

Geons in quadratic Palatini gravity

Gonzalo J. Olmo
Instituto de Física Corpuscular - CSIC (Valencia,Spain)
in collaboration with
F.S.N. Lobo \& D. Rubiera-García

Motivations

■ Quadratic gravity has been thoroughly studied in the literature:

- $R \Rightarrow R+l_{P}^{2}\left(a R^{2}+b R_{\mu v} R^{\mu v}\right)$
- Renormalizability of QFT in curved spaces requires such terms.
- String theories predict similar higher-order curvature corrections.

Motivations

■ Quadratic gravity has been thoroughly studied in the literature:

- $R \Rightarrow R+l_{P}^{2}\left(a R^{2}+b R_{\mu v} R^{\mu v}\right)$
- Renormalizability of QFT in curved spaces requires such terms.
- String theories predict similar higher-order curvature corrections.
- It has been established that:
- The theory satisfies fourth-order equations.
- Massive spin-2 gravitons and a massive spin-0 ghost propagate in vacuum.
- Perturbative methods are generally required to explore deviations from GR.

Motivations

■ Quadratic gravity has been thoroughly studied in the literature:

- $R \Rightarrow R+l_{P}^{2}\left(a R^{2}+b R_{\mu v} R^{\mu v}\right)$
- Renormalizability of QFT in curved spaces requires such terms.
- String theories predict similar higher-order curvature corrections.
- It has been established that:
- The theory satisfies fourth-order equations.
- Massive spin-2 gravitons and a massive spin-0 ghost propagate in vacuum.
- Perturbative methods are generally required to explore deviations from GR.

■ HOWEVER, the Pallatini version of the theory is completely different.

- Second-order field equations govern the dynamics \Rightarrow exact solutions.
- Only massless spin-2 gravitons propagate in vacuum $\Rightarrow \mathrm{GR}+\Lambda$ recovered.
- New dynamics without new dynamical d.o.f.

Motivations

- Quadratic gravity has been thoroughly studied in the literature:
- $R \Rightarrow R+l_{P}^{2}\left(a R^{2}+b R_{\mu v} R^{\mu v}\right)$
- Renormalizability of QFT in curved spaces requires such terms.
- String theories predict similar higher-order curvature corrections.
- It has been established that:
- The theory satisfies fourth-order equations.
- Massive spin-2 gravitons and a massive spin-0 ghost propagate in vacuum.
- Perturbative methods are generally required to explore deviations from GR.
- HOWEVER, the Palatini version of the theory is completely different.
- Second-order field equations govern the dynamics \Rightarrow exact solutions.
- Only massless spin-2 gravitons propagate in vacuum $\Rightarrow \mathrm{GR}+\Lambda$ recovered.
- New dynamics without new dynamical d.o.f.
- We will see that in the quadratic Palatini theory:
- The central singularity of charged BHs is replaced by a Wormhole.
- Reissner-Nordstrom solutions turn into geons.
- Stable remnants arise in the lowest part of the mass and charge spectrum.

Field Equations in Palatini Theories

Palatini -Vs- Metric: generalities

- In the Palatini formalism, one assumes that $g_{\mu \nu}$ and $\Gamma_{\beta \gamma}^{\alpha}$ are independent entities: $S=\int d^{n} x \sqrt{-g} L\left[g_{\mu v}, \Gamma_{\beta \gamma}^{\alpha}\right]+S_{\text {matter }}\left[g_{\mu v}, \psi_{m}\right]$

Palatini -Vs- Metric: generalities

- In the Palatini formalism, one assumes that $g_{\mu \nu}$ and $\Gamma_{\beta \gamma}^{\alpha}$ are independent entities: $S=\int d^{n} x \sqrt{-g} L\left[g_{\mu v}, \Gamma_{\beta \gamma}^{\alpha}\right]+S_{\text {matter }}\left[g_{\mu v}, \psi_{m}\right]$
- The field equations follow from variation of the action:
- Palatini approach:

$$
\begin{aligned}
& \delta S=\int d^{n} x\left[\sqrt{-g}\left(\frac{\delta L}{\delta g^{\mu \nu}}-\frac{L}{2} g_{\mu \nu}\right) \delta g^{\mu \nu}+\sqrt{-g} \frac{\delta L}{\delta \Gamma_{\beta \gamma}^{\alpha}} \delta \Gamma_{\beta \gamma}^{\alpha}\right]+\delta S_{\text {matter }} \\
& \delta g^{\mu \nu} \Rightarrow \frac{\delta L}{\delta g^{\mu \nu}}-\frac{L}{2} g_{\mu \nu}=8 \pi G T_{\mu \nu} \\
& \delta \Gamma_{\beta \gamma}^{\alpha} \Rightarrow \frac{\delta L}{\delta \Gamma_{\beta \gamma}^{\alpha}}=0
\end{aligned}
$$

Palatini -Vs- Metric: generalities

- In the Palatini formalism, one assumes that $g_{\mu \nu}$ and $\Gamma_{\beta \gamma}^{\alpha}$ are independent entities: $S=\int d^{n} x \sqrt{-g} L\left[g_{\mu v}, \Gamma_{\beta \gamma}^{\alpha}\right]+S_{\text {matter }}\left[g_{\mu v}, \psi_{m}\right]$
- The field equations follow from variation of the action:
- Palatini approach:

$$
\begin{aligned}
& \delta S=\int d^{n} x\left[\sqrt{-g}\left(\frac{\delta L}{\delta g^{\mu \nu}}-\frac{L}{2} g_{\mu \nu}\right) \delta g^{\mu v}+\sqrt{-g} \frac{\delta L}{\delta \Gamma_{\beta \gamma}^{\alpha}} \delta \Gamma_{\beta \gamma}^{\alpha}\right]+\delta S_{\text {matter }} \\
& \delta g^{\mu \nu} \Rightarrow \frac{\delta L}{\delta g^{\mu \nu}}-\frac{L}{2} g_{\mu \nu}=8 \pi G T_{\mu v} \\
& \delta \Gamma_{\beta \gamma}^{\alpha} \Rightarrow \frac{\delta L}{\delta \Gamma_{\beta \gamma}^{\alpha}}=0
\end{aligned}
$$

- Metric approach:

The relation $\delta \Gamma_{\beta \gamma}^{\alpha}=\frac{g^{\alpha \rho}}{2}\left[\nabla_{\beta} \delta g_{\rho \gamma}+\nabla_{\gamma} \delta g_{\rho \beta}-\nabla_{\rho} \delta g_{\beta \gamma}\right]$ implies

$$
\begin{aligned}
& \frac{\delta L}{\delta \Gamma_{\beta \gamma}^{\alpha}} \delta \Gamma_{\beta \gamma}^{\alpha}=\left\{g^{\alpha \mu} \frac{\delta L}{\delta \Gamma_{\lambda \nu}^{\alpha}}-\frac{g^{\alpha \lambda}}{2} \frac{\delta L}{\delta \Gamma_{\mu \nu}^{\alpha}}\right\} \nabla_{\lambda} \delta g_{\mu \nu} \text { and leads to } \\
& \delta g^{\mu \nu} \Rightarrow\left(\frac{\delta L}{\delta g^{\mu \nu}}-\frac{L}{2} g_{\mu \nu}\right)+\nabla_{\lambda}\left[g_{\gamma \gamma} \frac{\delta L}{\delta \Gamma_{\lambda \gamma}^{\mu}}-g_{\beta \mu} g_{\gamma \nu} g^{\alpha \lambda} \frac{\delta L}{\delta \Gamma_{\beta \gamma}^{\alpha}}\right]=8 \pi G T_{\mu \nu}
\end{aligned}
$$

- Metric and Pallatini variations generally lead to different field equations.

Dynamics of Palatini $f(R, Q)$ gravity

■ Consider the Palatini theory $S\left[g, \Gamma, \psi_{m}\right]=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R, Q)+S_{m}\left[g, \psi_{m}\right]$ with $Q \equiv R_{\mu \nu} R^{\mu \nu}, R_{\mu \nu}=R^{\rho}{ }_{\mu \rho v}$, and $R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{v \beta}^{\alpha}-\partial_{\nu} \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\mu \lambda}^{\alpha} \Gamma_{\nu \beta}^{\lambda}-\Gamma_{\nu \lambda}^{\alpha} \Gamma_{\mu \beta}^{\lambda}$

Dynamics of Palatini $f(R, Q)$ gravity

■ Consider the Palatini theory $S\left[g, \Gamma, \psi_{m}\right]=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R, Q)+S_{m}\left[g, \psi_{m}\right]$ with $Q \equiv R_{\mu \nu} R^{\mu \nu},, R_{\mu \nu}=R^{\rho}{ }_{\mu \nu v}$, and $R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{\nu \beta}^{\alpha}-\partial_{\nu} \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\mu \lambda}^{\alpha} \Gamma_{\nu \beta}^{\lambda}-\Gamma_{\nu \lambda}^{\alpha} \Gamma_{\mu \beta}^{\lambda}$

- Field equations (for vanishing torsion): $f_{X} \equiv \partial_{X} f$
- $g_{\mu \nu} \Rightarrow f_{R} R_{\mu \nu}-\frac{f}{2} g_{\mu \nu}+2 f_{Q} R_{\mu \alpha} R_{v}^{\alpha}=\kappa^{2} T_{\mu \nu}$
- $\Gamma_{\mu \nu}^{\alpha} \Rightarrow \nabla_{\beta}\left[\sqrt{-g}\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right)\right]=0$

Dynamics of Palatini $f(R, Q)$ gravity

■ Consider the Palatini theory $S\left[g, \Gamma, \psi_{m}\right]=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R, Q)+S_{m}\left[g, \psi_{m}\right]$ with $Q \equiv R_{\mu \nu} R^{\mu \nu},, R_{\mu \nu}=R^{\rho}{ }_{\mu \nu v}$, and $R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{\nu \beta}^{\alpha}-\partial_{\nu} \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\mu \lambda}^{\alpha} \Gamma_{\nu \beta}^{\lambda}-\Gamma_{\nu \lambda}^{\alpha} \Gamma_{\mu \beta}^{\lambda}$

- Motivations

- Field equations (for vanishing torsion): $f_{X} \equiv \partial_{X} f$
- $g_{\mu \nu} \Rightarrow f_{R} R_{\mu v}-\frac{f}{2} g_{\mu \nu}+2 f_{Q} R_{\mu \alpha} R_{v}^{\alpha}=\kappa^{2} T_{\mu \nu}$
- $\Gamma_{\mu \nu}^{\alpha} \Rightarrow \nabla_{\beta}\left[\sqrt{-g}\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right)\right]=0$
- In these equations:
- The connection seems to satisfy second-order differential equations.
- Only first-order derivatives of the metric.

Dynamics of Palatini $f(R, Q)$ gravity

- Consider the Palatini theory $S\left[g, \Gamma, \psi_{m}\right]=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R, Q)+S_{m}\left[g, \psi_{m}\right]$ with $Q \equiv R_{\mu \nu} R^{\mu \nu},, R_{\mu \nu}=R^{\rho}{ }_{\mu \nu v}$, and $R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{\nu \beta}^{\alpha}-\partial_{\nu} \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\mu \lambda}^{\alpha} \Gamma_{\nu \beta}^{\lambda}-\Gamma_{\nu \lambda}^{\alpha} \Gamma_{\mu \beta}^{\lambda}$
- Field equations (for vanishing torsion): $f_{X} \equiv \partial_{X} f$
- $g_{\mu \nu} \Rightarrow f_{R} R_{\mu \nu}-\frac{f}{2} g_{\mu \nu}+2 f_{Q} R_{\mu \alpha} R_{v}^{\alpha}=\kappa^{2} T_{\mu \nu}$
- $\Gamma_{\mu \nu}^{\alpha} \Rightarrow \nabla_{\beta}\left[\sqrt{-g}\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right)\right]=0$
- In these equations:
- The connection seems to satisfy second-order differential equations.
- Only first-order derivatives of the metric.

■ In the Palatini version of GR:

- The connection can be solved by algebraic means.
- The dynamics boils down to second-order equations for the metric.

Dynamics of Palatini $f(R, Q)$ gravity

■ Consider the Palatini theory $S\left[g, \Gamma, \psi_{m}\right]=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g} f(R, Q)+S_{m}\left[g, \psi_{m}\right]$ with $Q \equiv R_{\mu \nu} R^{\mu \nu},, R_{\mu \nu}=R_{\mu \nu v,}{ }^{p}$ and $R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{\nu \beta}^{\alpha}-\partial_{\nu} \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\mu \lambda}^{\alpha} \Gamma_{\nu \beta}^{\lambda}-\Gamma_{\nu \lambda}^{\alpha} \Gamma_{\mu \beta}^{\lambda}$

- Field equations (for vanishing torsion): $f_{X} \equiv \partial_{X} f$
- $g_{\mu \nu} \Rightarrow f_{R} R_{\mu \nu}-\frac{f}{2} g_{\mu v}+2 f_{Q} R_{\mu \alpha} R_{v}^{\alpha}=\kappa^{2} T_{\mu \nu}$
- $\Gamma_{\mu \nu}^{\alpha} \Rightarrow \nabla_{\beta}\left[\sqrt{-g}\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right)\right]=0$
- In these equations:
- The connection seems to satisfy second-order differential equations.
- Only first-order derivatives of the metric.
- In the Palatini version of GR:
- The connection can be solved by algebraic means.
- The dynamics boils down to second-order equations for the metric.
- In general $f(R, Q)$ Palatini theories we find that:
- The connection can be solved by algebraic means.
- The dynamics boils down to second-order equations for the metric.

Solving for $\Gamma_{\mu \nu}^{\alpha}$

Recall the field equations: $f_{X} \equiv \partial_{X} f$

- $g_{\mu \nu} \Rightarrow f_{R} R_{\mu \nu}-\frac{f}{2} g_{\mu \nu}+2 f_{Q} R_{\mu \alpha} R^{\alpha}{ }_{v}=\kappa^{2} T_{\mu \nu}$
- $\Gamma_{\mu \nu}^{\alpha} \Rightarrow \nabla_{\beta}\left[\sqrt{-g}\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right)\right]=0$

Solving for $\Gamma_{\mu \nu}^{\alpha}$

- Recall the field equations: $f_{X} \equiv \partial_{X} f$
- $g_{\mu \nu} \Rightarrow f_{R} R_{\mu \nu}-\frac{f}{2} g_{\mu \nu}+2 f_{Q} R_{\mu \alpha} R^{\alpha}{ }_{v}=\kappa^{2} T_{\mu \nu}$
- $\Gamma_{\mu \nu}^{\alpha} \Rightarrow \nabla_{\beta}\left[\sqrt{-g}\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right)\right]=0$
- Step 1: define $P_{\mu}{ }^{\nu} \equiv R_{\mu \alpha} g^{\alpha \nu}$, with $R=\operatorname{Tr}[\hat{P}]$ and $Q=\operatorname{Tr}\left[\hat{P}^{2}\right]$, and write (1) as $f_{R} P_{\mu}{ }^{\nu}-\frac{f}{2} \delta_{\mu}{ }^{\nu}+2 f_{Q} P_{\mu}{ }^{\alpha} P_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{\nu} \Leftrightarrow 2 f_{Q}\left(\hat{P}+\frac{f_{R}}{4 f_{Q}} \hat{I}\right)^{2}=\kappa^{2} \hat{T}+\frac{1}{2}\left(f+\frac{f_{R}^{2}}{4 f_{Q}}\right) \hat{I}$
- This establishes an algebraic relation between $P_{\mu}{ }^{\nu}$ and $T_{\mu}{ }^{\nu}: \hat{P}=\hat{P}(\hat{T})$

Solving for $\Gamma_{\mu \nu}^{\alpha}$

- Recall the field equations: $f_{X} \equiv \partial_{X} f$
- $g_{\mu \nu} \Rightarrow f_{R} R_{\mu \nu}-\frac{f}{2} g_{\mu \nu}+2 f_{Q} R_{\mu \alpha} R^{\alpha}{ }_{v}=\kappa^{2} T_{\mu \nu}$
- $\Gamma_{\mu \nu}^{\alpha} \Rightarrow \nabla_{\beta}\left[\sqrt{-g}\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right)\right]=0$

■ Step 1: define $P_{\mu}{ }^{\nu} \equiv R_{\mu \alpha} g^{\alpha \nu}$, with $R=\operatorname{Tr}[\hat{P}]$ and $Q=\operatorname{Tr}\left[\hat{P}^{2}\right]$, and write (1) as $f_{R} P_{\mu}{ }^{\nu}-\frac{f}{2} \delta_{\mu}{ }^{\nu}+2 f_{Q} P_{\mu}{ }^{\alpha} P_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{\nu} \Leftrightarrow 2 f_{Q}\left(\hat{P}+\frac{f_{R}}{4 f_{Q}} \hat{I}\right)^{2}=\kappa^{2} \hat{T}+\frac{1}{2}\left(f+\frac{f_{R}^{2}}{4 f_{Q}}\right) \hat{I}$

- This establishes an algebraic relation between $P_{\mu}{ }^{v}$ and $T_{\mu}{ }^{\nu}: \hat{P}=\hat{P}(\hat{T})$
- Step 2: since $\hat{P}=\hat{P}(\hat{T})$, with $R=\operatorname{Tr}[\hat{P}]=R(\hat{T})$ and $Q=\operatorname{Tr}\left[\hat{P}^{2}\right]=Q(\hat{T})$, then:

$$
\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right) \Rightarrow g^{\mu \alpha}\left(f_{R} \delta_{\alpha}^{\nu}+2 f_{Q} P_{\alpha}^{v}\right) \equiv g^{\mu \alpha} \Sigma_{\alpha}{ }^{v}(\hat{T}) .
$$

\bullet One finds that (2) $\rightarrow \nabla_{\beta}\left[\sqrt{-g} g^{\mu \alpha} \Sigma_{\alpha}^{\nu}\right]=0 \Leftrightarrow \nabla_{\beta}\left[\sqrt{-h} h^{\mu \nu}\right]=0$

- with $h^{\mu \nu}=\frac{g^{\mu \alpha} \Sigma_{\alpha}{ }^{v}}{\sqrt{\operatorname{det} \Sigma}}, h_{\mu \nu}=(\sqrt{\operatorname{det} \Sigma})\left[\Sigma^{-1}\right]_{\mu}{ }^{\alpha} g_{\alpha v}$

Solving for $\Gamma_{\mu \nu}^{\alpha}$

- Recall the field equations: $f_{X} \equiv \partial_{X} f$
- $g_{\mu v} \Rightarrow f_{R} R_{\mu v}-\frac{f}{2} g_{\mu \nu}+2 f_{Q} R_{\mu \alpha} R^{\alpha}{ }_{v}=\kappa^{2} T_{\mu v}$
- $\Gamma_{\mu \nu}^{\alpha} \Rightarrow \nabla_{\beta}\left[\sqrt{-g}\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right)\right]=0$
- Step 1: define $P_{\mu}{ }^{\nu} \equiv R_{\mu \alpha} g^{\alpha \nu}$, with $R=\operatorname{Tr}[\hat{P}]$ and $Q=\operatorname{Tr}\left[\hat{P}^{2}\right]$, and write (1) as $f_{R} P_{\mu}{ }^{\nu}-\frac{f}{2} \delta_{\mu}{ }^{\nu}+2 f_{Q} P_{\mu}{ }^{\alpha} P_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{\nu} \Leftrightarrow 2 f_{Q}\left(\hat{P}+\frac{f_{R}}{4 f_{Q}} \hat{I}\right)^{2}=\kappa^{2} \hat{T}+\frac{1}{2}\left(f+\frac{f_{R}^{2}}{4 f_{Q}}\right) \hat{I}$
- This establishes an algebraic relation between $P_{\mu}{ }^{v}$ and $T_{\mu}{ }^{\nu}: \hat{P}=\hat{P}(\hat{T})$
- Step 2: since $\hat{P}=\hat{P}(\hat{T})$, with $R=\operatorname{Tr}[\hat{P}]=R(\hat{T})$ and $Q=\operatorname{Tr}\left[\hat{P}^{2}\right]=Q(\hat{T})$, then:

$$
\left(f_{R} g^{\mu v}+2 f_{Q} R^{\mu v}\right) \Rightarrow g^{\mu \alpha}\left(f_{R} \delta_{\alpha}^{v}+2 f_{Q} P_{\alpha}{ }^{v}\right) \equiv g^{\mu \alpha} \Sigma_{\alpha}^{v}(\hat{T}) .
$$

\bullet One finds that (2) $\rightarrow \nabla_{\beta}\left[\sqrt{-g} g^{\mu \alpha} \Sigma_{\alpha}{ }^{\nu}\right]=0 \Leftrightarrow \nabla_{\beta}\left[\sqrt{-h} h^{\mu \nu}\right]=0$
with $h^{\mu \nu}=\frac{g^{\mu \alpha} \Sigma_{\alpha}{ }^{v}}{\sqrt{\operatorname{det} \Sigma}}, h_{\mu \nu}=(\sqrt{\operatorname{det} \Sigma})\left[\Sigma^{-1}\right]_{\mu}{ }^{\alpha} g_{\alpha v}$

- $\quad \Gamma_{\mu \nu}^{\alpha}$ turns out to be the Levi-Civita connection of $h_{\mu v}$.

Metric field equations

- From the definition of $P_{\mu}{ }^{v} \equiv R_{\mu \alpha} g^{\alpha v}$ and $\Sigma_{\alpha}{ }^{v}=\left(f_{R} \delta_{\alpha}{ }^{v}+2 f_{Q} P_{\alpha}{ }^{v}\right)$, we have:
- Step 1:Metric variation $\Rightarrow f_{R} P_{\mu}{ }^{v}-\frac{f}{2} \delta_{\mu}{ }^{\nu}+2 f_{Q} P_{\mu}{ }^{\alpha} P_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{v}$
- Step 2: $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{\nu}+\frac{f}{2} \delta_{\mu}{ }^{\nu}$
- Step 3: rewriting $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{\nu}$ as $R_{\mu \alpha} h^{\alpha v} \sqrt{\operatorname{det} \hat{\Sigma}}$, we get

$$
R_{\mu}{ }^{\vee}(h)=\frac{1}{\sqrt{\operatorname{det} \hat{\Sigma}}}\left(\frac{f}{2} \delta_{\mu}{ }^{v}+\kappa^{2} T_{\mu}{ }^{v}\right)
$$

Metric field equations

- From the definition of $P_{\mu}{ }^{v} \equiv R_{\mu \alpha} g^{\alpha v}$ and $\Sigma_{\alpha}{ }^{v}=\left(f_{R} \delta_{\alpha}{ }^{\nu}+2 f_{Q} P_{\alpha}{ }^{v}\right)$, we have:
- Step 1:Metric variation $\Rightarrow f_{R} P_{\mu}{ }^{v}-\frac{f}{2} \delta_{\mu}{ }^{\nu}+2 f_{Q} P_{\mu}{ }^{\alpha} P_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{v}$
- Step 2: $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{\nu}+\frac{f}{2} \delta_{\mu}{ }^{\nu}$
- Step 3: rewriting $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{v}$ as $R_{\mu \alpha} h^{\alpha v} \sqrt{\operatorname{det} \hat{\Sigma}}$, we get

$$
R_{\mu}{ }^{v}(h)=\frac{1}{\sqrt{\operatorname{det} \hat{\Sigma}}}\left(\frac{f}{2} \delta_{\mu}{ }^{\nu}+\kappa^{2} T_{\mu}{ }^{v}\right)
$$

- $h_{\mu \nu}$ satisfies an Einstein-like set of pde's.

Metric field equations

- From the definition of $P_{\mu}{ }^{v} \equiv R_{\mu \alpha} g^{\alpha v}$ and $\Sigma_{\alpha}{ }^{v}=\left(f_{R} \delta_{\alpha}{ }^{v}+2 f_{Q} P_{\alpha}{ }^{v}\right)$, we have:
- Step 1:Metric variation $\Rightarrow f_{R} P_{\mu}{ }^{v}-\frac{f}{2} \delta_{\mu}{ }^{\nu}+2 f_{Q} P_{\mu}{ }^{\alpha} P_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{v}$
- Step 2: $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{\nu}+\frac{f}{2} \delta_{\mu}{ }^{\nu}$
- Step 3: rewriting $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{v}$ as $R_{\mu \alpha} h^{\alpha v} \sqrt{\operatorname{det} \hat{\Sigma}}$, we get

$$
R_{\mu}{ }^{\vee}(h)=\frac{1}{\sqrt{\operatorname{det} \hat{\Sigma}}}\left(\frac{f}{2} \delta_{\mu}{ }^{v}+\kappa^{2} T_{\mu}{ }^{v}\right)
$$

- $h_{\mu \nu}$ satisfies an Einstein-like set of pde's.
- From Step $1 \Rightarrow 2 f_{Q}\left(\hat{P}+\frac{f_{R}}{4 f_{Q}} \hat{I}\right)^{2}=\kappa^{2} \hat{T}+\frac{1}{2}\left(f+\frac{f_{R}^{2}}{4 f_{Q}}\right) \hat{I}$.
- The square root of this equation yields $\hat{P}=\hat{P}(\hat{T})$.

Metric field equations

- From the definition of $P_{\mu}{ }^{v} \equiv R_{\mu \alpha} g^{\alpha v}$ and $\Sigma_{\alpha}{ }^{v}=\left(f_{R} \delta_{\alpha}{ }^{v}+2 f_{Q} P_{\alpha}{ }^{v}\right)$, we have:
- Step 1:Metric variation $\Rightarrow f_{R} P_{\mu}{ }^{v}-\frac{f}{2} \delta_{\mu}{ }^{\nu}+2 f_{Q} P_{\mu}{ }^{\alpha} P_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{v}$
- Step 2: $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{\nu}+\frac{f}{2} \delta_{\mu}{ }^{\nu}$
- Step 3: rewriting $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{v}$ as $R_{\mu \alpha} h^{\alpha v} \sqrt{\operatorname{det} \hat{\Sigma}}$, we get

$$
R_{\mu}{ }^{v}(h)=\frac{1}{\sqrt{\operatorname{det} \hat{\Sigma}}}\left(\frac{f}{2} \delta_{\mu}{ }^{v}+\kappa^{2} T_{\mu}{ }^{v}\right)
$$

- $h_{\mu \nu}$ satisfies an Einstein-like set of pde's.
- From Step $1 \Rightarrow 2 f_{Q}\left(\hat{P}+\frac{f_{R}}{4 f_{Q}} \hat{I}\right)^{2}=\kappa^{2} \hat{T}+\frac{1}{2}\left(f+\frac{f_{R}^{2}}{4 f_{Q}}\right) \hat{I}$.
- The square root of this equation yields $\hat{P}=\hat{P}(\hat{T})$.

■ In vacuum: $\hat{P}_{\mathrm{v}}=A\left(R_{\mathrm{v}}, Q_{\mathrm{v}}\right) \hat{I} \Rightarrow R_{\mathrm{v}}=4 A\left(R_{\mathrm{v}}, Q_{\mathrm{v}}\right), Q_{\mathrm{v}}=4 A^{2}\left(R_{\mathrm{v}}, Q_{\mathrm{v}}\right)$.

- Solutions: R_{V} and Q_{v} are constant \Rightarrow de Sitter space-times: $Q_{\mathrm{v}}=R_{\mathrm{v}}^{2} / 4$

Metric field equations

- From the definition of $P_{\mu}{ }^{\nu} \equiv R_{\mu \alpha} g^{\alpha \nu}$ and $\Sigma_{\alpha}{ }^{\nu}=\left(f_{R} \delta_{\alpha}{ }^{\nu}+2 f_{Q} P_{\alpha}{ }^{\nu}\right)$, we have:
- Step 1:Metric variation $\Rightarrow f_{R} P_{\mu}{ }^{v}-\frac{f}{2} \delta_{\mu}{ }^{\nu}+2 f_{Q} P_{\mu}{ }^{\alpha} P_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{v}$
- Step 2: $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{\nu}=\kappa^{2} T_{\mu}{ }^{\nu}+\frac{f}{2} \delta_{\mu}{ }^{\nu}$
- Step 3: rewriting $P_{\mu}{ }^{\alpha} \Sigma_{\alpha}{ }^{v}$ as $R_{\mu \alpha} h^{\alpha v} \sqrt{\operatorname{det} \hat{\Sigma}}$, we get

$$
R_{\mu}{ }^{\vee}(h)=\frac{1}{\sqrt{\operatorname{det} \hat{\Sigma}}}\left(\frac{f}{2} \delta_{\mu}{ }^{\vee}+\kappa^{2} T_{\mu}{ }^{\vee}\right)
$$

- $h_{\mu \nu}$ satisfies an Einstein-like set of pde's.
- From Step $1 \Rightarrow 2 f_{Q}\left(\hat{P}+\frac{f_{R}}{4 f_{Q}} \hat{I}\right)^{2}=\kappa^{2} \hat{T}+\frac{1}{2}\left(f+\frac{f_{R}^{2}}{4 f_{Q}}\right) \hat{I}$.
- The square root of this equation yields $\hat{P}=\hat{P}(\hat{T})$.

■ In vacuum: $\hat{P}_{\mathrm{v}}=A\left(R_{\mathrm{v}}, Q_{\mathrm{v}}\right) \hat{I} \Rightarrow R_{\mathrm{v}}=4 A\left(R_{\mathrm{v}}, Q_{\mathrm{v}}\right), Q_{\mathrm{v}}=4 A^{2}\left(R_{\mathrm{v}}, Q_{\mathrm{v}}\right)$.

- Solutions: R_{V} and Q_{V} are constant \Rightarrow de Sitter space-times: $Q_{\mathrm{v}}=R_{\mathrm{v}}^{2} / 4$
- In vacuum, the theory boils down to GR $+\Lambda$, with $g_{\mu \nu}=$ constant $\times h_{\mu v}$.
- No massive spin-2 gravitons. No ghost-like instabilities.
- Matter-induced nonlinearities instead of new d.o.f.

Spherically symmetric charged

solutions

- Electrovacuum geometry
- Smooth WH geometries
- Palatini Geons
- Stability and quantum properties
- Hawking estimates
- Summary and Conclusions

Spherically symmetric charged solutions

Electrovacuum geometry

■ In GR, the RN solution is characterized by: $\left(r_{S}=2 M_{0}\right.$ and $\left.r_{q}^{2}=2 G q^{2}\right)$

$$
R_{G R}=0, \quad Q_{G R} \equiv R_{\mu \nu} R^{\mu \nu}=\frac{r_{q}^{4}}{r^{8}}, \quad K_{G R} \equiv R_{\beta \mu \nu}^{\alpha} R_{\alpha}^{\beta \mu \nu}=\frac{12 r_{S}^{2}}{r^{6}}-\frac{24 r_{S} r_{q}^{2}}{r^{7}}+\frac{14 r_{q}^{4}}{r^{8}}
$$

solutions

O Electrovacuum geometry

- Smooth WH geometries
- Palatini Geons
- Stability and quantum properties
- Hawking estimates
- Summary and Conclusions The End

Electrovacuum geometry

- In GR, the RN solution is characterized by: $\left(r_{S}=2 M_{0}\right.$ and $\left.r_{q}^{2}=2 G q^{2}\right)$

$$
R_{G R}=0, \quad Q_{G R} \equiv R_{\mu \nu} R^{\mu v}=\frac{r_{q}^{4}}{r^{8}}, \quad K_{G R} \equiv R_{\beta \mu \nu}^{\alpha} R_{\alpha}^{\beta \mu \nu}=\frac{12 r_{s}^{2}}{r^{6}}-\frac{24 r_{r} r_{q}^{2}}{r^{7}}+\frac{14 r_{q}^{4}}{r^{8}}
$$

■ In the quadratic Palatini theory $R+l_{P}^{2}\left(a R^{2}+R_{\mu \nu} R^{\mu v}\right)$ with an electric field, a new scale characterized by $r_{c} \equiv \sqrt{r_{q} l_{P}}$ arises.

Electrovacuum geometry

- In GR, the RN solution is characterized by: $\left(r_{S}=2 M_{0}\right.$ and $\left.r_{q}^{2}=2 G q^{2}\right)$

$$
R_{G R}=0, \quad Q_{G R} \equiv R_{\mu \nu} R^{\mu \nu}=\frac{r_{q}^{4}}{r^{8}}, \quad K_{G R} \equiv R_{\beta \mu \nu}^{\alpha} R_{\alpha}^{\beta \mu \nu}=\frac{12 r_{S}^{2}}{r^{6}}-\frac{24 r_{r} r_{q}^{2}}{r^{7}}+\frac{14 r_{q}^{4}}{r^{8}}
$$

■ In the quadratic Palatini theory $R+l_{P}^{2}\left(a R^{2}+R_{\mu \nu} R^{\mu v}\right)$ with an electric field, a new scale characterized by $r_{c} \equiv \sqrt{r_{q} l_{P}}$ arises.

- When $r \gg r_{c}$:

$$
R(g) \approx-\frac{48 r_{c}^{8}}{r^{10}}+O\left(\frac{r_{c}^{9}}{r^{11}}\right), Q(g) \approx \frac{r_{q}^{4}}{r^{8}}\left(1-\frac{16 l_{P}^{2}}{r^{2}}+\ldots\right), K(g) \approx K_{G R}+\frac{144 r_{r} r_{q_{P}^{2}}^{2}}{r^{9}}+\ldots
$$

Electrovacuum geometry

- In GR, the RN solution is characterized by: $\left(r_{S}=2 M_{0}\right.$ and $\left.r_{q}^{2}=2 G q^{2}\right)$

$$
R_{G R}=0, \quad Q_{G R} \equiv R_{\mu \nu} R^{\mu \nu}=\frac{r_{q}^{4}}{r^{8}}, \quad K_{G R} \equiv R_{\beta \mu \nu}^{\alpha} R_{\alpha}^{\beta \mu v}=\frac{12 r_{S}^{2}}{r^{6}}-\frac{24 r_{r} r_{q}^{2}}{r^{7}}+\frac{14 r_{G}^{4}}{r^{8}}
$$

■ In the quadratic Palatini theory $R+l_{P}^{2}\left(a R^{2}+R_{\mu v} R^{\mu v}\right)$ with an electric field, a new scale characterized by $r_{c} \equiv \sqrt{r_{q} l_{P}}$ arises.

- When $r \gg r_{c}$:

$$
R(g) \approx-\frac{48 r_{c}^{8}}{r^{10}}+O\left(\frac{r_{c}^{9}}{r^{11}}\right), Q(g) \approx \frac{r_{q}^{4}}{r^{8}}\left(1-\frac{16 l_{P}^{2}}{r^{2}}+\ldots\right), K(g) \approx K_{G R}+\frac{144 r_{r} r_{q}^{2} l_{P}^{2}}{r^{9}}+\ldots
$$

■ But when $z \equiv r / r_{c} \rightarrow 1^{+}:\left[\delta_{1}=\frac{1}{2} \sqrt{\frac{r_{q}^{3}}{r_{S}^{2} l_{P}}}, \delta_{2}=\frac{r_{c}}{r_{S}}\right.$, and $\left.\delta_{1}^{*} \approx 0.572\right]$

$$
\begin{aligned}
& r_{c}^{2} R(g) \approx\left(-4+\frac{16 \delta_{1}^{*}}{3 \delta_{2}}\right)+O(z-1)+\ldots-\frac{1}{2 \delta_{2}}\left(1-\frac{\delta_{1}^{*}}{\delta_{1}}\right)\left[\frac{1}{(z-1)^{3 / 2}}-O\left(\frac{1}{\sqrt{z-1}}\right)\right] \\
& r_{c}^{4} Q(g) \approx\left(10+\frac{86 \delta_{1}^{2}}{9 \delta_{2}^{2}}-\frac{52 \delta_{1}}{3 \delta_{2}}\right)+\ldots+\left(1-\frac{\delta_{1}^{*}}{\delta_{1}}\right)\left[\frac{6 \delta_{2}-5 \delta_{1}}{3 \delta_{2}^{2}(z-1)^{3 / 2}}+\ldots\right]+\left(1-\frac{\delta_{1}^{*}}{\delta_{1}}\right)^{2}\left[\frac{1}{8 \delta_{2}^{2}(z-1)^{3}}-\ldots\right] \\
& r_{c}^{4} K(g) \approx\left(16+\frac{88 \delta_{1}^{2}}{9 \delta_{2}^{2}}-\frac{64 \delta_{1}}{3 \delta_{2}}\right)+\ldots+\left(1-\frac{\delta_{1}^{*}}{\delta_{1}}\right)\left[\frac{2\left(2 \delta_{1}-3 \delta_{2}\right)}{3 \delta_{2}^{2}(z-1)^{3 / 2}}+\ldots\right]+\left(1-\frac{\delta_{1}^{*}}{\delta_{1}}\right)^{2}\left[\frac{1}{4 \delta_{2}^{2}(z-1)^{3}}+\ldots\right]
\end{aligned}
$$

Smooth wormhole geometries

■ When $\delta_{1}=\delta_{1}^{*}$ a wormhole arises at $r=r_{c} \Leftrightarrow z=1$:

■ $d s^{2}=g_{t t} d t^{2}-\frac{1}{g_{t t}} d x^{2}+r^{2}(x) d \Omega^{2}$.

Smooth wormhole geometries

- When $\delta_{1}=\delta_{1}^{*}$ a wormhole arises at $r=r_{c} \Leftrightarrow z=1$:

- Note that for $N_{q} \leq N_{q}^{c} \approx 16.55$ charges there is no event horizon.

Palatini Geons

- Electric charge of geons (三self-gravitating electromagnetic entitites):
- The lines of force of the electric field enter through one of the wormhole mouths and exit through the other creating the illusion of a negatively charged object on one side and a positively charged object on the other.

- The locally measured electric charge is defined by the flux $\Phi \equiv \int_{S} * F=4 \pi q$ through any $2-$ surface S enclosing a wormhole mouth.

Palatini Geons

- Electric charge of geons (\equiv self-gravitating electromagnetic entitites):
- The lines of force of the electric field enter through one of the wormhole mouths and exit through the other creating the illusion of a negatively charged object on one side and a positively charged object on the other.
- The locally measured electric charge is defined by the flux
$\Phi \equiv \int_{S} * F=4 \pi q$ through any $2-$ surface S enclosing a wormhole mouth.
- Evaluating the action on the solutions we find:

$$
S_{T}=S_{\text {Quad.Grav. }}+S_{\text {e.m. }}=2 M_{0} c^{2} \frac{\delta_{1}}{\delta_{1}^{i}} \int d t .([S]=[\text { Energy }] \times[\text { time }])
$$

- For $\delta_{1}=\delta_{1}^{*} \Rightarrow M_{0} c^{2}=$ e.m. + grav. binding energy!!! .
- Coincides with the action of a point-like particle at rest !!!??? (geonic soliton): $S_{p . p .}=m c^{2} \int d t \sqrt{1-v^{2} / c^{2}}$

Spherically symmetric charged

solutions

- Electrovacuum geometry

- Smooth WH geometries

Palatini Geons

- Electric charge of geons (\equiv self-gravitating electromagnetic entitites):
- The lines of force of the electric field enter through one of the wormhole mouths and exit through the other creating the illusion of a negatively charged object on one side and a positively charged object on the other.
- The locally measured electric charge is defined by the flux
$\Phi \equiv \int_{S} * F=4 \pi q$ through any $2-$ surface S enclosing a wormhole mouth.
- Evaluating the action on the solutions we find:

$$
S_{T}=S_{\text {Quad.Grav. }}+S_{\text {e.m. }}=2 M_{0} c^{2} \frac{\delta_{1}}{\delta_{1}^{*}} \int d t .([S]=[\text { Energy }] \times[\text { time }])
$$

- For $\delta_{1}=\delta_{1}^{*} \Rightarrow M_{0} c^{2}=$ e.m. + grav. binding energy!!! .
- Coincides with the action of a point-like particle at rest !!!??? (geonic soliton): $S_{p . p .}=m c^{2} \int d t \sqrt{1-v^{2} / c^{2}}$
- Density of lines of force crossing the wormhole throat:

$$
\mathcal{E}=\frac{\Phi}{4 \pi r_{c}^{2}}=\frac{q}{r_{c}^{2}}=\sqrt{\frac{c^{7}}{2(\hbar G)^{2}}} \Rightarrow \text { Universal quantity. }
$$

- Since \mathcal{E} is independent of q and $M \Rightarrow$ geon structure even when $\delta_{1} \neq \delta_{1}^{*}$.
- WH (topological) structure even if there are (local) curvature divergences.

Stability and quantum properties

- The event horizon is expected to force the decay into $\delta_{1} \neq \delta_{1}^{*}$ states:
- $g_{t t}=\frac{\left(1-\delta_{1} / \delta_{1}^{*}\right)}{4 \delta_{2} \sqrt{z-1}}-\frac{1}{2}\left(1-\frac{\delta_{1}}{\delta_{2}}\right)+O(\sqrt{z-1})$ Recall: $\delta_{1}=\frac{1}{2 r_{S}} \sqrt{\frac{r_{\varphi}^{3}}{l_{P}}}$
- The sign of $\left(1-\delta_{1}^{*} / \delta_{2}\right)$ determines if there is an event horizon.

Stability and quantum properties

- The event horizon is expected to force the decay into $\delta_{1} \neq \delta_{1}^{*}$ states:
- $g_{t t}=\frac{\left(1-\delta_{1} / \delta_{1}^{*}\right)}{4 \delta_{2} \sqrt{z-1}}-\frac{1}{2}\left(1-\frac{\delta_{1}}{\delta_{2}}\right)+O(\sqrt{z-1})$ Recall: $\delta_{1}=\frac{1}{2 r_{s}} \sqrt{\frac{r_{q}^{3}}{l_{P}}}$
- The sign of $\left(1-\delta_{1}^{*} / \delta_{2}\right)$ determines if there is an event horizon.

Horizon location as N_{q} changes when $\delta_{1}=\delta_{1}{ }^{*}$

Stability and quantum properties

- The event horizon is expected to force the decay into $\delta_{1} \neq \delta_{1}^{*}$ states:
- $g_{t t}=\frac{\left(1-\delta_{1} / \delta_{1}^{*}\right)}{4 \delta_{2} \sqrt{z-1}}-\frac{1}{2}\left(1-\frac{\delta_{1}}{\delta_{2}}\right)+O(\sqrt{z-1})$ Recall: $\delta_{1}=\frac{1}{2 r_{S}} \sqrt{\frac{r_{\varphi}^{3}}{l_{P}}}$
- The sign of $\left(1-\delta_{1}^{*} / \delta_{2}\right)$ determines if there is an event horizon.

■ For $\delta_{1}=\delta_{1}^{*}$ we find:

- Mass spectrum: $M \approx 1.23605\left(\frac{N_{q}}{N_{q}^{c}}\right)^{3 / 2} m_{P}$, where $N_{q}^{c} \equiv \sqrt{2 / \alpha_{e m}} \approx 16.55$
- The absence of an event horizon for $N_{q}<16.55$ yields quantum mechanically stable objects: NO Hawking decay.
- The topological nature of their charge makes them stable against arbitrary classical perturbations that preserve the topology.

Hawking estimates and BH remnants

Mon. Not. R. astr. Soc. (1971) 152, 75-78.

GRAVITATIONALLY COLLAPSED OBJECTS OF VERY LOW MASS

Stephen Hawking

(Communicated by M. J. Rees)
(Received 1970 November 9)

SUMMARY

It is suggested that there may be a large number of gravitationally collapsed objects of mass $10^{-5} \mathrm{~g}$ upwards which were formed as a result of fluctuations in the early Universe. They could carry an electric charge of up to ± 30 electron units. Such objects would produce distinctive tracks in bubble chambers and could form atoms with orbiting electrons or protons. A mass of $\mathrm{ro}^{17} \mathrm{~g}$ of such objects could have accumulated at the centre of a star like the Sun. If such a star later became a neutron star there would be a steady accretion of matter by a central collapsed object which could eventually swallow up the whole star in about ten million years.

Hawking estimates and BH remnants

■ Hawking's estimates, based entirely on the process of classical collapse, are in excellent quantitative agreement with our results:

- According to Hawking, a large number of objects with $M \sim m_{P}$ and $N_{q} \lesssim 30$ could have been formed in the early universe.
- A fraction of them could reach the stability conditions found here.
- They may also arise from the evaporation of more massive objects.

Hawking estimates and BH remnants

■ Hawking's estimates, based entirely on the process of classical collapse, are in excellent quantitative agreement with our results:

- According to Hawking, a large number of objects with $M \sim m_{P}$ and $N_{q} \lesssim 30$ could have been formed in the early universe.
- A fraction of them could reach the stability conditions found here.
- They may also arise from the evaporation of more massive objects.

The existence of stable solutions in the lowest part of the mass and charge spectrum which can be continuously connected with black hole states, supports the view that these objects can be naturally identified as black hole remnants.

- Stable remnants implies a maximum temperature in the evaporation process.
- The lack of observations supporting black hole explosions is compatible with this result.

Summary and Conclusions

- For a given $f(R, Q)$ Lagrangian, the field eqs in metric and Pallatini differ:
- Metric formalism: higher-order derivatives due to integration by parts.
- Palatini formalism: second-order equations and algebraic relations.
- Lovelock theories are an exception: metric and Palatini coincide !!!

Summary and Conclusions

- For a given $f(R, Q)$ Lagrangian, the field eqs in metric and Palatini differ:
- Metric formalism: higher-order derivatives due to integration by parts.
- Palatini formalism: second-order equations and algebraic relations.
- Lovelock theories are an exception: metric and Palatini coincide !!!

■ Geons in Quadratic Palatini gravity:

- The existence of completely regular (non-perturbative) solutions with WH structure put forward the geonic nature of such solutions.
- Universal properties of the electric flux at $r=r_{c}: \frac{\Phi}{4 \pi r_{c}^{2}}=\sqrt{\frac{c^{7}}{2(\hbar G)^{2}}}$
\Rightarrow the geonic structure persists even when curvature divergences exist.
All the spherically symmetric electrovacuum solutions are geons

Field Equations

Spherically symmetric charged

solutions

- Electrovacuum geometry
- Smooth WH geometries
- Palatini Geons
- Stability and quantum properties
- Hawking estimates O Summary and Conclusions

The End

Summary and Conclusions

- For a given $f(R, Q)$ Lagrangian, the field eqs in metric and Palatini differ:
- Metric formalism: higher-order derivatives due to integration by parts.
- Palatini formalism: second-order equations and algebraic relations.
- Lovelock theories are an exception: metric and Palatini coincide !!!
- Geons in Quadratic Palatini gravity:
- The existence of completely regular (non-perturbative) solutions with WH structure put forward the geonic nature of such solutions.
- Universal properties of the electric flux at $r=r_{c}: \frac{\Phi}{4 \pi r_{c}^{2}}=\sqrt{\frac{c^{7}}{2(\hbar G)^{2}}}$
\Rightarrow the geonic structure persists even when curvature divergences exist.
All the spherically symmetric electrovacuum solutions are geons
- The existence of stable solutions in the lowest part of the mass and charge spectrum which can be continuously connected with black hole states, supports the view that these objects can be naturally identified as black hole remnants.
- Motivations

Field Equations

Spherically symmetric charged

solutions

- Electrovacuum geometry
- Smooth WH geometries
- Palatini Geons

Stability and quantum properties

- Hawking estimates O Summary and Conclusions

The End

Summary and Conclusions

- For a given $f(R, Q)$ Lagrangian, the field eqs in metric and Palatini differ:
- Metric formalism: higher-order derivatives due to integration by parts.
- Palatini formalism: second-order equations and algebraic relations.
- Lovelock theories are an exception: metric and Palatini coincide !!!
- Geons in Quadratic Palatini gravity:
- The existence of completely regular (non-perturbative) solutions with WH structure put forward the geonic nature of such solutions.
- Universal properties of the electric flux at $r=r_{c}: \frac{\Phi}{4 \pi r_{c}^{2}}=\sqrt{\frac{c^{7}}{2(\hbar G)^{2}}}$
\Rightarrow the geonic structure persists even when curvature divergences exist.
All the spherically symmetric electrovacuum solutions are geons
- The existence of stable solutions in the lowest part of the mass and charge spectrum which can be continuously connected with black hole states, supports the view that these objects can be naturally identified as black hole remnants.
- Nontrivial implications for dark matter and the information loss problem.

Thanks !!!

