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e A subhorizon approximation k% > H?

e The relative suppression of time derivatives
of metric/field perturbations compared with
their spatial derivatives
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Why care?

Let’s consider pressureless, non-relativistic dark matter and scalar field ’dark
energy’ minimally interacting through gravity. In order to N-body simulate
structure formation we need to:

e Solve the relativistic Newton-Poisson equation

—k*® = 47Ga’pd g + F(d, x).

e For a set of N particles with positions Z, (¢ = 1...N) solve the non-
relativistic geodesic equation
dz,

d>Z,
= —-Vo(Z,).
dr? +H dr VE(Za)

e Solve the second order evolution equations for ¢ and y.
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The quasi-static approximation helps with solving this,
but how accurate is it? And for which scales?
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e Solve the second order evolution equations for ¢ and y.




Models and Aims

Models

Pressureless, non-relativistic dark matter + scalar field dark energy’ ¢ with
perturbations y and with an exponential potential V' ~ e?:

1. A quintessence-like model with no direct coupling between dark matter

and ¢.
2. A generic f(R) model.

3. A chameleon (f(R) with screening).
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Benchmark
Euclid Science Objective is to determine PS of § to 1% accuracy.
Aim

Obtain a quantitative understanding of errors introduced by the QSA.
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Why and when does the QSA do well?

X in f(R) : QS vs Full evolution X in NS : QS vs Full evolution
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Slow-roll vs. Fast-roll
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BBN constraints on
time-variation of
particle masses

cf. Brax et al., astro-ph/0408415
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The chameleon mechanism

Fractional error of the Q54

Fractional error of the Q34
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SUIMINAry

analysis : cinaimneleons 1n

e linearised regime

———

Screening + BBIN constraints ~w even on super-horizon scales

~ 5% errors on superhorizon scales still.

JN, Francesca von Braun-Bates, Pedro Ferreira, arXiv: 1310.xxxx
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Screening + BBIN constraints ~w even on super-horizon scales

~ 5% errors on superhorizon scales still.

Thank you!

JN, Francesca von Braun-Bates, Pedro Ferreira, arXiv: 1310.xxxx



