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� Exact solutions of Einstein equations

� Black holes in the presence of self-gravitating matter

� Two competing effects:

� Gravitationally bound objects;

� Expanding universe.

� Coupling between local effects and cosmological evolution

� Causal structure

� Accretion through Einstein equations;

� Generalizations with other types of matter;

� Consistency and stability analyses;

� Experimental tests:

� Structure formation;

� Observations of galaxy clusters.
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� Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −
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� m = 0: FLRW metric
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� Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −

(

1− m

2a(t)r̂

)2

(

1 + m

2a(t)r̂

)2dt
2+a2(t)

(

1 +
m

2a(t)r̂

)4
(

dr̂2 + r̂2dΩ2
)

� a(t) constant: Schwarzschild metric

� m = 0: FLRW metric

� Unique solution that satisfies

� Spherical symmetry

� Perfect fluid

� Shear-free

� Asymptotically FLRW

� Singularity at the center
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� Past spacelike singularity at a = m

2r̂
� Event horizons only defined if H ≡ ȧ

a
constant as t → ∞
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� Past spacelike singularity at a = m

2r̂
� Event horizons only defined if H ≡ ȧ

a
constant as t → ∞

� Fluid has homogeneous density

ρ(t) =
3

8π
H2

� Expansion is homogeneous (Hubble flow) and shear-free

� Mean extrinsic curvature is constant on comoving foliation

Kα
α = 3H

� Pressure is inhomogeneous

p(r̂, t) =
1

8π

[

H2−5m+ 2ar̂

m− 2ar̂
+

2ä

a

m+ 2ar̂

m− 2ar̂

]
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� Causal structure is more easily seen on non-comoving coordinates

� Areal radius

r = a
(

1 +
m

2r̂

)2
r̂
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� Causal structure is more easily seen on non-comoving coordinates

� Areal radius

r = a
(

1 +
m

2r̂

)2
r̂

� Two branches:
{

0 < a < r

2m (not used)
a

2m < r < ∞ =⇒ 2m < r < ∞

� McVittie in new (canonical) coordinates

[Kaloper, Kleban, Martin, PRD 81,104044 (2010)]

ds2 = −R2dt2 +

[

dr

R
−Hrdt

]2

+ r2dΩ2

where

(

R =
√

1− 2m
r

)
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� Apparent horizons: zero expansion of null radial geodesics

(

dr

dt

)

±
= R (rH ±R) = 0

� Only ingoing geodesics have a solution

1− 2m

r
−Hr2 = 0
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� Apparent horizons: zero expansion of null radial geodesics

(

dr

dt

)

±
= R (rH ±R) = 0

� Only ingoing geodesics have a solution

1− 2m

r
−Hr2 = 0

� Real positive solutions only exist if 1
3
√
3m

> H > 0

� r+ Outer (cosmological) horizon

� r− Inner horizon

� If H(t) → H0 for t → ∞ apparent horizons become

Schwarszchild–de Sitter event horizons (r− → r∞)
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� Inner horizon is an anti-trapping surface for finite coordinate times
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� Inner horizon is an anti-trapping surface for finite coordinate times

� Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)

d

dt
(r − r∗) = RrH +O

(

R2
)

> 0



Asymptotic behavior

Introduction

The McVittie metric

Causal structure

Asymptotic behavior

Penrose diagrams

Dependence with

cosmological history

Example: Black hole in

ΛCDM

Conclusions

D. C. Guariento VII Aegean Summer School – 9

� Inner horizon is an anti-trapping surface for finite coordinate times

� Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)

d

dt
(r − r∗) = RrH +O

(

R2
)

> 0

� If H0 > 0 the inner horizon (r∞ is traversable in finite proper time

� Black hole at Shwarzschild–de Sitter limit



Asymptotic behavior

Introduction

The McVittie metric

Causal structure

Asymptotic behavior

Penrose diagrams

Dependence with

cosmological history

Example: Black hole in

ΛCDM

Conclusions

D. C. Guariento VII Aegean Summer School – 9

� Inner horizon is an anti-trapping surface for finite coordinate times

� Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)

d

dt
(r − r∗) = RrH +O

(

R2
)

> 0

� If H0 > 0 the inner horizon (r∞ is traversable in finite proper time

� Black hole at Shwarzschild–de Sitter limit

� If H0 = 0, some curvature scalars become singular at r∞

� Possibly no BH interpretation at Schwarzschild limit

[Kaloper, Kleban, Martin, PRD 81,104044 (2010)][Lake, Abdelqader, PRD 84,044045 (2011)]
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� Geodesic completion with Schwarzschild–de Sitter
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� Geodesic completion with Schwarzschild–de Sitter
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� Causal structure depends on cosmological history

� Horizon behavior at t → ∞ depends on the set Φ(H−)
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� Causal structure depends on cosmological history
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� Φ non-compact

� All causal curves departing r⋆ cross r− before t → ∞
� Spacetime connects to the inner region of

Schwarzschild–de Sitter
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� Causal structure depends on cosmological history

� Horizon behavior at t → ∞ depends on the set Φ(H−)

� Φ non-compact

� All causal curves departing r⋆ cross r− before t → ∞
� Spacetime connects to the inner region of

Schwarzschild–de Sitter

� Φ compact

� Causal curves may depart r⋆ and never reach r−
� Spacetime connects to both inner and middle regions of

Schwarzschild–de Sitter



McVittie with compact Φ

Introduction

The McVittie metric

Causal structure

Asymptotic behavior

Penrose diagrams

Dependence with

cosmological history

Example: Black hole in

ΛCDM

Conclusions

D. C. Guariento VII Aegean Summer School – 12

i
+

-i0 +i0

�

+

�

+

�

-

r = 0

…

r = 2m

te

b

 ( -)

r+
r-



Cosmological history

Introduction

The McVittie metric

Causal structure

Asymptotic behavior

Penrose diagrams

Dependence with

cosmological history

Example: Black hole in

ΛCDM

Conclusions

D. C. Guariento VII Aegean Summer School – 13

� We can determine the fate of null geodesics via the intermediate value

theorem [da Silva, Fontanini, DCG, PRD 87,064030 (2013)]

� Find known curves that bind the image of ingoing geodesics from

above and below
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� We can determine the fate of null geodesics via the intermediate value

theorem [da Silva, Fontanini, DCG, PRD 87,064030 (2013)]

� Find known curves that bind the image of ingoing geodesics from

above and below

� A = R(r∞) + r∞R′(r∞), B = R(r∞) (R′(r∞)−H0),
∆H = H −H0, ti > 0

F+(ti, t) =

∫

t

ti

e(B−δ)ue
−A

∫
u

ti
∆H(s)ds

∆H(u)du

F−(ti, t) =

∫

t

ti

e(B+δ̄)ue
−A

∫
u

ti
∆H(s)ds

∆H(u)du

� If F+ diverges for some δ > 0, then Φ(H−) is unbounded

� If F− converges for some δ > 0, then Φ(H−) is bounded
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� We can determine the fate of null geodesics via the intermediate value

theorem [da Silva, Fontanini, DCG, PRD 87,064030 (2013)]

� Find known curves that bind the image of ingoing geodesics from

above and below

� A = R(r∞) + r∞R′(r∞), B = R(r∞) (R′(r∞)−H0),
∆H = H −H0, ti > 0

F+(ti, t) =

∫

t

ti

e(B−δ)ue
−A

∫
u

ti
∆H(s)ds

∆H(u)du

F−(ti, t) =

∫

t

ti

e(B+δ̄)ue
−A

∫
u

ti
∆H(s)ds

∆H(u)du

� If F+ diverges for some δ > 0, then Φ(H−) is unbounded

� If F− converges for some δ > 0, then Φ(H−) is bounded

Causal structure of McVittie depends on how fast H → H0.
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� Source: dark matter and cosmological constant

� Einstein’s equations result in the same H as in FLRW

H(t) = H0 coth

(

3

2
H0t

)
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� Source: dark matter and cosmological constant

� Einstein’s equations result in the same H as in FLRW

H(t) = H0 coth

(

3

2
H0t

)

� Convergence depends on the sign of B − 3H0

(a) B − 3H0 < 0 =⇒ F− converges

(b) B − 3H0 > 0 =⇒ F+ diverges

(c) B − 3H0 = 0 =⇒ inconclusive
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� Convergence depends on the sign of η

η ≡ B

3H0
− 1 =

R(r∞)

3

[

R′(r∞)

H0
− 1

]

− 1
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� Convergence depends on the sign of η

η ≡ B

3H0
− 1 =

R(r∞)

3

[

R′(r∞)

H0
− 1

]

− 1

� Inner horizon on the limit H → H0

r∞ =
2

H0

√
3
cos

[

π

3
+

1

3
arccos

(

3
√
3mH0

)

]

� η depends only on the product mH0 ≡ λ

� Non-extreme Schwarzschild–de Sitter at infinity

0 < λ <
1

3
√
3
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� McVittie is a fully dynamical exact solution of Einstein equations

describing a black hole in an expanding universe

� Non empty space

� Incompressible fluid

� Shear-free motion
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� McVittie is a fully dynamical exact solution of Einstein equations

describing a black hole in an expanding universe

� Non empty space

� Incompressible fluid

� Shear-free motion

� Rich causal structure requires careful analysis

� Big Bang not on intuitive location

� Apparent horizons depend on cosmological evolution

� Local physics dependent on global structure

� Coupling to a scalar field opens possibilities for modified gravity

� A fluid with more degrees of freedom provides new mechanisms for

interaction between the black hole and the environment

(stay tuned for M. Fontanini’s talk)
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