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Lovelock brane cosmology
LThe action of the model

We consider the following action

SIX] = /d4 VEE(-A+ K+ 5R) : (1)

First brane Lovelock invariants

Important:

» This action is invariant
under reparameterizations
of the worldvolume.

» We consider the
Minkowski spacetime as
background.

» We have the
codimension-1 case. @
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LThe action of the model

The induced geometry on the brane

Induced metric on m (First fun-
damental form):

8ab = m,X;’X;;; (2)

and the extrinsic curvature
(Second fundamental form)
p=—n,V. X' = —nl V,V X"
(3)

R. Capovilla y J. Guven, gr-qc/9411060



Lovelock brane cosmology

|—The action of the model

By a variational procedure we obtain

G.,K® — R+AK =0:

G,p I1s the brane Einstein tensor.

The contracted Gauss-Codazzi integrability condition
R = K? — K,,K?P.
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|—The action of the model

By a variational procedure we obtain

GpK™ — R4 NAK =0: (4)

We have:
» G,p is the brane Einstein tensor.

» The contracted Gauss-Codazzi integrability condition:
R = K? — K,,K?.

» Second-order equations of motion.
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LThe action of the model

By a variational procedure we obtain

GpK™ — R4 NAK =0: (4)

We have:
G,p is the brane Einstein tensor.

v

v

The contracted Gauss-Codazzi integrability condition:
R = K? — K,,K?.

Second-order equations of motion.

v

v

We will focus in a FRW universe embedded in a Minkowski
background.
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Lovelock brane cosmology
|—The action of the model

LFRW—minisuperspace

written as

In this configuration, S =6 2fd L, where the Lagrangian can be

t, .. . . - 3. . -
L= %(aét — aat + N?t) — Na®A? + ‘7V—2(té — at)+3a° 1 (5)
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LThe action of the model
LFRW—minisuperspace

In this configuration, S =6 2fd L, where the Lagrangian can be

written as
at 2 372 4 a -
L= N (aat — aat + N°t) — Na’A N2 Z_(ta— at) 4+ 3a° t: (5)

We expect a conserved quantity. Certainly, L can be split as
L= Lp+ Ly as follows:

d [a%a ;- 3
=2 |z h(2)];
Ly 7 [N + a> arctan (t)] (6)

and

ad’ 272 27 2 a
Ld:—W—i—aN(l—a/\)—i—&a [t—aarctanh ) (7)
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LThe action of the model
LFRW—minisuperspace

In this configuration, S =6 2fd L, where the Lagrangian can be
written as

' 23
L= ,‘:/g (aat — aat + N2t) — Na3A? + N2 Z__(ta— at)+3a° t: (5)

We expect a conserved quantity. Certainly, L can be split as
L= Lp+ Ly as follows:

d [a%a ;- 3
- 422 h(2)]|:
Ly m [N + a> arctan (t)] (6)

and
aa? . - . a
Ly = —W—i—aN(l—a A°)+3a° |t — aarctanh ) (M

The configuration space is given by {t( );a( );t;a}. We have defined
the quantity N? := > — 2%, @
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[ Ostrogradski-Hamiltonian approach

» Following the Ostrogradski construction, we identify that the
phase space by: {t; p¢; a; pa; t; P 3; Pa}.

@
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[ Ostrogradski-Hamiltonian approach

» Following the Ostrogradski construction, we identify that the
phase space by: {t; p¢; a; pa; t; P 3; Pa}.

We have two important relations: p, = p, + p, and p; := —Q

@
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Lovelock brane cosmology

LOstrogradski-Hamiltonian approach

» Following the Ostrogradski construction, we identify that the
phase space by: {t; p¢; a; pa; t; P 3; Pa}.

We have two important relations: p, = p, + p, and p; := —Q.
The system has First and Second-class constraints:

Fi = P-X=0;

NO
= — |7 Hy ~ 0;
F2 (324)) 2+ Ho
a2, -
81 = N(Pn)—ﬁ(t—i- Na):’z’r-BO;
Sy = pra+pit="4~0;
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LOstrogradski-Hamiltonian approach

» Following the Ostrogradski construction, we identify that the
phase space by: {t; p¢; a; pa; t; P 3; Pa}.

We have two important relations: p, = p, + p, and p; := —Q.
The system has First and Second-class constraints:
Fi = P-X=0 (8)
NO
Fr = (%) ,2+H0%0; (9)
a2, -
81 = N(Pn)—ﬁ(t—i- Na): ’2%0; (10)
Sy = pra+pit="4~0; (11)

If we introduce the notation Ly := F7 and Ly := F,
{Li Loy = (m—n)Lpyns m=0;n=1; (12)

this characterizes a truncated Virasoro algebra. @
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|—Ostroglradski-Hamiltonian approach

LGauge fixing and Canonical transformation

We use the canonical transformation

N = 2 — 3%

1 O

Mu = o (P-X);
v o= — [N(P- n) — aﬁ(i‘—i- _Na)] ;

M, := arctanh <§>
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|—Ostroglradski-Hamiltonian approach

LGauge fixing and Canonical transformation

We use the canonical transformation

N = 2 — 3%

1 O

Mu = o (P-X);
v o= — [N(P- n) — aﬁ(i‘—i- _Na)] ;

M, := arctanh <§>

Then, we can write

F1 = NNy,
N 5.2 Pi
Fr o= - _ _J(pa+3patn ) o L
2 a[(v — 1)22R2 + 2 + 38/722A] {(p #3600 )" - (a [(v — Da?A2 1 35 /72h]

+

1 _ _ _ _ _ _ _
= N+ 2a(va" A — 1) — (7 — 1)a*R° — 36a3ﬁ/\) [(v = D2R2 + 2+ 3572 } ,
a
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|—Ostroglradski-Hamiltonian approach

LGauge fixing and Canonical transformation

We use the canonical transformation

N = 2 — 3%

1 O

Mu = o (P-X);
v o= — [N(P- n) — aﬁ(i‘—i- _Na)] ;

M, := arctanh <§>

Then, we can write

F1 = NNy,
N 5.2 Pi
Fr o= - _ _J(pa+3patn ) o L
2 a[(v — 1)22R2 + 2 + 38/722A] {(p #3600 )" - (a [(v — Da?A2 1 35 /72h]

+

1 _ _ _ _ _ _ _
= N+ 2a(va" A — 1) — (7 — 1)a*R° — 3ﬁa3ﬁ/\) [(v - DA + 2+ 3ﬂﬁ82A]} ,
a

The constraints are quadratic in the momenta. @
O b
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|—Quantum approach

We adopt the standard way to pass to the quantum mechanical

scheme,

Pt

Pa

My

Ll

S
Pt at’
S8
Pa = @2’
ﬁ/\/:—f@%;
A, =i 2

(13)
(14)
(15)

(16)
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|—Quantum approach

We adopt the standard way to pass to the quantum mechanical

scheme,

Pt

Pa

My

Ll

Fv
Fo¥

(13)
(14)
(15)

(16)

(17)
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I—Quantum approach

Wheeler-DeWitt equation

» We assume then that V is
represented in the usual
manner as " b
V(a;t) = (a)e ¥, "

& uE)] @)= /\
» Where: ; ;

Ua)=a [( —1)aA% +2+37/ aA]° (1- a?A%);
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Lovelock brane cosmology

|—Quantum approach

Wheeler-DeWitt equation

> We assume then that V is =t
represented in the usual
manner as x- .
\U(a; t) = (a)e_iﬂt. UG

g [—a%zf + U(a)] (a) =0. /\

> Where: 4 e
Ua) = & [( —1)PA+2+3 A2 (1- 22R2);

Turning points for the potential:

(19)

a\ 2
(3?> +1| — @/2) . (20)
2A 1+ ( B 3” 3 2
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|—Quantum approach

L Nucleation rate

The nucleation probability: WKB approximation

ar
P~ exp (—2/ ]\/U(a)\da);
a
For the model, we obtain

N

0
i)

(21)
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LQuantum approach

L Nucleation rate

The nucleation probability: WKB approximation

ar
P~ exp (—2/ ]\/U(a)\da);
a
For the model, we obtain

(21)
4
> 7) ~ e 3(\/%7\)2 .

We have defined, o =1+ 2 (

) |(8) /&)
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LQuantum approach

L Nucleation rate

The nucleation probability: WKB approximation

ar
P~ exp (—2/ ]\/U(a)\da);
a
For the model, we obtain

4
> P e 3(vioh)

__a_
» When we set A =0, we obtain P ~ e 2757,

We have defined, o=1+2 (%/é\)

- N2
33 33
() +/(8) +1|.

(21)
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I—Quantum approach

LNucIeation rate
The Wheeler-DeWitt potential
A=0
154
A<B
104
U(a)
B=A
5
B<A
0 T T T
0.4 0.8 1. 1.6
a
,5_
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|—Conr:luding remarks

Conclusions

We have canonically quantized the brane model described by
the first three terms of Lovelock invariants.
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|—Conr:luding remarks

Conclusions

» We have canonically quantized the brane model described by
the first three terms of Lovelock invariants.

By means of an Ostrogradski Hamiltonian procedure besides
the introduction of a suitable canonical transformation we
have succeeded in finding constraints quadratic in the
momenta.
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LConcluding remarks

Conclusions

» We have canonically quantized the brane model described by
the first three terms of Lovelock invariants.

» By means of an Ostrogradski Hamiltonian procedure besides
the introduction of a suitable canonical transformation we
have succeeded in finding constraints quadratic in the
momenta.
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L Concluding remarks

Conclusions

» We have canonically quantized the brane model described by
the first three terms of Lovelock invariants.

» By means of an Ostrogradski Hamiltonian procedure besides
the introduction of a suitable canonical transformation we
have succeeded in finding constraints quadratic in the
momenta.

» The nucleation probability dictates a higher probability for
negative values of  where it is possible to obtain an effective
cosmological constant in terms of the parameter. For a
non-zero brane cosmological constant, the parameter  which
plays akin role to the crossover scale r. in the self-accelerated
branch of the DGP model, is similar as a cosmological
constant at a quantum level®.

?Class. Quantum. Grav. 29 (2012) 175010
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