac{1}{k^{2}} \left(d\sigma^{2} + \sinh^{2} \sigma d\varphi^{2} \right) = = - (dt - b)^{2} + (E^{\sigma})^{2} + (E^{\varphi})^{2} = - (E^{t})^{2} + (E^{\sigma})^{2} + (E^{\varphi})^{2}$$

$$b = 2nk\frac{\cosh \sigma - 1}{\sinh \sigma}E^{\varphi} \quad \omega = k^2 nE^{\sigma} \wedge E^{\varphi}$$

Dirac-monopole-like *vortex* ("hedgehog" or homogeneous) on H_2 with "magnetic charge" $q = \frac{2\mu}{3} = \frac{2k^2n}{\lambda} \left(\lambda = \frac{k^2}{3}(k^2n^2 - 1)\right)$

Perfect fluidity

Determining the dangerous tensors

- $C_{\mu\nu} = \mu (\lambda + \mu^2/9) (3u_{\mu}u_{\nu} + g_{\mu\nu})$
- $R_{\mu\nu} = (3\lambda + \mu^2/3) u_{\mu}u_{\nu} + (3\lambda + \mu^2/9)g_{\mu\nu}$
- Homogeneity $\Rightarrow \nabla_{\mu} \nabla_{\nu} \dots u_{\rho}$ algebraic $\sim u_{\rho}$

No higher-derivative transverse, traceless rank-2 tensor (building blocks: $u_{\mu}u_{\nu}, g_{\mu\nu}$) – consequence of homogeneity as in Minkowski

Remarks

- Any comoving fluid is at perfect equilibrium & carries vorticity
- The Cotton tensor is responsible for the vorticity: $q = \frac{2\mu}{3}$

Next

So far: used gravitational dynamics to shape boundary geometry in order to make possible perfect equilibrium

Questions at hand: holographic realization

- ▶ 4-dim Einstein space-times as bulk geometries?
- ► Bulk source for the boundary Cotton tensor and vorticity?
- Other PR boundary backgrounds
 - have holographic bulk realization with perfect energy-momentum tensor?
 - probe transport coefficients?

The uplift of the TMG monopoles

The backgrounds leading to a holographic fluid on TMG monopoles in perfect equilibrium are the Taub–NUT AdS black-hole geometries

nut charge n source for the Cotton

$$nk^4\left(\nu+4n^2k^2\right)\left(2\mathsf{u}^2+\mathsf{d}\ell^2\right)$$

related to the vorticity $q: q = 2k^2n$

mass M source for the energy-momentum tensor

$$\kappa Mk/2 \left(2u^2 + d\ell^2\right)$$

related to the energy density ε : $3\varepsilon = 2\kappa Mk$

with $\lambda = 1/3 \left(k^2 \nu + q^2/4\right)$, $\nu = 1, 0, -1$ for S^2 , \mathbb{R}^2 , H_2

Taub–NUT geometries in AdS

The hyperbolic case

$$ds_{\text{bulk}}^{2} = \frac{d\tilde{r}^{2}}{V(\tilde{r})} - V(\tilde{r}) \left[dt - 4n \sinh^{2} \frac{\sigma}{2} d\varphi \right]^{2} + \rho^{2} \left[d\sigma^{2} + \sinh^{2} \sigma d\varphi \right]^{2}$$
$$= (\theta^{r})^{2} - (\theta^{t})^{2} + (\theta^{\sigma})^{2} + (\theta^{\varphi})^{2}$$

 $V(\tilde{r}) = \Delta/
ho^2$ with

$$\begin{array}{ll} \Delta & = \left(n^2 - \tilde{r}^2\right) \left(1 - k^2 \left(\tilde{r}^2 + 3n^2\right)\right) + 4k^2 n^2 \tilde{r}^2 - 2M\tilde{r} \\ \rho^2 & = \tilde{r}^2 + n^2 \end{array}$$

Hyperbolic horizon, no rigid angular velocity but nut charge n – one of the most peculiar solutions to Einstein's Eqs. [Misner'63]

FG expansion reproduces squashed AdS₃ with perfect e-m tensor

Following $FG \rightarrow boundary \ metric \ and \ stress \ tensor \ {\tiny [10, 11, 12]}$

Boundary geometry: warped AdS₃

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = \eta_{\mu\nu}E^{\mu}E^{\nu}$$

= $-(dt - 2n(\cosh\sigma - 1)d\varphi)^{2} + \frac{1}{k^{2}}(d\sigma^{2} + \sinh^{2}\sigma d\varphi^{2})$

Fluid: perfect-like stress tensor

$$T_{\mu\nu}E^{\mu}E^{\nu} = \frac{\kappa Mk}{3} \left(2(E^{t})^{2} + (E^{\sigma})^{2} + (E^{\phi})^{2} \right)$$

- conformal: $\varepsilon = 2p = 2\kappa Mk/3$
- comoving: $u = \partial_t$

The stationary fluid aligned with the Killing of const. norm: inertial, no expansion, no shear but *uniform vorticity sourced by the nut*

Highlights

Motivations

Stationary fluids

Fluids and holography

Papapetrou–Randers fluids & TMG

Papapetrou-Randers fluids beyond TMG

Outlook

Bibliography

PR backgrounds $ds^2 = -u^2 + d\ell^2$ solving TMG provide exact bulk Einstein spaces

►
$$C_{\mu\nu} dx^{\mu} dx^{\nu} = c/2 \left(2u^2 + d\ell^2 \right) \left(\nabla^{\mu} C_{\mu\nu} = 0 \Rightarrow c \text{ constant} \right)$$

► $T^{\text{perf}}_{\mu\nu} dx^{\mu} dx^{\nu} = \epsilon/2 \left(2u^2 + d\ell^2 \right)$

Can one generalize that beyond TMG?

Perfect-Cotton geometries [13]

PR metrics beyond TMG: Petrov type D_t

$$C_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}=\frac{c}{2}\left(2\mathrm{u}^{2}+\mathrm{d}\ell^{2}\right)$$

In other words: $C_{\mu\nu} = \chi T^{\text{perf}}_{\mu\nu}$

- ► FG expansion is resummable with $T_{\mu\nu}^{\text{perf}}$ into exact regular Einstein space-times \rightarrow comoving holographic fluids at perfect equilibrium
- \blacktriangleright Petrov type D_t geometries have dangerous tensors \rightarrow non-trivial information on the transport coefficients

Why the perfect-Cotton choice?

In the Euclidean $C_{\mu\nu} = \pm 8\pi Gk^2 T_{\mu\nu}$ is equivalent to the bulk Weyl (anti-)self-duality leading e.g. to quaternionic Taub–NUT and relating *M* and *n* (electric and magnetic gravitational charges) [7, 8, 9, 14, 15]

$$n(\nu - 4k^2n^2) = \pm M$$

Holography allows for a kind of Lorentzian generalization: perfect-Cotton geometries [13]

$$C_{\mu
u} = \chi T^{\mathsf{perf}}_{\mu
u}$$

is a kind of holographic integrability condition

Bulk uplift of PR perfect-Cotton geometries

$$ds^{2} = -2u \left(dr - \frac{1}{2} dx^{\rho} u^{\sigma} \eta_{\rho\sigma\mu} \nabla^{\mu} q \right) + \rho^{2} d\ell^{2}$$
$$- \left(r^{2} + \frac{\delta}{2} - \frac{q^{2}}{4} - \frac{1}{\rho^{2}} \left(2Mr + \frac{qc}{2} \right) \right) u^{2}$$
$$\delta = \hat{R} + 3q^{2} \quad \rho^{2} = r^{2} + \frac{q^{2}}{4}$$

non-constant q, \hat{R} (perfect-Cotton geometry Eqs. for q and $d\ell^2$)

The landscape of Petrov type D_t & *bulks*

Solutions with 4 isometries: $\partial_t \oplus$ *Bianchi IX, II, VIII*

- Boundary: TMG monopoles no dangerous tensors
- Bulk: Taub–NUT black holes

Solutions with 2 isometries: $\partial_t \oplus \partial_{\varphi}$

- ▶ Boundary: monopole plus dipole (cyclonic vorticity dℓ²: squashed S², ℝ², H₂) infinite sequences of dangerous tensors
- Bulk: general classes of Kerr Taub–NUT black holes with regular horizons [many new solutions in [13] – such as flat-horizon Kerr Taub–NUT]

Solutions with 1 isometry: ∂_t

Uncharted territory (exact and numerical)

- Do these boundary exist?
- Do they define regular bulk geometries?

If yes they will provide a kind of multipolar probe for the transport properties [multipolar solutions exist for flat space-time, Weyl '18]

An example of monopole & dipole

AdS Kerr Taub–NUT geometries in 4 dim

$$\mathrm{d}s^{2} = \frac{\rho^{2}}{\Delta_{r}}\mathrm{d}r^{2} - \frac{\Delta_{r}}{\rho^{2}}\left(\mathrm{d}t + \beta\mathrm{d}\varphi\right)^{2} + \frac{\rho^{2}}{\Delta_{\sigma}}\mathrm{d}\sigma^{2} + \frac{\sinh^{2}\sigma\Delta_{\sigma}}{\rho^{2}}\left(\mathrm{a}\mathrm{d}t + \alpha\mathrm{d}\phi\right)^{2}$$
with

$$\begin{array}{ll} \Delta_r &= k^2 r^4 + r^2 (k^2 (a^2 + 6n^2) - 1) - 2Mr + (a^2 - n^2) (3k^2 n^2 - 1) \\ \rho^2 &= r^2 + (n - a \cosh \sigma)^2 \\ \Delta_\sigma &= 1 - ak^2 \cosh \sigma (4n - a \cosh \sigma) \\ \alpha &= \frac{r^2 + (n - a)^2}{Z} \\ \beta &= -\frac{2n(\cosh \sigma - 1) + a \sinh^2 \sigma}{Z} \\ \mathcal{Z} &= 1 + k^2 a^2 \end{array}$$

AdS Kerr Taub–NUT and its boundary

- Angular velocity a and nut charge n
- FG expansion: 3-dim PR $ds^2 = -u^2 + d\ell^2$
 - ► $d\ell^2 = 1/k^2 \left(\frac{d\sigma^2}{\Delta_{\sigma}} + \frac{\sinh^2 \sigma \Delta_{\sigma}}{Z^2} d\varphi^2\right)$ squashed H_2 ► $u = -dt + \frac{2n(\cosh \sigma - 1) + a \sinh^2 \sigma}{1 + k^2 a^2} d\varphi$ monopole & dipole with $T = \frac{\kappa Mk}{3} \left(2u^2 + d\ell^2\right)$
 - stationary perfect-like fluid aligned with the Killing ∂_t
 - n and a are sources for the vorticity

$$q = 2k^2(n - a\cosh\sigma)$$

New features

- PR boundary not homogeneous but only axisymmetric
- not TMG only Petrov type Dt
- $\nabla q \neq 0$ refined probe
 - room for corrections to the perfect-fluid em tensor
 - ► the em tensor is perfect ⇒ ∃ set of vanishing transport coefficients for the holographic fluid – major consequence

nut charge: source for a "perfect-like" Cotton tensor

$$C_{\mu\nu}dx^{\mu}dx^{\nu} = nk^4 \left(k^2(4n^2-a^2)-1\right)(2u^2+d\ell^2)$$

Highlights

Motivations

Stationary fluids

Fluids and holography

Papapetrou-Randers fluids & TMG

Papapetrou–Randers fluids beyond TMG

Outlook

Bibliography

Summary

Framework: fluids on PR backgrounds $ds^2 = -(dt - b)^2 + d\ell^2$

- Perfect fluids reach equilibrium by aligning u with ∂_t
- Perfect equilibrium can be reached by more general fluids under conditions on ds² and on their microscopic properties
 - ► perfect-Cotton PR geometries
 - holographic fluids (\rightarrow many vanishing transport coefs.)

Perfect-Cotton geometries (Petrov type D_t)

$$C_{\mu
u} = \chi T_{\mu
u}^{\mathsf{perf}} = c/2 \left(3u_{\mu}u_{\nu} + g_{\mu
u} \right)$$

► Principle:

condition on boundary data reminiscent of conformal (Weyl) self-duality relating mass and nut i.e. energy and vorticity

- ► Practice:
 - ▶ integrable: FG resummable into exact Einstein
 - generalization of TMG: more general 3-dim dynamics with Petrov Dt solutions (Einstein–Weyl, ... [more available: NMG, ZDG])

Beyond

Some questions in holographic fluid dynamics

- Perfect equilibrium on more general boundaries integrable to bulk with regular horizons: holography as a bottom-up solution-generating technique as Geroch, Kerr-Schild ... [also TIFR group for perturbative bottom-up as in e.g. [3, 4, 16, 17]]
- Beyond integrable: response to perturbations for probing the non-vanishing transport coefficients

Important questions in gravity

- ► Non-isometric cases and rigidity theorem in AdS
- ► Understand deeper the holographic solution-generating technique and its interplay with generalized TMG
- ► Shed light on gravitational duality [see e.g. [18]]
- Duality and fluid equilibrium in higher dimensions?

Highlights

Motivations

Stationary fluids

Fluids and holography

Papapetrou–Randers fluids & TMG

Papapetrou–Randers fluids beyond TMG

Outlook

Bibliography

Short bibliography I

The list below is not complete – it is meant to help the reader throughout the various subjects mostly with review articles

- [1] P. Romatschke, Int. J. Mod. Phys. E19 (2010) 1 [arXiv:0902.3663 [hep-ph]]
- [2] P. Kovtun, J. Phys. A45 (2012) 473001 [arXiv:1205.5040 [hep-th]]
- [3] V.E. Hubeny, S. Minwalla and M. Rangamani, arXiv:1107.5780 [hep-th]
- [4] M. Rangamani, Class. Quant. Grav. 26, 224003 (2009) [arXiv:0905.4352 [hep-th]]
- [5] J. Ehlers, Gen. Rel. Grav. 25 (1993) 1225
- [6] R.G. Leigh and A.C. Petkou, JHEP 0711 079 (2007) [arXiv:0704.0531 [hep-th]]
- [7] D.S. Mansi, A.C. Petkou and G. Tagliabue, Class. Quant. Grav. 26 (2009) 045008 [arXiv:0808.1212 [hep-th]]
- [8] D.S. Mansi, A.C. Petkou and G. Tagliabue, Class. Quant. Grav. 26, 045009 (2009) [arXiv:0808.1213 [hep-th]]
- [9] C. Fefferman and C.R. Graham, arXiv:0710.0919 [math.DG]
- [10] R.G. Leigh, A.C. Petkou and P.M. Petropoulos, Phys. Rev. D85 (2012) 086010 [arXiv:1108.1393 [hep-th]]
- [11] M.M. Caldarelli, R.G. Leigh, A.C. Petkou, P.M. Petropoulos, V. Pozzoli and K. Siampos, Proc. of Science Corfu11 (2012) 076 [arXiv:1206.4351 [hep-th]]
- [12] R.G. Leigh, A.C. Petkou and P.M. Petropoulos, JHEP 1211 (2012) 121 [arXiv:1205.6140 [hep-th]]

Short bibliography II

- [13] A. Mukhopadhyay, A.C. Petkou, P.M. Petropoulos, V. Pozzoli and K. Siampos, arXiv:1309.2310 [hep-th]
- [14] S. de Haro, JHEP 0901 (2009) 042 [arXiv:0808.2054 [hep-th]]
- [15] O. Miskovic and R. Olea, Phys. Rev. D79 (2009) 124020 [arXiv:0902.2082 [hep-th]].
- [16] S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, JHEP 0812 (2008) 116 [arXiv:0809.4272 [hep-th]]
- [17] S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S.P. Trivedi and S.R. Wadia, JHEP 0902 (2009) 018 [arXiv:0806.0006 [hep-th]]
- [18] C. Bunster, M. Henneaux and S. Hortner, arXiv:1301.5496 [hep-th]