Black holes in an expanding universe: The McVittie metric

Daniel C. Guariento

Universidade de São Paulo – Brazil

Perimeter Institute for Theoretical Physics – Canada

VII Aegean Summer School - 1

- Exact solutions of Einstein equations
- Black holes in the presence of self-gravitating matter

Introduction
Overview
The McVittie metric
Causal structure
Conclusions

- Exact solutions of Einstein equations
- Black holes in the presence of self-gravitating matter
- Two competing effects:
 - □ Gravitationally bound objects;
 - □ Expanding universe.

Introduction
Overview
The McVittie metric
Causal structure
Conclusions

- Exact solutions of Einstein equations
- Black holes in the presence of self-gravitating matter
- Two competing effects:
 - Gravitationally bound objects;
 - □ Expanding universe.
- Coupling between local effects and cosmological evolution
 - □ Causal structure
 - □ Accretion through Einstein equations;
 - \Box Generalizations with other types of matter;
 - □ Consistency and stability analyses;

Introduction
Overview
I ne IVICVITTIE metric
Causal structure
Conclusions

- Exact solutions of Einstein equations
- Black holes in the presence of self-gravitating matter
- Two competing effects:
 - Gravitationally bound objects;
 - □ Expanding universe.
- Coupling between local effects and cosmological evolution
 - □ Causal structure
 - □ Accretion through Einstein equations;
 - \Box Generalizations with other types of matter;
 - □ Consistency and stability analyses;
 - □ Experimental tests:
 - Structure formation;
 - Observations of galaxy clusters.

Overview

The McVittie metric

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

$$ds^{2} = -\frac{\left(1 - \frac{m}{2a(t)\hat{r}}\right)^{2}}{\left(1 + \frac{m}{2a(t)\hat{r}}\right)^{2}}dt^{2} + a^{2}(t)\left(1 + \frac{m}{2a(t)\hat{r}}\right)^{4}\left(d\hat{r}^{2} + \hat{r}^{2}d\Omega^{2}\right)$$

The McVittie metric

Introduction	_		С
The McVittie metric	•	_	Ŭ
Properties	•		
Apparent horizons	•		
Causal structure	•		٦
Conclusions	• • •		a
	•		

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

$$s^{2} = -\frac{\left(1 - \frac{m}{2a(t)\hat{r}}\right)^{2}}{\left(1 + \frac{m}{2a(t)\hat{r}}\right)^{2}} \mathrm{d}t^{2} + a^{2}(t)\left(1 + \frac{m}{2a(t)\hat{r}}\right)^{4} \left(\mathrm{d}\hat{r}^{2} + \hat{r}^{2}\mathrm{d}\Omega^{2}\right)$$

□ a(t) constant: Schwarzschild metric □ m = 0: FLRW metric

The McVittie metric

Introduction	
The McVittie metric	
Properties	•
Apparent horizons	•
Causal structure	•
Conclusions	-
	•
	•

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

$$ds^{2} = -\frac{\left(1 - \frac{m}{2a(t)\hat{r}}\right)^{2}}{\left(1 + \frac{m}{2a(t)\hat{r}}\right)^{2}}dt^{2} + a^{2}(t)\left(1 + \frac{m}{2a(t)\hat{r}}\right)^{4}\left(d\hat{r}^{2} + \hat{r}^{2}d\Omega^{2}\right)$$

 \Box a(t) constant: Schwarzschild metric

 \Box m = 0: FLRW metric

Unique solution that satisfies

- □ Spherical symmetry
- □ Perfect fluid
- □ Shear-free
- □ Asymptotically FLRW
- □ Singularity at the center

Introduction The McVittie metric Properties Apparent horizons

Causal structure

Conclusions

Past spacelike singularity at $a = \frac{m}{2\hat{r}}$ Event horizons only defined if $H \equiv \frac{\dot{a}}{a}$ constant as $t \to \infty$

Introduction The McVittie metric Properties Apparent horizons

Causal structure Conclusions Past spacelike singularity at a = m/2r̂
 Event horizons only defined if H = a/a constant as t → ∞
 Fluid has homogeneous density

$$\rho(t) = \frac{3}{8\pi} H^2$$

Introduction
The McVittie metric
Properties
Apparent horizons

Causal structure

Conclusions

Past spacelike singularity at $a = \frac{m}{2\hat{r}}$ Event horizons only defined if $H \equiv \frac{\dot{a}}{a}$ constant as $t \to \infty$ Fluid has homogeneous density

$$\rho(t) = \frac{3}{8\pi} H^2$$

Expansion is homogeneous (Hubble flow) and shear-free
 Mean extrinsic curvature is constant on comoving foliation

$$K^{\alpha}_{\ \alpha} = 3H$$

Introduction
The McVittie metric
Properties
Apparent horizons

Causal structure

Conclusions

Past spacelike singularity at a = m/2r̂
Event horizons only defined if H = a/a constant as t → ∞
Fluid has homogeneous density

$$\rho(t) = \frac{3}{8\pi} H^2$$

Expansion is homogeneous (Hubble flow) and shear-free
 Mean extrinsic curvature is constant on comoving foliation

$$K^{\alpha}_{\ \alpha} = 3H$$

Pressure is inhomogeneous

$$p(\hat{r},t) = \frac{1}{8\pi} \left[H^2 \frac{-5m + 2a\hat{r}}{m - 2a\hat{r}} + \frac{2\ddot{a}}{a} \frac{m + 2a\hat{r}}{m - 2a\hat{r}} \right]$$

Introduction

The McVittie metric

Properties

Apparent horizons

Causal structure

Conclusions

Causal structure is more easily seen on non-comoving coordinates Areal radius

$$r = a \left(1 + \frac{m}{2\hat{r}}\right)^2 \hat{r}$$

Introduction

The McVittie metric

Properties

Apparent horizons

Causal structure

Conclusions

Causal structure is more easily seen on non-comoving coordinates Areal radius

$$r = a \left(1 + \frac{m}{2\hat{r}}\right)^2 \hat{r}$$

□ Two branches:

Introduction

The McVittie metric

Properties

Apparent horizons

Causal structure

Conclusions

Causal structure is more easily seen on non-comoving coordinates Areal radius

$$r = a \left(1 + \frac{m}{2\hat{r}}\right)^2 \hat{r}$$

Two branches:

$$\left\{ \begin{array}{ll} 0 < a < \frac{r}{2m} & (\text{not used}) \\ \frac{a}{2m} < r < \infty \implies 2m < r < \infty \end{array} \right.$$

Introduction

The McVittie metric

Properties

Apparent horizons

Causal structure

Conclusions

Causal structure is more easily seen on non-comoving coordinates Areal radius

$$r = a \left(1 + \frac{m}{2\hat{r}}\right)^2 \hat{r}$$

 $\Box \quad \text{Two branches:} \quad \left\{ \begin{array}{l} 0 < a < \frac{r}{2m} \quad (\text{not used}) \\ \frac{a}{2m} < r < \infty \implies 2m < r < \infty \end{array} \right.$

McVittie in new (canonical) coordinates

[Kaloper, Kleban, Martin, PRD 81,104044 (2010)]

$${\rm d}s^2=-R^2{\rm d}t^2+\left[\frac{{\rm d}r}{R}-Hr{\rm d}t\right]^2+r^2{\rm d}\Omega^2$$
 where $\left(R=\sqrt{1-\frac{2m}{r}}\right)$

D. C. Guariento

VII Aegean Summer School – 6

Apparent horizons

Introduction

Properties

Apparent horizons

The McVittie metric

Causal structure

Conclusions

Apparent horizons: zero expansion of null radial geodesics

$$\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)_{\pm} = R\left(rH \pm R\right) = 0$$

Only ingoing geodesics have a solution

$$1 - \frac{2m}{r} - Hr^2 = 0$$

Apparent horizons

Introduction

Properties

Apparent horizons

The McVittie metric

Causal structure

Conclusions

Apparent horizons: zero expansion of null radial geodesics

$$\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)_{\pm} = R\left(rH \pm R\right) = 0$$

I Only ingoing geodesics have a solution

$$1 - \frac{2m}{r} - Hr^2 = 0$$

Real positive solutions only exist if $\frac{1}{3\sqrt{3}m} > H > 0$

- \Box r_+ Outer (cosmological) horizon
- \Box r_{-} Inner horizon
- If $H(t) \to H_0$ for $t \to \infty$ apparent horizons become Schwarszchild–de Sitter event horizons ($r_- \to r_\infty$)

Light cones and apparent horizons

Asymptotic behavior

Inner horizon is an *anti-trapping* surface for finite coordinate times

Inner horizon is an *anti-trapping* surface for finite coordinate times
 Singular surface r_{*} = 2m lies in the past of all events (McVittie big bang)

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(r-r_{*}\right) = RrH + \mathcal{O}\left(R^{2}\right) > 0$$

Inner horizon is an *anti-trapping* surface for finite coordinate times Singular surface $r_* = 2m$ lies in the past of all events (McVittie big bang)

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(r-r_{*}\right) = RrH + \mathcal{O}\left(R^{2}\right) > 0$$

If $H_0 > 0$ the inner horizon $(r_{\infty}$ is traversable in finite proper time

Black hole at Shwarzschild–de Sitter limit

Inner horizon is an *anti-trapping* surface for finite coordinate times Singular surface $r_* = 2m$ lies in the past of all events (McVittie big bang)

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(r-r_{*}\right) = RrH + \mathcal{O}\left(R^{2}\right) > 0$$

- If $H_0 > 0$ the inner horizon $(r_{\infty}$ is traversable in finite proper time
 - Black hole at Shwarzschild–de Sitter limit
- If $H_0 = 0$, some curvature scalars become singular at r_{∞}
 - Possibly no BH interpretation at Schwarzschild limit

[Kaloper, Kleban, Martin, PRD 81,104044 (2010)][Lake, Abdelqader, PRD 84,044045 (2011)]

Penrose diagrams

VII Aegean Summer School – 10

D. C. Guariento

Penrose diagrams

VII Aegean Summer School – 10

Penrose diagrams

D. C. Guariento

VII Aegean Summer School – 10

Convergence to H_0

Convergence to H_0

Introduction The McVittie metric Causal structure Asymptotic behavior Penrose diagrams Dependence with cosmological history Example: Black hole in ACDM

- Causal structure depends on cosmological history Horizon behavior at $t o \infty$ depends on the set $\Phi(\mathcal{H}_-)$
 - $\Box \quad \Phi \text{ non-compact}$
 - All causal curves departing r_{\star} cross r_{-} before $t \to \infty$
 - Spacetime connects to the inner region of Schwarzschild–de Sitter

Convergence to H_0

Introduction The McVittie metric Causal structure Asymptotic behavior Penrose diagrams Dependence with cosmological history Example: Black hole in ACDM

- Causal structure depends on cosmological history Horizon behavior at $t \to \infty$ depends on the set $\Phi(\mathcal{H}_{-})$
 - $\Box \quad \Phi \text{ non-compact}$
 - All causal curves departing r_\star cross r_- before $t \to \infty$
 - Spacetime connects to the inner region of Schwarzschild–de Sitter
 - $\Box \quad \Phi \text{ compact}$
 - Causal curves may depart r_{\star} and never reach r_{-}
 - Spacetime connects to both inner and middle regions of Schwarzschild–de Sitter

McVittie with compact Φ

Cosmological history

Introduction
The McVittie metric
Causal structure
Asymptotic behavior
Penrose diagrams
Dependence with cosmological history
Example: Black hole in $\Lambda ext{CDM}$
Conclusions

- We can determine the fate of null geodesics via the intermediate value theorem [da Silva, Fontanini, DCG, PRD 87,064030 (2013)]
- Find known curves that bind the image of ingoing geodesics from above and below

Cosmological history

Introduction

The McVittie metric

Causal structure

Asymptotic behavior

Penrose diagrams

Dependence with cosmological history

Example: Black hole in $\Lambda {\rm CDM}$

Conclusions

- We can determine the fate of null geodesics via the intermediate value theorem [da Silva, Fontanini, DCG, PRD 87,064030 (2013)]
- Find known curves that bind the image of ingoing geodesics from above and below

$$A = R(r_{\infty}) + r_{\infty}R'(r_{\infty}), B = R(r_{\infty})(R'(r_{\infty}) - H_0), \Delta H = H - H_0, t_i > 0$$

$$F_{+}(t_{i},t) = \int_{t_{i}}^{t} e^{(B-\delta)u} e^{-A \int_{t_{i}}^{u} \Delta H(s) ds} \Delta H(u) du$$
$$F_{-}(t_{i},t) = \int_{t_{i}}^{t} e^{(B+\bar{\delta})u} e^{-A \int_{t_{i}}^{u} \Delta H(s) ds} \Delta H(u) du$$

If F_+ diverges for some $\delta > 0$, then $\Phi(\mathcal{H}_-)$ is unbounded If F_- converges for some $\delta > 0$, then $\Phi(\mathcal{H}_-)$ is bounded

Cosmological history

Introduction

The McVittie metric

Causal structure

Asymptotic behavior

Penrose diagrams

Dependence with cosmological history

Example: Black hole in $\Lambda {\rm CDM}$

Conclusions

- We can determine the fate of null geodesics via the intermediate value theorem [da Silva, Fontanini, DCG, PRD 87,064030 (2013)]
- Find known curves that bind the image of ingoing geodesics from above and below

$$A = R(r_{\infty}) + r_{\infty}R'(r_{\infty}), B = R(r_{\infty})(R'(r_{\infty}) - H_0), \Delta H = H - H_0, t_i > 0$$

$$F_{+}(t_{i},t) = \int_{t_{i}}^{t} e^{(B-\delta)u} e^{-A \int_{t_{i}}^{u} \Delta H(s) ds} \Delta H(u) du$$
$$F_{-}(t_{i},t) = \int_{t_{i}}^{t} e^{(B+\bar{\delta})u} e^{-A \int_{t_{i}}^{u} \Delta H(s) ds} \Delta H(u) du$$

If F_+ diverges for some $\delta > 0$, then $\Phi(\mathcal{H}_-)$ is unbounded If F_- converges for some $\delta > 0$, then $\Phi(\mathcal{H}_-)$ is bounded

Causal structure of McVittie depends on how fast $H \rightarrow H_0$.

Source: dark matter and cosmological constant Einstein's equations result in the same H as in FLRW

$$H(t) = H_0 \coth\left(\frac{3}{2}H_0t\right)$$

Source: dark matter and cosmological constant
Einstein's equations result in the same H as in FLRW

$$H(t) = H_0 \coth\left(\frac{3}{2}H_0t\right)$$

- Convergence depends on the sign of $B 3H_0$
 - (a) $B 3H_0 < 0 \implies F_-$ converges
 - (b) $B 3H_0 > 0 \implies F_+$ diverges
 - (c) $B 3H_0 = 0 \implies$ inconclusive

Example: Λ CDM

Introduction The McVittie metric Causal structure Asymptotic behavior Penrose diagrams Dependence with

cosmological history

Example: Black hole in $\Lambda {\rm CDM}$

Conclusions

Convergence depends on the sign of η

$$\eta \equiv \frac{B}{3H_0} - 1 = \frac{R(r_{\infty})}{3} \left[\frac{R'(r_{\infty})}{H_0} - 1 \right] - 1$$

Example: Λ CDM

Convergence depends on the sign of η

$$\eta \equiv \frac{B}{3H_0} - 1 = \frac{R(r_{\infty})}{3} \left[\frac{R'(r_{\infty})}{H_0} - 1 \right] - 1$$

Inner horizon on the limit $H
ightarrow H_0$

$$r_{\infty} = \frac{2}{H_0\sqrt{3}} \cos\left[\frac{\pi}{3} + \frac{1}{3}\arccos\left(3\sqrt{3}mH_0\right)\right]$$

\$\eta\$ depends only on the product $mH_0 \equiv \lambda$ Non-extreme Schwarzschild–de Sitter at infinity

$$0 < \lambda < \frac{1}{3\sqrt{3}}$$

Example: Λ CDM

D. C. Guariento

VII Aegean Summer School – 16

Introduction
The McVittie metric
Causal structure
Canalusiana
Conclusions

- McVittie is a fully dynamical exact solution of Einstein equations describing a black hole in an expanding universe
 - \Box Non empty space
 - □ Incompressible fluid
- □ Shear-free motion

Introduction	•			
The McVittie metric			Mc\	/ittie is
Causal structure	•	(des	cribing
Conclusions	• • • •	[Non e
	•	[Incom
	•	ſ		Shear
	•	L		enea
			Rich	n caus
	•	г	_	
	•	L		ыу Ба
	•	L		Appar
	•	[Local
	•			
	•			
	•			
	•			
	•			
	•			

- McVittie is a fully dynamical exact solution of Einstein equations describing a black hole in an expanding universe
 - ☐ Non empty space
 - □ Incompressible fluid
 - □ Shear-free motion
- Rich causal structure requires careful analysis
 - □ Big Bang not on intuitive location
 - □ Apparent horizons depend on cosmological evolution
 - □ Local physics dependent on global structure

Introduction The McVittie metric Causal structure	McVittie is a fully describing a blac
Conclusions	 Non empty s Incompressib Shear-free m
	Rich causal struc
	 Big Bang not Apparent hor Local physics
	Coupling to a sca
D. C. Guariento	

- v dynamical exact solution of Einstein equations ck hole in an expanding universe
- pace
- ble fluid
- notion
- cture requires careful analysis
 - t on intuitive location
 - rizons depend on cosmological evolution
 - s dependent on global structure
- alar field opens possibilities for modified gravity

Introduction The McVittie metric		McVittie is a describing a
Conclusions		 Non em Incomp Shear-fr
	•	Rich causal
		Big BanApparenLocal pl
		Coupling to A fluid with interaction k (stay tuned
D. C. Guariento	•	

- a fully dynamical exact solution of Einstein equations a black hole in an expanding universe
- pty space
- ressible fluid
- ree motion
- structure requires careful analysis
 - g not on intuitive location
 - nt horizons depend on cosmological evolution
 - hysics dependent on global structure
- a scalar field opens possibilities for modified gravity
- more degrees of freedom provides new mechanisms for petween the black hole and the environment for M. Fontanini's talk)