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Framework: holographic applications

v

Holographic fluids: hydrodynamic approximation of finite- T
and finite-y states of a boundary CFT

» universal bound 1/s > h/4nkg 11,21

» general fluid/gravity correspondence (3,4

v

Reminder: bulk geometries solve (in lowest order in ')
Einstein’s Eqs. — boundaries have a priori no gravitational dofs
Still: “gravitational dynamics” of the boundary is relevant

> as an external input for controlling the bulk

> in HS AdS4/CFT3 [scc comments by Misha Vasitico]

Guideline: bulk gravitational duality

v

v

Many aspects rooted in (modified) gravity isuject of the school]



More specifically

3 + 1 bulk — 2 + 1 boundary

» Describe non-trivial global equilibrium on non-trivial boundary
geometries — perfect fluidity

» Set conditions on the boundary geometry for equilibrium states
to exist — perfect geometry: TMG and beyond

» Determine holographically classes of transport coefficients —
bonUS (Usua”y corr. funCtS. in w, k — O [see Diana Vaman's \ectures])

Note: not to be confused with recent activity on 2 + 1 bulk — 1+ 1
boundary Ang/CFTz with TMG, EWG, NMG, ZDG solutions in
the bulk """" nsend’s lectures]
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Stationary fluids



On vector-field congruences i

Vector field u with uyutt = —1 and space—time variation Viyuuy

1
v‘uuV == *Uyal/ + O_HV + ﬁ@hyy + wi/“/

v

huy = uyu, + gy projector/metric on the orthogonal space

v

ay = u’"Vyuy: acceleration

v

Oyt symmetric traceless part — shear

v

© = V,ut: trace — expansion

v

wyy: antisymmetric part — vorticity

1 1
w = Ew”VdXV Adx" = E(du +uAa)



Fluid dynamics

Fluids in gravitational backgrounds gy, described in terms of u, e, p
all inside T, satisfying Euler equations

plus equation of state (involving T, s)
Perfect fluids: T; o= eutu’ + pht"

Vie+ (e+p)©=0
Vip—(e+pla=0



General fluids: viscous part —in 2+ 1 dim & at O(Vu) 1

visc

v A1 v
T.” — <2170.;ll/ + gh;w@ + Z;Hep (1 U0y ))
Landau frame: all corrections are transverse

Conformal fluids: ¢ = 2p,{ =0, ...

Transverse, traceless and conformal corrections

Transport coefficients: dissipative and non-dissipative

Zero frequency & momentum limit of correlation functions



Equilibrium — backgrounds with a time-like Killing field

Fluids at equilibrium: stationary states without external forces —
evolution without dissipation

» Kinematics & pressure/density distributions tight to the
geometry

» Hard to achieve/study because of transport (dissipative and
non-dissipative)

Special situation: perfect equilibrium

Stationary states with conspiring kinematics and transport coefs.

W pv
T = Tperf

The fluid is not perfect — the equilibrium is perfect



Simple example: Minkowski background
Fluid
» in inertial motion — no a#, ®, o*¥, w*¥
» with constant T and p
is in global equilibrium
The fluid is not assumed perfect — even for viscous fluids kinematics
implies T" = T;‘ « - and Euler Eqgs. are satisfied

Reason: all rank-2 tensors built out of V"u vanish in this
background



3 less trivial backgrounds allowing for less trivial perfect equilibrium
states?
Specific situation (motivated by holography)

» Conformal fluids — reduces the set of allowed tensors

» Backgrounds with a normalized time-like Killing vector as e.g.
Papapetrou—Randers



Killing vector field of constant norm: a remarkable congruence
v(ygv) =0 Cyé’ll =1

accelerationless — geodesic
shearless — 0 =0

expansionless — ® = 0

vV V. v v

carries vorticity

1
w = 5dE & W =V,



Perfect equilibrium < alignement of the velocity u with the Killing &

e=2p
Vp=0<V,uie=0
Vip=0

geodesic, shearless & expansionless fluid with vorticity at constant
pressure/density

Non-perfect equilibrium
{u = ¢+ du(x)

p = po+0p(x)

out of our scope



Conditions for perfect equilibrium

Interplay between the geometry and the fluid transport properties

» Dangerous tensors: rank-2, transverse, traceless, conformal
tensors built out of V"¢ and geometrical tensors (e.g. Ricci,
Cotton-York) with non-zero divergence — geometry

» Conditions: vanishing of transport coefficients coupled to
dangerous tensors — statement about the microscopic theory

Realized in a wide class of holographic fluids

» Specific boundary geometries: perfect-Cotton geometries

» Handle on microscopic properties: infinite sequence of
vanishing transport coefficients



Highlights

Fluids and holography



Holography in a nutshell

Applied beyond the original framework — type 1IB string on
AdSs x S5 — maximal susy YM in D = 4 — usually in the classical
gravity approximation without backreaction

» Bulk with A = —3k?: asymptotically AdS d = D + 1-dim M

» Boundary at r — oo: asymptotic coframe E¥ y =10,...,D —1
2 r2 2.2 uEv dr2 2.2 ALV
dsgun ~ K22 +k°r 77;11/E E" = 22 + k°r g}wdx dx



Where is the fluid and where are its data?

Via holography: boundary field theory at finite T and u
Fluid = hydrodynamic approximation of the boundary state

Fluid: described in terms of T, in a background g, — data read off
from the large-r expansion of 0% 7,5
02: bulk orthonormal coframe (77 : + — ++, A = —3k?)

dsp = 7726076°

with a gauge choice s.t. 0" = %, o* = 0" dx", u=0,1,2



Holography: Hamiltonian evolution from data on the boundary
subject to a reqularity condition on the horizon — captured in
Fefferman—Graham expansion for large r 1o

1
kr

Independent 2 + 1 boundary data: vector-valued 1-forms E* and
EH

» E": boundary orthonormal coframe — allows to determine
ds® = NuwEMEY = guydxtdx”

» FH: stress current one-form — allows to construct the vev of
the boundary stress tensor (x = 3k/87G)

T=«kFle, = THE' ®e,
, B[};}, ...: Schouten, Cotton, ...

! ].
0" (r, x) = kr E¥(x) + F[g](x) + WF”(X) +--

M
The rest F[2]



Back to the original question

» 32+ 1 boundary geometries ds? s.t.

ds? & TES"
| FG

exact regular 3 + 1 Einstein geometry?

> If yes:
> the holographic boundary fluid behaves as a perfect fluid
> information on its transport properties is made available

» Answer: perfect-Cotton boundary geometries



Highlights

Papapetrou—Randers fluids & TMG



Fluids in Papapetrou—Randers backgrounds

Stationary geometries with unique normalized time-like Killing
congruence — fluid lines

ds? = — (dt — bidx')” + ajdx’dx’

» Killing field: 9; «» u = —dt + b with vorticity w = %db
» Perfect fluidity: comoving fluid — aligned with 9,

Analysing perfect fluidity: tensors in 2 + 1 dimensions

» Vorticity: wy, = —31puf, q scalar field
» Curvature: Ry,
» Cotton—York: CM' = n#7V, (R, — %R(S};)



In summary

2
ds? = w2 +df?2 u= —dt+b R:R+%

2 o 2
v_ 9 R+q
Ruvdxtdx" = ?U2 + Tdﬁz —udx?u71p0, V¥ q
HdyV — 1 2 2 2
Cudx'dx" = 3 Vig+ 2 (R+2q) (2u® +de?)
1

= (V qudx 'dx/ + V2qu? )
_7dxpua77payvy(f? + 3q2)

I\)Cl\)

with
Thefdxtdx” = p (2u® + d¢?)



Special PR backgrounds

Critical points of topologically massive gravity (TMG)

R 1
R — *g i + Ag ) — — C /
w8 v 1 i

» Absence of dangerous tensors

» Perfect equilibrium guaranteed for any comoving conformal
fluid — no constraint on transport coefficients

Next non-trivial generalization of Minkowski space—time



SOlUZTZg TMG ’(,Ulth PR [see Philippe Spindel’s talk]

» g = 2u/3: constant vorticity
> R=61—2"/9: d(?is 5%, R? or Hy
Squashed 3-dim maximally symmetric space—times with

R x SU(2),R x H(2),R x SL(2,R) isometry

Petrov type D; homogeneous spaces: TMG monopoles
Example: Godel



A concrete example

Warped AdS3: fibration over H

ds? = — (dt — 2n(cosho — 1)dg)* + = <d02 + sinh? (Td§92) =
= — (dt —b)* + (E7)* + (E?)* = — (E%)* + (E")* + (E?)?

ho—1
b=2nk""7 " ZE9 = K*nE” A EY
sinho
Dirac-monopole-like vortex (“hedgehog” or homogeneous) on H,

with “magnetic charge” g = 21/3 = 2k?n (A = K*/3(k?n? — 1))



Perfect fluidity

Determining the dangerous tensors

> G = p (A +12/9) (3uuy + guv)
> R = (BA+#2/3) wuuy, + (3A+#2/9) gy
» Homogeneity = V,V, ... u, algebraic ~ v,

No higher-derivative transverse, traceless rank-2 tensor (building
blocks: wyuy, guv) — consequence of homogeneity as in Minkowski

Remarks

» Any comoving fluid is at perfect equilibrium & carries vorticity

» The Cotton tensor is responsible for the vorticity: g = 21/3



Next

So far: used gravitational dynamics to shape boundary geometry in
order to make possible perfect equilibrium

Questions at hand: holographic realization
» 4-dim Einstein space-times as bulk geometries?

» Bulk source for the boundary Cotton tensor — and vorticity?
» Other PR boundary backgrounds

> have holographic bulk realization with perfect energy—momentum
tensor?
» probe transport coefficients?



The uplift of the TMG monopoles

The backgrounds leading to a holographic fluid on TMG monopoles in
perfect equilibrium are the Taub—NUT AdS black-hole geometries

» nut charge n source for the Cotton
nk* (v+ 4n2k2) (2u2 + dEZ)

related to the vorticity q: ¢ = 2k?n

» mass M source for the energy—momentum tensor
xMk/2 (2u® + d£?)

related to the energy density e: 3¢ = 2k Mk
with A = 1/3 (k*v + ¢*/4), v = 1,0, —1 for 5%, R?, H,



Taub—NUT geometries in AdS

The hyperbolic case
2 dr2 7 2012 2402 a2 2
dsge = o - V(F) |dt — 4nsinh §dg0} +p [da + sinh adqo]
= (67)2 — (09 + (67)* + (69)?

V(7) = 5/¢* with

A = (n*—F) (1— k> (7 +3n?)) + 4k?n?F — 2MF
p2 =74

Hyperbolic horizon, no rigid angular velocity but nut charge n — one
of the most peculiar solutions to Einstein’s Eqs. iminer e3)

FG expansion reproduces squashed AdSs with perfect e—m tensor



Following FG — boundary metric and stress tensor 1, 11,12
» Boundary geometry: warped AdSs

ds? = gudxtdx? = 1, EFE"

= — (dt — 2n(cosho — 1)dg)® + % <d02 + sinh? Udgo2)

» Fluid: perfect-like stress tensor

Mk
TwEMEY = S5 (2(E9? + ()% + (E7)?)

» conformal: ¢ = 2p = 2xMk/3
» comoving: u = d¢

The stationary fluid aligned with the Killing of const. norm: inertial,
no expansion, no shear but uniform vorticity sourced by the nut



Highlights

Papapetrou—Randers fluids beyond TMG



PR backgrounds ds?> = —u? + d¢? solving TMG provide exact bulk
Einstein spaces

> Cudx!dx” = ¢/2 (2u? +d(?) (V#Cy =0 = ¢ constant )
> TR dxtdx? = ¢/2 (2u® 4 d(?)

Can one generalize that beyond TMG?



Perfect-Cotton geometries i

PR metrics beyond TMG: Petrov type Dy

Cudxl'dx” = = (202 +d/?)

In other words: Cy, = xTjy i

» FG expansion is resummable with Tﬁfrf into exact regular
Einstein space—times — comoving holographic fluids at perfect
equilibrium

» Petrov type D; geometries have dangerous tensors — non-
trivial information on the transport coefficients



Why the perfect-Cotton choice?

In the Euclidean Cy, = +871Gk? Ty is equivalent to the bulk Weyl
(anti-)self-duality leading e.g. to quaternionic Taub—-NUT and
relating M and n (electric and magnetic gravitational charges)
[7,8,9,14,15]

n(v —4k*n®) = £M

Holography allows for a kind of Lorentzian generalization:
perfect-Cotton geometries 113

G = XTE"

is a kind of holographic integrability condition



Bulk uplift of PR perfect-Cotton geometries

ds? = —2u (dr - ;dxpuaiypwqu) + p?de?
0 2
- (r2—|—2—q—2 (2I\/Ir—|—qc)> 2
e

non-constant g, R (perfect-Cotton geometry Eqs. for g and d¢?)



The landscape of Petrov type Dy & bulks

Solutions with 4 isometries: d:® Bianchi IX, 11, VIII

» Boundary: TMG monopoles — no dangerous tensors
» Bulk: Taub-NUT black holes

Solutions with 2 isometries: d; & dy

» Boundary: monopole plus dipole (cyclonic vorticity — d¢?:
squashed S2,IR?, H, ) — infinite sequences of dangerous tensors

» Bulk: general classes of Kerr Taub—-NUT black holes with

regular horlzons [many new solutions in [13] — such as flat-horizon Kerr Taub—NUT]



Solutions with 1 isometry: ¢
Uncharted territory (exact and numerical)
» Do these boundary exist?
» Do they define regular bulk geometries?

If yes they will provide a kind of multipolar probe for the transport
properties



An example of monopole & dipole

AdS Kerr Tnub—NUT geometries in 4 dim

2 2
S P i P4 I 980

ds A,dr i (dt + Bde)” + A 97 + 2 7 (adt 4 adg)?
with

A, = Kk2r* +r2(k?(a®> + 6n%) — 1) — 2Mr + (a®> — n?)(3k?n? — 1)
p?> =r?+(n—acosho)?

Ay =1— ak?cosho(4n— acosho)

" _ r?4(n—a)?

A
’B _ _ 2n(coshg—1)+asinh?c
Z =1+k?a



AdS Kerr Taub—NUT and its boundary

» Angular velocity a and nut charge n
» FG expansion: 3-dim PR ds? = —u? + d/?
> 402 = 1/k2 (42 4 S rhedg?) squashed Mo

2n(coshc—1)+asinh? ¢
» u=—dt+ jEep

with T = 4K (242 4 d/?)

» stationary perfect-like fluid aligned with the Killing d¢
» n and a are sources for the vorticity

d¢ monopole & dipole

g = 2k?(n— acosho)



New features

» PR boundary not homogeneous but only axisymmetric
» not TMG only Petrov type Dy
» Vq # 0 — refined probe

» room for corrections to the perfect-fluid em tensor

> the em tensor is perfect = 3 set of vanishing transport
coefficients for the holographic fluid — major consequence

» nut charge: source for a “perfect-like” Cotton tensor

Cuudxtdx’ = nk? (K2 (42 — 2?) — 1) (20 + df?)
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Outlook



Summary

Framework: fluids on PR backgrounds ds®> = —(dt — b)? + d¢?
» Perfect fluids reach equilibrium by aligning u with o¢
> Perfect equilibrium can be reached by more general fluids under
conditions on ds? and on their microscopic properties

» perfect-Cotton PR geometries
» holographic fluids (— many vanishing transport coefs.)



Perfect-Cotton geometries (Petrov type Dy)

Cw = )(T]fﬁrf =c/2 (3uyuv +gw)

» Principle:
condition on boundary data reminiscent of conformal (Weyl)
self-duality relating mass and nut i.e. energy and vorticity
» Practice:

» integrable: FG resummable into exact Einstein
» generalization of TMG: more general 3-dim dynamics with
Petrov Dy solutions (Einstein—Weyl, . .. (more acaitabie: N, 20G1)



Beyond
Some questions in holographic fluid dynamics

» Perfect equilibrium on more general boundaries integrable to
bulk with regular horizons: holography as a bottom-up
solution-generating technique as Geroch, Kerr-Schild .. . o1z

group for perturbative bottom-up as in e.g. [3, 4,16, 17]]

» Beyond integrable: response to perturbations for probing the
non-vanishing transport coefficients

Important questions in gravity
» Non-isometric cases and rigidity theorem in AdS

» Understand deeper the holographic solution-generating
technique and its interplay with generalized TMG

> Shed light on gravitational duality (wcc. s

» Duality and fluid equilibrium in higher dimensions?
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