Imperfect fluids, dynamic Black Holes and generalized MIeVitite

D.C.Guariento, MF, A.M. DaSilva, E.Abdalla Phys RevD.86.124020
A.M. DaSilva, MF, D.C.Guariento, Phys RevD.87.064030

Outline

The McVittie solution (recap)
 Generalized McVittie
 Construction with an imperfect fluid Properties
 Apparent horizons
 Work in progress
 Remarks

McVittie solution

$$
d s^{2}=-\frac{\left(1-\frac{m}{2 a(t) r}\right)^{2}}{\left(1+\frac{m}{2 a(t) r}\right)^{2}} d t^{2}+a(t)^{2}\left(1+\frac{m}{2 a(t) r}\right)^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

McVittie solution

$$
d s^{2}=-\frac{\left(1-\frac{m}{2 a(t) r}\right)^{2}}{\left(1+\frac{m}{2 a(t) r}\right)^{2}} d t^{2}+a(t)^{2}\left(1+\frac{m}{2 a(t) r}\right)^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

Spherically symmetric
Shear free
Perfect fluid
Asymptotically FLRW
Singularity

McVittie solution

$$
d s^{2}=-\frac{\left(1-\frac{m}{2 a(t) r}\right)^{2}}{\left(1+\frac{m}{2 a(t) r}\right)^{2}} d t^{2}+a(t)^{2}\left(1+\frac{m}{2 a(t) r}\right)^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

Spherically symmetric

$$
a(t) \rightarrow 1 \Rightarrow
$$

Shear free
Perfect fluid
Asymptotically FLRW
Singularity

McVittie solution

$$
d s^{2}=-\frac{\left(1-\frac{m}{2 r}\right)^{2}}{\left(1+\frac{m}{2 r}\right)^{2}} d t^{2}+\left(1+\frac{m}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

Spherically symmetric

$$
a(t) \rightarrow 1 \Rightarrow \quad \text { Schwarzschild }
$$

Shear free
Perfect fluid
Asymptotically FLRW
Singularity

McVittie solution

$$
d s^{2}=-\frac{\left(1-\frac{m}{2 a(t) r}\right)^{2}}{\left(1+\frac{m}{2 a(t) r}\right)^{2}} d t^{2}+a(t)^{2}\left(1+\frac{m}{2 a(t) r}\right)^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

Spherically symmetric
Shear free
Perfect fluid

$$
a(t) \rightarrow \mathrm{e}^{H t} \Rightarrow
$$

Asymptotically FLRW
Singularity

McVittie solution

$$
d s^{2}=-\frac{\left(1-\frac{m}{2 e^{H t} r}\right)^{2}}{\left(1+\frac{m}{2 e^{H t} r}\right)^{2}} d t^{2}+e^{2 H t}\left(1+\frac{m}{2 e^{H t} r}\right)^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

Spherically symmetric
Shear free
Perfect fluid

$$
a(t) \rightarrow \mathrm{e}^{H t} \Rightarrow \quad \text { Schwarzschild }- \text { de Sitter }
$$

Asymptotically FLRW
Singularity

McVittie solution

$$
d s^{2}=-\frac{\left(1-\frac{m}{2 a(t) r}\right)^{2}}{\left(1+\frac{m}{2 a(t) r}\right)^{2}} d t^{2}+a(t)^{2}\left(1+\frac{m}{2 a(t) r}\right)^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

Spherically symmetric
Shear free
Perfect fluid

Asymptotically FLRW
Singularity

McVittie solution

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

Spherically symmetric
Shear free
Perfect fluid

Asymptotically FLRW
Singularity
$\left.\begin{array}{c}m \rightarrow 0 \\ \text { large }\end{array}\right\} \Rightarrow \quad$ FLRW

McVittie - causal structure

$m=2 a r \quad$ spacelike singularity (McV big bang)

2 apparent horizons, the inner one of which becomes
$\left\{\begin{array}{l}t=\infty \\ r=r_{m}\end{array} \quad\right.$ null surface at finite affine distance from every point
... corresponding to a S-dS horizon for $\lim H=H_{0}>0$

Generalized McV - canonical coords

$$
\begin{array}{r}
d s^{2}=-\left(R^{2}-r^{2} H^{2}\right) d t^{2}-2 r \frac{H}{R} d t d r+\frac{d r^{2}}{R^{2}}+r^{2} d \Omega^{2} \\
R[t, r]=\sqrt{1-\frac{2 \mathrm{~m}(t)}{r}}
\end{array}
$$

Generalized McV - canonical coords

$$
\begin{aligned}
& d s^{2}=-\left(R^{2}-r^{2} H^{2}\right) d t^{2}-2 r \frac{H}{R} d t d r+\frac{d r^{2}}{R^{2}}+r^{2} d \Omega^{2} \\
& R[t, r]=\sqrt{1-\frac{2 \mathrm{~m}(t)}{r}} \\
& m \rightarrow m(t)
\end{aligned}
$$

Generalized McV - canonical coords

$$
\begin{array}{r}
d s^{2}=-\left(R^{2}-r^{2} H^{2}\right) d t^{2}-2 r \frac{H}{R} d t d r+\frac{d r^{2}}{R^{2}}+r^{2} d \Omega^{2} \\
R[t, r]=\sqrt{1-\frac{2 \mathrm{~m}(t)}{r}} \\
m \rightarrow m(t) \Rightarrow H-M\left(1-\frac{1}{R}\right) \\
H=\frac{\dot{a}}{a}, M=\frac{\dot{m}}{m}
\end{array}
$$

Generalized McV - canonical coords

$$
\begin{gathered}
d s^{2}=-\left(R^{2}-r^{2} H^{2}\right) d t^{2}-2 r \frac{H}{R} d t d r+\frac{d r^{2}}{R^{2}}+r^{2} d \Omega^{2} \\
m \rightarrow m(t) \Rightarrow H \rightarrow M\left(1-\frac{1}{R}\right) \\
d s^{2}=-\left(R^{2}-r^{2}\left(H-M+\frac{M}{R}\right)^{2}\right) d t^{2}-2 \frac{r}{R}\left(H-M+\frac{M}{R}\right) d t d r+\frac{d r^{2}}{R^{2}}+r^{2} d \Omega^{2}
\end{gathered}
$$

GMcV - construction

- Multiple perfect fluids (\rightarrow phantom fluid)
- Imperfect fluid

$$
\begin{gathered}
G_{r}^{t} \propto \dot{m} \Rightarrow \quad \text { Non comoving fluids } \\
+ \\
\text { Ricci isotropy } \\
G_{r}^{r}=G_{\theta}^{\theta}
\end{gathered} \rightarrow\left\{\begin{array}{c}
\text { phantom fluid } \\
+ \\
\text { fine tuned } \\
\text { cancellation }
\end{array}\right.
$$

GMcV - imperfect fluid

$$
T^{\mu \nu}=(\rho+p) u^{u} u^{\nu}+p g^{\mu \nu}-\xi h^{\mu \nu} u_{; \gamma}^{\gamma}-\chi 2 h^{\gamma(u} u^{\nu)} q_{\gamma}
$$

$$
\begin{aligned}
& \text { Eckart - Landau-Lifshitz } \\
& \quad \text { model } \\
& q_{\mu}=\partial_{\mu} T+T u_{\mu ; \gamma} u^{\gamma}
\end{aligned}
$$

GMcV - imperfect fluid

$$
T^{\mu \nu}=(\rho+p) u^{u} u^{\nu}+p g^{\mu \nu}-\xi h^{\mu \nu} u_{; \gamma}^{\gamma}-\chi 2 h^{\gamma(u} u^{\nu)} q_{\gamma}
$$

Einstein's equations

GMcV - imperfect fluid

$$
T^{\mu \nu}=(\rho+p) u^{u} u^{\nu}+p g^{\mu \nu}-\xi h^{u v} u_{; \gamma}^{\gamma}-\chi 2 h^{\gamma(u} u^{\nu} q_{\gamma}
$$

Einstein's equations

$$
\rho=\frac{3}{8 \pi}\left[\frac{\sqrt{2} \dot{m}}{r R \sqrt{R+1-\frac{m}{r}}}+H\right]^{2}
$$

$$
T=\left[T_{\infty}(t)+\frac{M}{4 \pi \chi} \frac{\ln (R)}{R}\right]
$$

GMcV - imperfect fluid

$$
T^{u v}=(\rho+p) u^{u} u^{\nu}+p g^{u \nu}-\xi h^{u v} u_{; \gamma}^{\gamma}-\chi 2 h^{\gamma(u} u^{\nu} q_{\gamma}
$$

Michele Fontanini - USP

GMcV - constraints

i. $\dot{m}(t)$ does not change sign

- AND

Additional constraints:
ii. $\quad \dot{a}(t)$ and $\dot{m}(t)$ have same sign

Accreting BH in an expanding background

Remaining freedom encoded in

$$
a(t), m(t), \quad T_{\infty}(t)
$$

GMcV - an explicit model

Are these solutions still describing a BH in a cosmological background?

Patching McV and GMcV

$$
m(t) \sim t-\sin (t)
$$

smooth connection and smooth derivatives continuous pressure and energy density

GMcV - apparent horizons

Apparent horizons behavior in conformal coordinates for different choice of the free parameters

Increasing H_{0}

GMcV - apparent horizons

Apparent horizons behavior in confo choice of the free parameters

Increasing H_{0}

GMcV - pushing the boundaries

Even models smoothly patched to McV can produce unexpected results and need to be investigated

Future works

Studying the most general conditions for which the GMcV solution can be interpreted as an accreting BH in an expanding background.

Thermodynamics of McVittie and GmcV : Eckart - Landau-Lifshitz \rightarrow Israel - Stewart

Future works

Connection to fields: extension of the MTZ solution (a conformally coupled scalar field and a vector sourcing $\mathrm{S}-\mathrm{dS}$ spacetime).

$$
S_{M T Z}=\int d^{4} x \sqrt{-g}\left[\frac{R-2 \Lambda}{16 \pi}-\frac{1}{2} \nabla^{\mu} \varphi \nabla_{\mu} \varphi-\frac{1}{12} R \varphi^{2}-\alpha \varphi^{4}-\frac{1}{16 \pi} F^{\mu \nu} F_{\mu \nu}\right]
$$

Conclusions

Imperfect fluid can source $\mathrm{GMcV}, m \rightarrow m(t)$ describing a BH in an expanding background with mass parameter evolving with time. "Sandwich" solutions satisfy all the constraints and accommodate a wide class of possibilities.
Possibly a mass-varying solution for both GR and modified gravity.

