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Beyond Einstein...

Motivation

The standard model and the general relativity
represents the two great theories in fundamental
physics. The success of general relativity is beyond
any doubt, however due to its inconsistency with
quantum mechanics, it is not possible to ensure that
this theory keeps its original structure at high
energies.
One of the goals of the current study is to see what
features of theories beyond Einstein could lead to an
answer to any of the open problems in astrophysics
(dark matter) or cosmology (dark energy)
In this talk: Astrophysics in the Braneworld
In this talk: Micro Black Holes in the Braneworld

Astrophysical solutions in Randall-Sundrum gravity – p. 2



Astrophysical solutions in Randall-Sundrum gravity – p. 3



Extra dimension

Large Extra Dimension (ADD theory) Arkani-Hamed, Dimopoulos, Dvali (1998)

Braneworld (RS theory) L. Randall and R. Sundrum (1999)

Both models explain the hierarchy problem

ADD: Many flat extra dimensions

Braneworld: Only one extra dimension with a warped geometry .

No experimental evidence for extra dimensions so far:

LEP: LEP Exotica Working Group, LEP Exotica WG 2004-03;

Tevatron: CDF Collaboration, Phys. Rev. Lett. 101 (2008) 181602; D0
Collaboration, Phys. Rev. Lett. 101 (2008) 011601.

LHC: ATLAS Collaboration, Phys. Lett. B 705 (2011) 294; Phys. Lett. B 709
(2012) 322.

LHC: CMS Collaboration, Phys. Rev. Lett. 107 (2011) 201804.

Recently: LHC: ATLAS collaboration, arXiv:1204.4646v2[hep-ex] Sep.2012.
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The Braneworld
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Einstein field equations on the brane

The Einstein field equations on the brane may be written as a modification of the standard
field equations [Shiromizu et al 2002]
5D Einstein equations:

Gab +Λ5gab = κ2
5Tab; κ5 = 8πG5 a = 0, ...4 (Bulk)

Gµν = −8πTT
µν − Λgµν , µ = 0, ...3 (Brane)

where the energy-momentum tensor has new terms carrying bulk effects onto the brane:

Tµν → T T
µν = Tµν +

6

σ
Sµν +

1

8π
Eµν

Here σ is the brane tension
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The new terms and are the high-energy corrections Sµν and
the projection of the bulk Weyl tensor on the brane Eµν

Sµν =
1

12
T α
α Tµν −

1

4
TµαT

α
ν +

1

24
gµν

[

3TαβT
αβ − (T α

α )2
]

− 8πEµν = −
6

σ

[

U(uµuν +
1

3
hµν) + Pµν +Q(µuν)

]

U → Dark radiation

Pµν → Anisotropic stress

Qµ → Energy flux
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Black Holes in 4D

Schwarzschild-like coordinates ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin 2θdφ2

)

eν = e−λ = 1− 2GM

r
⇒ h = 2GM

R < 2M G = 2M
lp

Mp
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Black Holes in the Braneworld

Schwarzschild-like coordinates ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin 2θdφ2

)

Dadhich,Maartens,Papadopoulos and Rezania (DMPR Solution):

eν
+

= e−λ+

= 1− 2M
r

− q

r2
, U+ = −P+

2
=

4

3
πqσ

1

r4
,

Casadio, Fabbri and Mazzacurati (CFM Solution)

eν
+

=






η +
√

1− 2M
r

(1 + η)

1 + η






2

, eλ
+

=

[

1− 2M
r

(1 + η)

]−1

,

16πP+

k4σ
= − M(1 + η)η

η +
√

1− 2M
r

(1 + η)

1

r3
, U+ = 0,
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Finding the tidal charge q

eν = e−λ = 1−
2 ℓPM

MP r
−

q

r2

What is the relationship between M and q?

We need the complete 5D solution (unknown).

We have to consider an alternative way: the
Minimal Geometric Deformation

In the GR limit σ−1 → 0, the tidal charge q must
vanish.
We expect M = 0 =⇒ q = 0

Hence q = q(M, σ)
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Minimal geometric deformation

Let us see the "solution" for the geometric function

e−λ = 1− 8π

r

∫ r

0
r2
[

ρ+
1

σ

(
ρ2

2
+

6

k4
U
)]

dr,

It can be written as

e−λ = 1− 8π

r

∫ r

0
r2ρdr

︸ ︷︷ ︸

General Relativity

+ "DEFORMATIONS"

The deformation undergone by the geometric function λ produces anisotropic
consequences, as can be seen through

8π

k4
P
σ

=
1

6

(
G1

1 −G2
2

)
,
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Minimal geometric deformation

THE MGD WORKS!

When a solution of the four-dimensional Einstein
equations is considered as a possible solution of the
BW system, the geometric deformation produced by
extra-dimensional effects is minimized, and the open
system of effective BW equations is automatically
satisfied JO, F. Linares, A. Pascua, A. Sotomayor Class.
Quant. Grav. 30 175019 (2013).

This approach was successfully used to generate
physically acceptable interior solutions for stellar
systems and even exact solutions were found:

JO Int. J. Mod. Phys. D 18, 837 (2009);
Also: JO + F. Linares (Guanajuato University) “Exact
Tolman IV Braneworld Solution” (2013)

Astrophysical solutions in Randall-Sundrum gravity – p. 12



Finding the tidal charge q

Exterior

eν
+

= e−λ+

= 1− 2 ℓP M
MP r

− q

r2
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Finding the tidal charge q

Exterior

eν
+

= e−λ+

= 1− 2 ℓP M
MP r

− q

r2

Interior

e−λ−

= 1− 2 m̃(r)

r

where the interior mass function m̃ is given by m̃(r) = m(r)− r
2
f∗(r), with

f∗(r) the minimal geometric deformation.
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Finding the tidal charge q

Exterior

eν
+

= e−λ+

= 1− 2 ℓP M
MP r

− q

r2

Interior

e−λ−

= 1− 2 m̃(r)

r

where the interior mass function m̃ is given by m̃(r) = m(r)− r
2
f∗(r), with

f∗(r) the minimal geometric deformation.

Matching conditions at r = R

eνR = 1− 2 ℓP M
MP R

− q

R2

2M
R

=
2M

R
− MP

ℓP

(

f∗ +
q

R2

)

q

R4
=

(
ν′R
R

+
1

R2

)

f∗ + 8π
ℓP

MP
pR
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Finding the tidal charge q

Exterior

eν
+

= e−λ+

= 1− 2 ℓP M
MP r

− q

r2

Interior

e−λ−

= 1− 2 m̃(r)

r

where the interior mass function m̃ is given by m̃(r) = m(r)− r
2
f∗(r), with

f∗(r) the minimal geometric deformation.

Matching conditions at r = R

We then ontain the tidal charge as

MP

ℓP
q =

(

Rν′R + 1

Rν′
R
+ 2

)(
2M

R
− 2M

R

)

R2 +
8π pR R4

2 + Rν′
R
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Finding the tidal charge q

Exterior

eν
+

= e−λ+

= 1− 2 ℓP M
MP r

− q

r2

Interior

e−λ−

= 1− 2 m̃(r)

r

where the interior mass function m̃ is given by m̃(r) = m(r)− r
2
f∗(r), with

f∗(r) the minimal geometric deformation.

Matching conditions at r = R

We then ontain the tidal charge as

MP

ℓP
q =

(

Rν′R + 1

Rν′
R
+ 2

)(
2M

R
− 2M

R

)

R2 +
8π pR R4

2 + Rν′
R

We need an interior solution to evaluate ν′R and then to find q = q(M, σ)
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Finding the tidal charge q

Taking pR = 0 and imposing the boundary constraint

Rν′R = −
(M −M)− 2MK MP

σ R2 ℓP

(M −M)− MK MP

σ R2 ℓP

where K is a (dimensionful) constant we can fix later, we obtain a simple relation between q

and M given by (R. Casadio, JO, Phys. Lett. B, 715, 251-255 (2012) ).

q =
2KM
σ R
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Finding the tidal charge q

Taking pR = 0 and imposing the boundary constraint

Rν′R = −
(M −M)− 2MK MP

σ R2 ℓP

(M −M)− MK MP

σ R2 ℓP

where K is a (dimensionful) constant we can fix later, we obtain a simple relation between q

and M given by (R. Casadio, JO, Phys. Lett. B, 715, 251-255 (2012) ).

q =
2KM
σ R

it vanishes for M → 0 and for σ−1 → 0, and

it vanishes for very small star density, that is for R → ∞ at fixed M and σ.
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Finding the tidal charge q

Taking pR = 0 and imposing the boundary constraint

Rν′R = −
(M −M)− 2MK MP

σ R2 ℓP

(M −M)− MK MP

σ R2 ℓP

where K is a (dimensionful) constant we can fix later, we obtain a simple relation between q

and M given by (R. Casadio, JO, Phys. Lett. B, 715, 251-255 (2012) ).

q =
2KM
σ R

it vanishes for M → 0 and for σ−1 → 0, and

it vanishes for very small star density, that is for R → ∞ at fixed M and σ.

As the pressure does not need to vanish at the surface in the BW, we can get the same
simple q = q(M, σ) solution by

4πR3 pR =
MP MK

ℓP σ R2

(
2 +Rν′R

)
− (M −M)

(
1 +Rν′R

)
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Finding the tidal charge q

Taking pR = 0 and imposing the boundary constraint

Rν′R = −
(M −M)− 2MK MP

σ R2 ℓP

(M −M)− MK MP

σ R2 ℓP

where K is a (dimensionful) constant we can fix later, we obtain a simple relation between q

and M given by (R. Casadio, JO, Physics Letters B, 715, 251-255 (2012) ).

q =
2K M
σ R

(∗)

it vanishes for M → 0 and for σ−1 → 0, and

it vanishes for very small star density, that is for R → ∞ at fixed M and σ.

As the pressure does not need to vanish at the surface in the BW, we can get the same
simple q = q(M, σ) solution by

4πR3 pR =
MP MK

ℓP σ R2

(
2 +Rν′R

)
− (M −M)

(
1 +Rν′R

)

In our solution (∗) R is still a free parameter. We need an interior solution to fix it!
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Spherically symmetric static distribution

Schwarzschild-like coordinates

ds2 = eνdt2 − eλdr2 − r2
(

dθ2 + sin 2θdφ2
)

A perfect fluid (General Relativity)+ high energy corrections+Weyl functions

−8π

(

ρ+
1

σ

(
ρ2

2
+6U

))

= − 1

r2
+ e−λ

(
1

r2
− λ′

r

)

,

−8π

(

−p− 1

σ

(
ρ2

2
+ ρp+2U

)

+
P
σ

)

= − 1

r2
+ e−λ

(
1

r2
+

ν′

r

)

,

−8π

(

−p− 1

σ

(
ρ2

2
+ ρp+2U

)

− P
2σ

)

=
1

4
e−λ

[

2ν′′ + ν′2 − λ′ν′ + 2
(ν′ − λ′)

r

]

,

p′ = −ν′

2
(ρ+ p).
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Finding the tidal charge q

Let us consider the exact interior solution (JO Int. J. Mod. Phys. D 18, 837 (2009))

eν = A
(
1 + C r2

)4

ρ = Cρ

(
MP

ℓP

)
C
(
9 + 2C r2 + C2 r4

)

7π (1 + C r2)3

where Cρ = Cρ(K) is a constant to be determined for consistency, and

pR =

(
MP

ℓP

)
2C

(
2− 7C R2 − C2 R4

)

7π (1 + C R2)3
= 0.
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Finding the tidal charge q

Let us consider the exact interior solution (JO Int. J. Mod. Phys. D 18, 837 (2009))

eν = A
(
1 + C r2

)4

ρ = Cρ

(
MP

ℓP

)
C
(
9 + 2C r2 + C2 r4

)

7π (1 + C r2)3

where Cρ = Cρ(K) is a constant to be determined for consistency, and

pR =

(
MP

ℓP

)
2C

(
2− 7C R2 − C2 R4

)

7π (1 + C R2)3
= 0.

R = 2n

(
ℓP

MP

)
M

Cρ

; K =

(
MP

MG

)2 ℓG

MG
; Cρ = (MG/MP)

4
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Finding the tidal charge q

Let us consider the exact interior solution (JO Int. J. Mod. Phys. D 18, 837 (2009))

eν = A
(
1 + C r2

)4

ρ = Cρ

(
MP

ℓP

)
C
(
9 + 2C r2 + C2 r4

)

7π (1 + C r2)3

where Cρ = Cρ(K) is a constant to be determined for consistency, and

pR =

(
MP

ℓP

)
2C

(
2− 7C R2 − C2 R4

)

7π (1 + C R2)3
= 0.

R = 2n

(
ℓP

MP

)
M

Cρ

; K =

(
MP

MG

)2 ℓG

MG
; Cρ = (MG/MP)

4

M =
M3

M2 + n1 M2
G

q =
ℓ2G M2

n
(
M2 + n1 M2

G

)

where we used σ ≃ ℓ−2
G .
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Black Holes in 4D

R < 2M G = 2M
lp

Mp

Micro Black Holes in 4D

R ⇒ λC λC ≃
~

M
=

lpMp

M

lpMp

M
. 2M

lp

Mp
⇒ Mc ≈ Mp (Minimum possible mass)

Astrophysical solutions in Randall-Sundrum gravity – p. 26



According to 4D gravity...
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Black Holes in the Braneworld
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Micro Black Holes in the BW

The tidally charged metric

ds2 = eν dt2 − eλ dr2 − r2(dθ2 + sin2θ dφ2); eν = e−λ = 1− 2 ℓP M
MP r

− q

r2

Its horizon h = ℓP

[

M
MP

+

√

M2

M2
P

+ q
M2

P

M2
G

]

Micro Black Holes : λC . h ⇒ ℓP MP

M
. ℓP

[

M
MP

+

√

M2

M2
P

+ q
M2

P

M2
G

]

We consider black holes near their minimum possible mass M ∼ M ≈ MG ≪ MP

→ Mc ≈ MG√
q

G.L.Alberghi,R.Casadio,O.Micu, andA.Orlandi, JHEP1109, 023(2011)

But q is unknown!!! We need the complete 5D solution, which is unknown so far. However...
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Black hole limit and minimum mass

We obtain the horizon radius

h =
ℓP

MP

(

M+

√

M2 + q
M2

P

ℓ2P

)

and the classicality condition h & λM reads

M

M2
P

(

M+

√

M2 + q
M2

P

ℓ2P

)

& 1

We expand for M ∼ M ≃ MG ≪ MP, thus obtaining

h2

λ2
C

≃ M2

M2
P

q

ℓ2P
≃

M2
G

M2
P

M̄2 q̄
ℓ2G
ℓ2P

≃ M̄2 q̄ ≃ 1
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Black hole limit and minimum mass

We obtain the horizon radius

h =
ℓP

MP

(

M+

√

M2 + q
M2

P

ℓ2P

)

and the classicality condition h & λM reads

M

M2
P

(

M+

√

M2 + q
M2

P

ℓ2P

)

& 1

We expand for M ∼ M ≃ MG ≪ MP, thus obtaining

h2

λ2
C

≃ M2

M2
P

q

ℓ2P
≃

M2
G

M2
P

M̄2 q̄
ℓ2G
ℓ2P

≃ M̄2 q̄ ≃ 1

or M̄4 ≃ n
(
n1 + M̄2

)
, which yields

Mc ≃ 1.3MG

This can be viewed as the minimum allowed mass for a semiclassical BH in the BW.
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Two more BW astrophysical solutions

A non-uniform BW solution (with M/R ≃ 0.38MP

ℓP
)

e−λ(r) = 1− 3C r2

2 (1 + C r2)
+ f∗(r); eν(r) = A(1 + Cr2)3

ρ(r) =
3C

(
3 + Cr2

)

2 k2 (1 + Cr2)2
; p(r) =

9C
(
1− Cr2

)

2 k2 (1 + Cr2)2

Mc ≃ 1.22MG

The Schwarzschild solution (with M/R ≃ 0.28MP

ℓP
)

e−λ = 1− r2

C2
+ f∗; eν =



A− B

√

1− r2

C2





2

ρ =
3

k2 C2
; p(r) =

ρ

3






3B
√

1− r2

C2 −A

A− B
√

1− r2

C2






Mc ≃ 1.9MG
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Astrophysical consequences forMc

From ≃ λC , we find

M̄2q̄ ≃ 1

which yields

M2
c ≃ n

2

(

1 +

√

1 +
4n1

n

)

M2
G

Now, from GR we know that the compactness of any stable stellar distribution of mass M

and radius R must satisfy the constraint M/R < 4/9. This bound leads to n > 9/8, and,
correspondingly,

Mc
2 ≃ n

2

(

1 +

√

1 +
4n1

n

)

︸ ︷︷ ︸

>2

M2
G

Always a critical mass Mc above MG JO, R. Casadio, arXiv:1212.0409 [gr-qc] (2012).
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Conclusions

We have analyzed analytical descriptions of stars in the BW, with the tidal charge as an
explicit function of the ADM mass and brane tension, which was still an open problem.

For micro black holes: different astrophysical solutions lead to different critical mass.

By using the general relativistic constraint M/R < 4/9 we found that the minimum
mass of a semiclassical microscopic black hole Mc is always above MG

A more general solution regarding charged black holes will be considered (in
progress).

The MGD works very well!...and maybe it could be extended to other beyond
Einstein’s theories ....?
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THANK YOU!
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