
Gonzalo J. Olmo

Geons in quadratic Palatini gravity

Gonzalo J. Olmo

Instituto de Física Corpuscular - CSIC (Valencia,Spain)

in collaboration with

F.S.N. Lobo & D. Rubiera-García



● Motivations

Field Equations

Spherically symmetric charged

solutions

The End

Gonzalo J. Olmo Paros, 26 Sep 2013 - p. 2/15

Motivations
■ Quadratic gravity has been thoroughly studied in the literature:

◆ R ⇒ R+ l2P
(

aR2+bRµνRµν)

◆ Renormalizability ofQFT in curved spacesrequires such terms.
◆ String theoriespredict similar higher-order curvature corrections.
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◆ Renormalizability ofQFT in curved spacesrequires such terms.
◆ String theoriespredict similar higher-order curvature corrections.

■ It has been established that:
◆ The theory satisfiesfourth-order equations.
◆ Massive spin-2 gravitons and a massive spin-0ghostpropagate in vacuum.
◆ Perturbative methodsare generally required to explore deviations from GR.
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◆ The theory satisfiesfourth-order equations.
◆ Massive spin-2 gravitons and a massive spin-0ghostpropagate in vacuum.
◆ Perturbative methodsare generally required to explore deviations from GR.

■ HOWEVER, thePalatini version of the theory iscompletely different.
◆ Second-orderfield equations govern the dynamics⇒ exact solutions.
◆ Only massless spin-2 gravitons propagate in vacuum⇒ GR+Λ recovered.
◆ New dynamicswithout new dynamical d.o.f.
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Motivations
■ Quadratic gravity has been thoroughly studied in the literature:

◆ R ⇒ R+ l2P
(

aR2+bRµνRµν)

◆ Renormalizability ofQFT in curved spacesrequires such terms.
◆ String theoriespredict similar higher-order curvature corrections.

■ It has been established that:
◆ The theory satisfiesfourth-order equations.
◆ Massive spin-2 gravitons and a massive spin-0ghostpropagate in vacuum.
◆ Perturbative methodsare generally required to explore deviations from GR.

■ HOWEVER, thePalatini version of the theory iscompletely different.
◆ Second-orderfield equations govern the dynamics⇒ exact solutions.
◆ Only massless spin-2 gravitons propagate in vacuum⇒ GR+Λ recovered.
◆ New dynamicswithout new dynamical d.o.f.

■ We will see that in thequadratic Palatini theory:
◆ Thecentral singularityof charged BHs isreplaced by a Wormhole.
◆ Reissner-Nordstrom solutions turn intogeons.
◆ Stable remnantsarise in the lowest part of the mass and charge spectrum.
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Field Equations in Palatini Theories
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Palatini -Vs- Metric: generalities
■ In the Palatini formalism, one assumes thatgµν andΓα

βγ are independent

entities: S=
∫

dnx
√−gL[gµν,Γα

βγ]+Smatter[gµν,ψm]



● Motivations

Field Equations

● Palatini approach

● Dynamics off (R Q)

● Solving forΓα
µν

● Metric field equations

Spherically symmetric charged

solutions

The End

Gonzalo J. Olmo Paros, 26 Sep 2013 - p. 4/15

Palatini -Vs- Metric: generalities
■ In the Palatini formalism, one assumes thatgµν andΓα

βγ are independent

entities: S=
∫

dnx
√−gL[gµν,Γα

βγ]+Smatter[gµν,ψm]

■ The field equations follow from variation of the action:
◆ Palatini approach:

δS=
∫

dnx

[

√−g
(

δL
δgµν − L

2gµν
)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2gµν = 8πGTµν

δΓα
βγ ⇒ δL

δΓα
βγ
= 0
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Palatini -Vs- Metric: generalities
■ In the Palatini formalism, one assumes thatgµν andΓα

βγ are independent

entities: S=
∫

dnx
√−gL[gµν,Γα

βγ]+Smatter[gµν,ψm]

■ The field equations follow from variation of the action:
◆ Palatini approach:

δS=
∫

dnx

[

√−g
(

δL
δgµν − L

2gµν
)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2gµν = 8πGTµν

δΓα
βγ ⇒ δL

δΓα
βγ
= 0

◆ Metric approach:

The relation δΓα
βγ =

gαρ

2

[

∇βδgργ +∇γδgρβ −∇ρδgβγ
]

implies

δL
δΓα

βγ
δΓα

βγ =
{

gαµ δL
δΓα

λν
− gαλ

2
δL

δΓα
µν

}

∇λδgµν and leads to

δgµν ⇒
(

δL
δgµν − L

2gµν
)

+∇λ

[

gγν
δL

δΓµ
λγ
−gβµgγνgαλ δL

δΓα
βγ

]

= 8πGTµν

■ Metric andPalatini variations generally lead todifferent field equations.
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Dynamics of Palatini f (R,Q) gravity
■ Consider thePalatini theory S[g,Γ,ψm] =

1
2κ2

∫
d4x

√−g f(R,Q)+Sm[g,ψm]

with Q≡ RµνRµν , , Rµν = Rρµρν , andRα
βµν = ∂µΓα

νβ −∂νΓα
µβ +Γα

µλΓλ
νβ −Γα

νλΓλ
µβ
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■ Field equations (for vanishing torsion):fX ≡ ∂X f

◆ gµν ⇒ fRRµν − f
2gµν +2 fQRµαRα

ν = κ2Tµν

◆ Γα
µν ⇒ ∇β

[√−g
(

fRgµν +2 fQRµν)]= 0
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■ In these equations:
◆ The connection seems to satisfy second-order differentialequations.
◆ Only first-order derivatives of the metric.
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(

fRgµν +2 fQRµν)]= 0

■ In these equations:
◆ The connection seems to satisfy second-order differentialequations.
◆ Only first-order derivatives of the metric.

■ In thePalatini version ofGR:
◆ The connection can besolved by algebraic means.
◆ The dynamics boils down tosecond-order equationsfor the metric.
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2κ2

∫
d4x
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■ Field equations (for vanishing torsion):fX ≡ ∂X f

◆ gµν ⇒ fRRµν − f
2gµν +2 fQRµαRα

ν = κ2Tµν

◆ Γα
µν ⇒ ∇β

[√−g
(

fRgµν +2 fQRµν)]= 0

■ In these equations:
◆ The connection seems to satisfy second-order differentialequations.
◆ Only first-order derivatives of the metric.

■ In thePalatini version ofGR:
◆ The connection can besolved by algebraic means.
◆ The dynamics boils down tosecond-order equationsfor the metric.

■ In general f (R,Q) Palatini theories we find that:
◆ The connection can besolved by algebraic means.
◆ The dynamics boils down tosecond-order equationsfor the metric.
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Solving for Γα
µν

■ Recall the field equations:fX ≡ ∂X f

◆ gµν ⇒ fRRµν − f
2gµν +2 fQRµαRα

ν = κ2Tµν (1)

◆ Γα
µν ⇒ ∇β

[√−g
(

fRgµν +2 fQRµν)]= 0 (2)
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Solving for Γα
µν

■ Recall the field equations:fX ≡ ∂X f

◆ gµν ⇒ fRRµν − f
2gµν +2 fQRµαRα

ν = κ2Tµν (1)

◆ Γα
µν ⇒ ∇β

[√−g
(

fRgµν +2 fQRµν)]= 0 (2)

■ Step 1: definePµ
ν ≡ Rµαgαν , with R= Tr[P̂] and Q= Tr[P̂2] , and write(1) as

fRPµ
ν − f

2δµ
ν +2 fQPµ

αPα
ν = κ2Tµ

ν ⇔ 2 fQ
(

P̂+ fR
4 fQ

Î
)2

= κ2T̂ + 1
2

(

f +
f 2
R

4 fQ

)

Î

◆ This establishes analgebraic relationbetweenPµ
ν andTµ

ν: P̂= P̂(T̂)
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Solving for Γα
µν

■ Recall the field equations:fX ≡ ∂X f

◆ gµν ⇒ fRRµν − f
2gµν +2 fQRµαRα

ν = κ2Tµν (1)

◆ Γα
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(
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ν ≡ Rµαgαν , with R= Tr[P̂] and Q= Tr[P̂2] , and write(1) as

fRPµ
ν − f

2δµ
ν +2 fQPµ
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(

P̂+ fR
4 fQ

Î
)2

= κ2T̂ + 1
2

(

f +
f 2
R

4 fQ

)

Î

◆ This establishes analgebraic relationbetweenPµ
ν andTµ

ν: P̂= P̂(T̂)

■ Step 2: sinceP̂= P̂(T̂) , with R= Tr[P̂] = R(T̂) and Q= Tr[P̂2] = Q(T̂) , then:

(

fRgµν +2 fQRµν) ⇒ gµα ( fRδα
ν +2 fQPα

ν)≡ gµαΣα
ν(T̂) .

◆ One finds that(2) → ∇β [
√−ggµαΣα

ν] = 0 ⇔ ∇β
[√

−hhµν]= 0

◆ with hµν = gµαΣα
ν

√
detΣ

, hµν =
(√

detΣ
)

[

Σ−1
]

µ
α
gαν
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(
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Î

◆ This establishes analgebraic relationbetweenPµ
ν andTµ

ν: P̂= P̂(T̂)

■ Step 2: sinceP̂= P̂(T̂) , with R= Tr[P̂] = R(T̂) and Q= Tr[P̂2] = Q(T̂) , then:

(

fRgµν +2 fQRµν) ⇒ gµα ( fRδα
ν +2 fQPα

ν)≡ gµαΣα
ν(T̂) .

◆ One finds that(2) → ∇β [
√−ggµαΣα

ν] = 0 ⇔ ∇β
[√

−hhµν]= 0

◆ with hµν = gµαΣα
ν

√
detΣ

, hµν =
(√

detΣ
)

[

Σ−1
]

µ
α
gαν

■ Γα
µν turns out to be theLevi-Civita connectionof hµν .
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Metric field equations
■ From the definition ofPµ

ν ≡ Rµαgαν and Σα
ν =

(

fRδα
ν +2 fQPα

ν) , we have:

◆ Step 1:Metric variation⇒ fRPµ
ν − f

2 δµ
ν +2 fQPµ

αPα
ν = κ2Tµ

ν

◆ Step 2: Pµ
αΣα

ν = κ2Tµ
ν + f

2 δµ
ν

◆ Step 3: rewritingPµ
αΣα

ν asRµαhαν
√

detΣ̂, we get

Rµ
ν(h) = 1√

detΣ̂

(

f
2δµ

ν +κ2Tµ
ν
)
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Metric field equations
■ From the definition ofPµ
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ν = κ2Tµ
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2 δµ
ν

◆ Step 3: rewritingPµ
αΣα

ν asRµαhαν
√

detΣ̂, we get

Rµ
ν(h) = 1√

detΣ̂

(

f
2δµ

ν +κ2Tµ
ν
)

■ hµν satisfies anEinstein-like set of pde’s.
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Metric field equations
■ From the definition ofPµ
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detΣ̂, we get

Rµ
ν(h) = 1√

detΣ̂

(

f
2δµ

ν +κ2Tµ
ν
)

■ hµν satisfies anEinstein-like set of pde’s.

■ From Step 1⇒ 2 fQ
(

P̂+ fR
4 fQ

Î
)2

= κ2T̂ + 1
2

(

f + f 2
R

4 fQ

)

Î .

◆ The square root of this equation yieldŝP= P̂(T̂) .
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Metric field equations
■ From the definition ofPµ
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(

P̂+ fR
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Î
)2

= κ2T̂ + 1
2

(

f + f 2
R

4 fQ

)

Î .

◆ The square root of this equation yieldŝP= P̂(T̂) .

■ In vacuum: P̂v = A(Rv,Qv)Î ⇒ Rv = 4A(Rv,Qv) , Qv = 4A2(Rv,Qv) .

◆ Solutions:Rv andQv are constant⇒ de Sitter space-times: Qv = R2
v/4
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Metric field equations
■ From the definition ofPµ

ν ≡ Rµαgαν and Σα
ν =
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ν +2 fQPα

ν) , we have:

◆ Step 1:Metric variation⇒ fRPµ
ν − f
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ν +2 fQPµ
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◆ Step 3: rewritingPµ
αΣα

ν asRµαhαν
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detΣ̂, we get

Rµ
ν(h) = 1√

detΣ̂

(

f
2δµ

ν +κ2Tµ
ν
)

■ hµν satisfies anEinstein-like set of pde’s.

■ From Step 1⇒ 2 fQ
(

P̂+ fR
4 fQ

Î
)2

= κ2T̂ + 1
2

(

f + f 2
R

4 fQ

)

Î .

◆ The square root of this equation yieldŝP= P̂(T̂) .

■ In vacuum: P̂v = A(Rv,Qv)Î ⇒ Rv = 4A(Rv,Qv) , Qv = 4A2(Rv,Qv) .

◆ Solutions:Rv andQv are constant⇒ de Sitter space-times: Qv = R2
v/4

◆ In vacuum,the theory boils down to GR+Λ, with gµν = constant×hµν.
◆ No massive spin-2 gravitons.No ghost-like instabilities.
◆ Matter-induced nonlinearitiesinstead of new d.o.f.
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Spherically symmetric charged solutions
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Electrovacuum geometry
■ In GR, the RN solution is characterized by: (rS= 2M0 and r2

q = 2Gq2 )

RGR= 0 , QGR≡ RµνRµν =
r4
q

r8 , KGR≡ Rα
βµνRα

βµν =
12r2

S
r6 − 24rSr2

q

r7 +
14r4

q

r8
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Electrovacuum geometry
■ In GR, the RN solution is characterized by: (rS= 2M0 and r2

q = 2Gq2 )

RGR= 0 , QGR≡ RµνRµν =
r4
q

r8 , KGR≡ Rα
βµνRα

βµν =
12r2

S
r6 − 24rSr2

q

r7 +
14r4

q

r8

■ In the quadratic Palatini theoryR+ l2P
(

aR2+RµνRµν) with an electric field, a

new scale characterized byrc ≡
√

rqlP arises.
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■ In the quadratic Palatini theoryR+ l2P
(

aR2+RµνRµν) with an electric field, a

new scale characterized byrc ≡
√

rqlP arises.

■ When r ≫ rc :

R(g)≈− 48r8
c

r10 +O
(

r9
c

r11

)

, Q(g)≈ r4
q

r8

(

1− 16l2P
r2 + . . .

)

, K(g)≈ KGR+
144rSr2

q l2P
r9 + . . .
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■ But when z≡ r/rc → 1+ :
[

δ1 =
1
2

√

r3
q

r2
SlP

, δ2 =
rc
rS

, and δ∗1 ≈ 0.572
]

r2
cR(g)≈

(

−4+
16δ∗1
3δ2

)

+O(z−1)+ . . .− 1
2δ2

(

1− δ∗1
δ1

)[

1
(z−1)3/2 −O

(

1√
z−1

)]

r4
cQ(g)≈

(

10+
86δ2

1
9δ2

2
− 52δ1

3δ2
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+ . . .+
(

1− δ∗1
δ1

)

[

6δ2−5δ1
3δ2

2(z−1)3/2 + . . .
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1− δ∗1
δ1

)2
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1
8δ2

2(z−1)3
− . . .
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1
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− 64δ1
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2(2δ1−3δ2)

3δ2
2(z−1)3/2 + . . .

]
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δ1

)2
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1
4δ2
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Smooth wormhole geometries
■ When δ1 = δ∗1 a wormholearises atr = rc ⇔ z= 1 :

z=z@xD

xc

gtt

gtt

gtt

gtt

gttNq=1Nq=Nq
c

Nq=2Nq
c

Nq=3Nq
c

Nq=5Nq
c

Nq=7Nq
c

-2 2 4
x

-1

1

2

3

4

■ ds2 = gttdt2− 1
gtt

dx2+ r2(x)dΩ2 .
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■ Note that for Nq ≤ Nc
q ≈ 16.55 charges there isno event horizon.
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Palatini Geons
■ Electric charge ofgeons (≡self-gravitating electromagnetic entitites):

◆ The lines of force of the electric field enter through one of the wormhole

mouths and exit through the other creating theillusion of anegatively

charged objecton one side and a positively charged object on the other.

◆ The locally measuredelectric charge is defined by the flux

Φ ≡
∫

S∗F = 4πq through any 2−surfaceSenclosing a wormhole mouth.
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Palatini Geons
■ Electric charge ofgeons (≡self-gravitating electromagnetic entitites):

◆ The lines of force of the electric field enter through one of the wormhole

mouths and exit through the other creating theillusion of anegatively

charged objecton one side and a positively charged object on the other.
◆ The locally measuredelectric charge is defined by the flux

Φ ≡
∫

S∗F = 4πq through any 2−surfaceSenclosing a wormhole mouth.

■ Evaluating the action on the solutions we find:

ST = SQuad.Grav.+Se.m. = 2M0c2 δ1
δ∗1

∫
dt . ([S] = [Energy]× [time])

◆ For δ1 = δ∗1 ⇒ M0c2 = e.m. + grav. binding energy!!! .

◆ Coincides with the action of a point-like particle at rest!!!???

(geonic soliton): Sp.p. = mc2 ∫ dt
√

1−v2/c2
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mouths and exit through the other creating theillusion of anegatively

charged objecton one side and a positively charged object on the other.
◆ The locally measuredelectric charge is defined by the flux

Φ ≡
∫

S∗F = 4πq through any 2−surfaceSenclosing a wormhole mouth.

■ Evaluating the action on the solutions we find:

ST = SQuad.Grav.+Se.m. = 2M0c2 δ1
δ∗1

∫
dt . ([S] = [Energy]× [time])

◆ For δ1 = δ∗1 ⇒ M0c2 = e.m. + grav. binding energy!!! .

◆ Coincides with the action of a point-like particle at rest!!!???

(geonic soliton): Sp.p. = mc2 ∫ dt
√

1−v2/c2

■ Density of lines of force crossing the wormhole throat:

E = Φ
4πr2

c
= q

r2
c
=
√

c7

2(~G)2
⇒ Universal quantity.

◆ SinceE is independent ofq andM ⇒ geon structure even whenδ1 6= δ∗1 .
◆ WH (topological) structure even if there are (local) curvature divergences.
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Stability and quantum properties

■ Theevent horizonis expected toforce the decayinto δ1 6= δ∗1 states:

◆ gtt =
(1−δ1/δ∗1)
4δ2

√
z−1

− 1
2

(

1− δ1
δ2

)

+O(
√

z−1) Recall:δ1 =
1

2rS

√

r3
q

lP

◆ The sign of
(

1−δ∗1/δ2
)

determines if there is an event horizon.
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■ For δ1 = δ∗1 we find:

◆ Mass spectrum:M ≈ 1.23605
(

Nq

Nc
q

)3/2
mP , whereNc

q ≡
√

2/αem≈ 16.55

◆ The absence of an event horizon forNq < 16.55 yields

quantum mechanically stable objects: NO Hawking decay.
◆ Thetopological nature of their chargemakes them stable against arbitrary

classical perturbations that preserve the topology.
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Hawking estimates and BH remnants
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Hawking estimates and BH remnants
■ Hawking’s estimates, based entirely on the process of classical collapse,

are inexcellentquantitative agreement with our results:

◆ According to Hawking, a large number of objects withM ∼ mP and

Nq . 30 could have been formed in the early universe.
◆ A fraction of them could reach the stability conditions found here.
◆ They may also arise from the evaporation of more massive objects.
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Hawking estimates and BH remnants
■ Hawking’s estimates, based entirely on the process of classical collapse,

are inexcellentquantitative agreement with our results:

◆ According to Hawking, a large number of objects withM ∼ mP and

Nq . 30 could have been formed in the early universe.
◆ A fraction of them could reach the stability conditions found here.
◆ They may also arise from the evaporation of more massive objects.

■

The existence ofstable solutionsin the lowest part of the mass and

charge spectrum which can becontinuously connected with black

hole states, supports the view that these objects can be naturally

identified asblack hole remnants.

◆ Stable remnants implies a maximum temperature in the evaporation process.
◆ The lack of observations supporting black hole explosions is compatible

with this result.
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Summary and Conclusions
■ For a givenf (R,Q) Lagrangian, the field eqs in metric andPalatini differ:

◆ Metric formalism: higher-order derivatives due to integration by parts.
◆ Palatini formalism: second-order equations and algebraic relations.
◆ Lovelock theoriesare an exception: metric and Palatini coincide !!!
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Summary and Conclusions
■ For a givenf (R,Q) Lagrangian, the field eqs in metric andPalatini differ:

◆ Metric formalism: higher-order derivatives due to integration by parts.
◆ Palatini formalism: second-order equations and algebraic relations.
◆ Lovelock theoriesare an exception: metric and Palatini coincide !!!

■ Geonsin Quadratic Palatini gravity:

◆ The existence ofcompletely regular (non-perturbative) solutions with WH

structureput forward thegeonic natureof such solutions.

◆ Universal propertiesof the electric flux atr = rc: Φ
4πr2

c
=
√

c7

2(~G)2

⇒ the geonic structure persists even when curvature divergences exist.

All the spherically symmetric electrovacuum solutions aregeons
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◆ Palatini formalism: second-order equations and algebraic relations.
◆ Lovelock theoriesare an exception: metric and Palatini coincide !!!
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structureput forward thegeonic natureof such solutions.

◆ Universal propertiesof the electric flux atr = rc: Φ
4πr2
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=
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2(~G)2

⇒ the geonic structure persists even when curvature divergences exist.

All the spherically symmetric electrovacuum solutions aregeons

■ The existence ofstable solutionsin the lowest part of the mass and charge

spectrum which can becontinuously connected with black hole states, supports

the view that these objects can be naturally identified asblack hole remnants.
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Summary and Conclusions
■ For a givenf (R,Q) Lagrangian, the field eqs in metric andPalatini differ:

◆ Metric formalism: higher-order derivatives due to integration by parts.
◆ Palatini formalism: second-order equations and algebraic relations.
◆ Lovelock theoriesare an exception: metric and Palatini coincide !!!

■ Geonsin Quadratic Palatini gravity:

◆ The existence ofcompletely regular (non-perturbative) solutions with WH

structureput forward thegeonic natureof such solutions.

◆ Universal propertiesof the electric flux atr = rc: Φ
4πr2

c
=
√

c7

2(~G)2

⇒ the geonic structure persists even when curvature divergences exist.

All the spherically symmetric electrovacuum solutions aregeons

■ The existence ofstable solutionsin the lowest part of the mass and charge

spectrum which can becontinuously connected with black hole states, supports

the view that these objects can be naturally identified asblack hole remnants.

■ Nontrivial implications fordark matterand theinformation loss problem.
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Thanks !!!
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