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General Relativity

GR is based on two important principles:
Mach’s principle The presence of matter curves the geometry of spacetime
Equivalence principle Locally a free-falling observer and an inertial
observer are indistinguishable

This means:
-Gravity is a local condition of spacetime
-Gravity sees all
-In Newtonnian gravity mI and mG happen to be the same, in GR it is a
founding principle

gµν :field variable ∂−→ Γγαβ , frame ∂−→ Rσµνρ dynamics
Gµν = 8πGNTµν , EoM are second order EPD’s with respect to the field
variable.
GR is a classical or an effective theory of gravity. At energy scales where
curvature is large it has to be UV-completed to a quantum theory of
gravity...
For this lecture we concentrate on classical modifications of GR.
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Question: Why we should not modify GR

Theoretical consistency: In 4 dimensions, consider
L = L(M, g ,∇g ,∇∇g). Then Lovelock’s theorem in D = 4 states that
GR with cosmological constant is the unique metric theory emerging from,

S(4) =

∫
M

d4x
√
−g (4) [R − 2Λ]

giving,

Equations of motion of 2nd-order
given by a symmetric two-tensor, Gµν + Λgµν

and admitting Bianchi identities.
Under these hypotheses GR is the unique massless-tensorial 4 dimensional
theory of gravity!
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Experimental and observational data in weak gravity
Experimental consistency:
-Excellent agreement with solar system tests
-Strong gravity tests on binary pulsars
-Laboratory tests of Newton’s law (tests on extra dimensions)

Time delay of light Planetary tajectories

...
C. Charmousis Higher order gravity theories



For strong gravity

Orbital decay of the
Hulse-Taylor binary pulsar

[Taylor&Weisberg04].

General Relativity is very well tested for strong
gravity-Hulse-Taylor pulsar
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Q: What is the matter content of the Universe today?
Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν

cosmological and astrophysical observations dictate the matter content of

the Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope
to see more at LHC. But even then...
If we assume only ordinary sources of matter (DM included) there
is disagreement between local, astrophysical and cosmological data.
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Universe is accelerating → Enter the cosmological constant

Easiest way out: Assume a tiny cosmological constant ρΛ = Λobs
8πG = (10−3eV )4,

ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

In fact had we used planetary trajectories ,SchdS rather than Sch, we
would get, Λlocal < 1011Λobs

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Typical mass scale for neutrinos... In fact Λ for GR is a bit like mI and
mG in Newtonnian theory...
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Maybe Λobs is not a cosmological constant.
What if the need for exotic matter or cosmological constant is the sign for
novel gravitational physics at very low energy scales or large distances.

-Same situation at the advent of GR.
-Even then a next order correction with one additional parameter was enough
to save Newton’s laws (at the experimental precision of the time..)
-Just like successes of GR are not only the advance of Mercury’s perihelion,
modification of gravity cannot only be "an explanation" of the cosmological
constant.
-Furthermore, modifying GR is similar to opening Pandora s box...

Theoretical consistency: ghosts, tachyons, breaking of Lorentz invariance,
strong coupling problems etc
Experiment and observation lab tests, PPN parameters, matter
perturbations, strong gravity tests
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Modified gravity theories

Extra dimensions : Extension of GR to Lovelock theory with
modified yet second order field equations. Braneworlds,
Kaluza-Klein compactfication

4-dimensional modification of GR: Scalar-tensor theories,
Einstein-Aether, Hôrava gravity, Galileon/Hornedski.

Massive gravity, decoupling limit of DGP

Theories modifying geometry: torsion, choice of geometric
connection
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Geometric origin

A metric gravity modification: Lovelock theory
In 4 dimensions, consider L = L(M, g ,∇,∇2). GR with cosmological
constant Λ is the unique metric theory emerging from,

S(4) =

∫
M

d4x
√
−g (4) [R − 2Λ]

depending on a,
symmetric two-tensor, Gµν + Λgµν+αHµν

giving Equations of motion as 2nd-order metric PDE’ s
and Bianchi identities.

with HAB =
gAB
2 Ĝ − 2RRAB + 4RAC RC

B + 4RCDRC D
A B − 2RACDE R CDE

B

In d > 4 consider L = L(M, g ,∇,∇2). The above action is no longer
unique. The unique, d-dimensional theory with the same properties is due
to [Lovelock71’] and its d = 5, 6-dimensional version includes the 2nd order
term,

S(6) =

∫
d6x
√
−g (6)

[
R − 2Λ + αĜ

]
Ĝ = RABCDRABCD − 4RABRAB + R2

For each odd dimension d = 2n + 1, a novel unique nth-order Lovelock density
appears of order n-in powers of curvature. For example in D = 7 we pick up
L(3) which a third power of curvature
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Lovelock theory basics
As a result Lovelock theory is the classical extension of GR in higher
dimensions. It is one of the rare well defined modifications of gravity

Term Ĝ = RABCDRABCD − 4RABRAB + R2 has dimensionful coupling α
with dimension l2

Some 4 dimensional black hole “theorems” still valid.
Relation to 4 dimensional higher order scalar-tensor Hordenski theory via
Kaluza-Klein compactification
Well defined perturbation operator and stable vacua
Generalised junction conditions ([CC and Zegers]) and applications to
braneworlds (codimension 2 braneworld cosmology ([CC, Kofinas,

Papazoglou])).
EOM deeply complex for lesser spacetime symmetry. No extension of
Kerr, black string, any Weyl metric etc.
Perturbative relation to string theory leading α′ correction to certain
string theory effective actions; taking into account, the finite length of
string.

Question: What makes Lovelock theory special?
C. Charmousis Higher order gravity theories



Lovelock densities and their geometric origin

Gauss working on surface theory noted that scalar curvature only
depended on the first fundamental form. Theorema Egregium

In d = 2, manifolds are topologically classified by their Euler number χ:
χ[M] = 2− 2h
This number is related to curvature via the Gauss-Bonnet theorem
For each even dimensional manifold, d = 2n an analogue theorem relating
this topological number to curvature is due to Chern.

d = 2 d = 4

χ[M2] = 1
4π

∫
M R χ[M4] = 1

32π2

∫
M Ĝ

These are topological invariants in d = 2n.
Dimensionally extending these scalar densities we obtain just the right
densities whose variation leads to second order field equations.
All higher derivatives conveniently end up as total divergent terms.
R and Ĝ are respectively the 1st and 2nd Lovelock densities.
Similar extension for manifolds with boundaries.
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Staticity theorems in GR

Einstein’s theory for d=4
The spherically symmetric solutions of Einstein’s field equations in the vacuum
are locally static. In the presence of a cosmological constant the horizon metric
is a constant curvature space.
−→ a generalised version of Birkhoff’s theorem with cosmological constant.

Black hole solution:

ds2 = −V (r) dt2 +
dr 2

V (r)
+ r 2k(4)

µν (x) dxµdxν

with horizon sections k(4)
µν =

δµν
1+κ4 δµνxµxν homogeneous space

and lapse function, V = κ− Λ
3 r 2 − 2m

r .
In adS space-time we can have black holes with planar or hyperbolic topology.

Einstein’s theory for d > 4
In d > 4 any Ricci flat (Einstein) space horizon is admissible [Gibbons& Hartnoll].
Black hole potential (almost) independent of horizon geometry details (modulo
solid angle deficit singularities).

Constant curvature space: Rλµνρ = 2R
D(D−1)

gλ[ν g ρ]µ

Einstein space: Rµν = R
D gµν , Rλµνρ = Cλµνρ + R

D(D−1)
gλ[ν g ρ]µ

Example: Stick to D = 6 for simplicity
As such we can have,

ds2 = −V (r)dt2 +
dr 2

V (r)
+ r 2

(
f (ρ)dτ 2 +

dρ2

f (ρ)
+ ρ2dΩ2

II

)
with f (ρ) = 1− µ

ρ
and H=Euclidean Schw. or H=flat space

ds2 = −V (r)dt2 +
dr 2

V (r)
+ r 2dT 2

IV

with the same lapse function V (r) = k2r 2 − m
r3 . Same type of "horizon

degeneracy" gives rise to black string solutions (by a double Wick rotation).
Black strings are known to be unstable [Gregory Laflamme].
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Horizon degeneracy in higher dimensions?

What of this horizon degeneracy in Lovelock’s theory? Are
these degenerate solutions valid due to the fact that we are
generalizing GR only by name?
To answer this question we assume an arbitrary 4 dimensional
internal space (H, hµν) for d = 6 dimensional spacetime.
Are arbitrary Einstein spaces allowed as horizon sections of
Lovelock black holes [Gleiser and Dotti], [Bogdanos et.al.]?
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An integrabilility condition
Assume an arbitrary 4 dimensional internal space (H, hµν) for d = 6
dimensional spacetime.
Consider a time and space dependent warped Anzatz
Go to light cone coordinates

ds2 = − 2e2ν(u,v)B (u, v)−3/4 dudv + B (u, v)1/2 h(4)
µν (x)dxµdxν

Insert into Lovelock eqs in 6 dims (GR limit for α = 0),

EAB = GAB + ΛgAB + αHAB = 0 ,
HAB =

gAB

2 Ĝ − 2RRAB + 4RAC RC
B + 4RCDRC D

A B − 2RACDE R CDE
B .

The uu- and vv -equations

Euu =
[
1 + α

(
B−1/2R(4) +

3
2e−2νB−5/4B,uB,v

)]
(2ν,uB,u − B,uu) = 0 ,

Evv =
[
1 + α

(
B−1/2R(4) +

3
2e−2νB−5/4B,uB,v

)]
(2ν,v B,v − B,vv ) = 0.

They allow to classify the solutions:
1 Class-I Pure GB solutions
2 Class-II Black hole GR like solutions

(⊃[Boulware&Deser85,CC&Dufaux02,Dotti&Gleiser05]);
3 Class-III (B(u,v)=const, ⊃[Dadhich&Maeda06]), Kaluza-Klein metrics



Class-II solutions : Constant curvature
For h(4)

µν = k(4)
µν =

δµν
1+κ4 δµνxµxν , a constant curvature space (sphere, plane,

hyperboloid), we have a black hole solution,

ds2 = −V (r) dt2 +
dr 2

V (r)
+ r 2k(4)

µν (x) dxµdxν

with lapse function,

V (r) = κ+
r 2

12α

(
1±

√
1 +

12
5 αΛ + 24αM

r 5

)
with κ = 0,±1 the horizon curvature and M related to mass (Boulware and
Deser, Cai)

For small α and large r we pick up the GR static black hole with
cosmological constant for the "-" branch.
Similar black hole solutions to GR with a possible additional branch
singularity where the square root hits zero.

Setting the mass parameter M = 0 gives us the vacua of the theory.

V (r) = κ+
r 2

12α

(
1±

√
1 +

12
5 αΛ

)
α couples to the cosmological constant and shifts its value. There are two
branches, a GR branch and a pure GB branch with no GR limit.
The "+" branch has a perturbative spin 2 ghost and is unstable
([CC,Padilla]).
For example when α > 0,Λ < 0 we have

0 ≤ α ≤ − 5
12α

with the GR and Chern-Simons limit saturating the bound. For CS the
two branches merge and we have a unique vacuum.
The perturbation operator takes the functional form,
∓(1 + 12

5 αΛ)∆LδgAB where ∆L is the standard GR perturbation operator.

∆Lhµν = −1
2 (�hµν −∇λ∇µhνλ −∇λ∇νhµλ +∇ν∇µh)

Hence no additional degrees of freedom just as in GR in D dimensions



Class II solutions: Gleiser&Dotti condition
When however the horizon metric, h(4)

µν is arbitrary,

ds2 = −V (r) dt2 +
dr 2

V (r)
+ r 2h(4)

µν (x) dxµdxν

solving the field equation we find:

V (r) =
R(4)

12 +
r 2

12α

(
1−

√
1 +

12
5 αΛ +

α2
(
R(4) − 6Ĝ(4)

)
r 4 + 24αM

r 5

)

where R(4), R(4) − 6Ĝ(4) are constant horizon quantities
and h(4)

µν is an Einstein space.
Therefore, the horizon is an Einstein space (R(4) = κ

12 ) with constant and
positive Weyl square (CλµνρCσµνρ = 4Θδλσ (Gleiser-Dotti condition)).

V (r) = κ+
r 2

12α

(
1−

√
1 +

12
5 αΛ− 24α

2Θ

r 4 + 24αM
r 5

)

Example: H = S2 × S2: ds2 = ρ2
(
dθ21 + sin2 θ1dφ2

1 + dθ22 + sin2 θ2dφ2
2
)
.

κ = 1
3ρ2 , Θ = 4

3ρ4
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Example: S2XS2 horizon black hole
The lapse function is

V (r) = κ+
r 2

12α

(
1−

√
1 +

12
5 αΛ− 24α

2Θ

r 4 + 24αM
r 5

)

For the horizon geometry we have κ = 1
3ρ2 , Θ = 4

3ρ4 where ρ is the
sphere radius.
M is an integration constant related to the mass of the solution, Θ stems
from the non-zero Weyl curvature of the horizon. For GR only κ appears.
Since κ 6= 1/ρ2 we have a solid angle deficit. Similar to the asymptotics
of a global monopole.
For M = 0, and α = 0 the solution is singular at r = 0.
The GR solution is singular. But, for α 6= 0 even the solution without
mass can have a horizon formed due to the geometrical term Θ [Bogdanos et

al.].
The higher order term cloaks the spacetime singularity by an event
horizon.
Term Θ will generate horizons under some condition, quite generically:
Θ > Θ0(Λ, α, κ). These horizons have a purely geometrical origin.
Black holes with Θ 6= 0 will not be asymptotically flat.
In this sense higher dimensional horizon degeneracy for GR is lifted in
Lovelock theory. The only allowed asymptotically flat solution is the
Boulware-Deser solution!
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Braneworld

Central idea
Matter lives on a distributional brane
gravity lives in a higher dimensional space-time

Interesting phenomenology
DGP IR modification, RS UV modification

Self-gravity essential since localized matter curves geometry.
Distributional description simplifies and renders phenomenology
independent of matter regularization
However, at some level distributions fail since they are approximations. in
particular for codimension 2 cosmological braneworlds (i.e.., 2 extra
dimensions)
Lovelock theory here resolves this problem
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Codimension 2 braneworld

Codimension 2
Analogue of a 2 dimensional cosmic string living in 4 dimensions

ds2 = −dt2 + dz2 + dρ2 + ρ2β2dθ2 with tension related
to conical deficit 8πG4T = −2π(1− β)

In GR only a pure tension distributional brane can be described
General solution is simply a Wick rotated black hole

ds2 = V (r) dt2 +
dr 2

V (r)
+ r 2k(4)

µν (x) dxµdxν

where k(4)
µν =

ηµν
1+κ4 ηµνxµxν is flat, de Sitter or anti de Sitter.

"Horizon positions", V (r±) = 0 are in fact the endpoints of space-time
and the location of the defects.
The brane tension is accounted by the conical deficit angle (akin to the
black hole temperature)
8πG4Tµν = −2π(1− β)k(4)

µν

no distributional description for cosmological branes in GR (only de
Sitter, flat and anti de Sitter).

ds2 = V (r) dt2 +
dr 2

V (r)
+ r 2k(4)

µν (x) dxµdxν

C. Charmousis Higher order gravity theories
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Matching conditions in Lovelock theory

Codimension 2
Higher order terms in Lovelock theory render possible the description of a
cosmological braneworld of codimension 2

Junction conditions read, 8πG6Tµν = 2π(1− β)[−k(4)
µν + 2α

3 (Gµν + Wµν)]
where
W ν
µ = Kλ

µKν
λ −KKν

µ + 1
2δ
ν
µ(K 2 −KµνKµν) brane bending terms and Gµν

is the induced brane Einstein tensor [Bostock et al., CC and Zegers].
Hence (in principle) we can now consider a perfect fluid induced matter
tensor
Notice that GR 4 dimensional behavior is provided by the GB term of the
bulk.
The deficit angle is now a function of time. β = β(t) in accord with the
space-time symmetries

In fact, for β = constant, we can write an effective action similar to effective
actions for cosmic strings with finite width corrections! Here remember α has
length square dimensions...

Sbulk =

∫
d4x d2y

√
−g [−2Λ + R + αĜ] + matter (1)

Sdistributional = 2π(1− β)δ(2)(y)

∫
d4x
√
−k[1 + α(Rind + Wind )] (2)

Hence R → brane cosmological constant, Ĝ → DGP term.

Distributional part of bulk Lovelock densities are induced lower order Lovelock
densities. Each even codimension reduces by 1 Lovelock density

C. Charmousis Higher order gravity theories



Introduction-Motivation
Lovelock theory

Solving Lovelock’s equations: black holes and staticity theorems
Applications to 4 dimensional spacetime

The cosmological constant problem : Scalar-tensor and Self-tuning
Horndeski’s theory

The self-tuning filter
Conclusions

Braneworlds
Kaluza-Klein reduction and scalar-tensor theories
A galileon black hole

Codimension 2 brane cosmology

Codimension 2 cosmology
Solve at brane location matching conditions and EOM [CC,Papazoglou&Kofinas]

for distributional perfect fluid matter.
We have geometric acceleration due to EH term of the bulk
Effectively we have a scalar tensor theory with β scalar dof. Time varying
G(4)

Generically energy is not conserved.

ρ̇+ 3H(ρ+ P) +
β̇

β(1− β)
ρ = 0

The conical deficit angle is a free function of time β = β(t) that has to
be fixed by the bulk solution at infinity. In other words "dark radiation"
constant of codimension 1 is now promoted to a free function.
For codimension 1 we were helped by Birkhoff’s theorem here this is no
longer true.
We find FRW cosmology supplemented by an extra fluid (from brane
bending terms)
In general Thorne metrics are not treatable in Lovelock theory...

C. Charmousis Higher order gravity theories
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Codimension 2 brane cosmology

Codimension 2 cosmology
Solve locally at brane location matching conditions and EOM

We have geometric acceleration due to EH term of the bulk
We find FRW cosmology supplemented by an extra fluid (from brane
bending terms)
Example: Setting zero brane tension and admitting constant β we have

H2 +
κ

a2 = − 1
2α +

k2
6

3α(1− β)
ρ(t) +

c2

a2(1−3w)

ä
a = − 1

2α + 3w c2

a2(1−3w)
− (1 + 3w)k2

6
6α(1− β)

ρ(t)

Ordinary perfect fluid yields a two-component perfect fluid. For example
w = 1/3 yields cosmological constant, or w = 0 yields curvature.

C. Charmousis Higher order gravity theories



What effect has Lovelock theory to 4 dim gravity?
Scalar tensor theories: galileon symmetry

Start with 5 or 6 dimensional Lovelock theory.∫
d4x dNX

√
−g
[
R + αĜ

]
Consider a toroidal compactification

ds2 = g (4)
ab (x)dx adxb+eφ(x)/NδABdX AdX B

Question: What does Kaluza-Klein reduction of Lovelock theory give?
Higher order scalar-tensor-(EM) theory [Madore, Mueller-Hoysen, Horndeski,

Kerner, Binetruy et al.]

For explicit calculation see [S C Davis], and for full blast see [K V Acoleyen et

al.]

Field equations are of second order! Covariant galileon terms [K V Acoleyen

et al.]



Kaluza-Klein reduction
Start from Einstein → Lovelock theory in vacuum [CC, Gouteraux and Kiritsis]

S(4+n) =

∫
d4+nx

√
−g (4+n)

[
R − 2Λ + αĜ

]
, Ĝ = RABCDRABCD−4RABRAB +R2

Consider a simple metric Anzatz and show it is a consistent truncation (see eg.
[Kanitscheider and Skenderis]),

ds2(4+n) = ds̄2(p+1) + eφdK̃ 2
(n) .

Compactify on some curved n dimensional constant curvature manifold K̃ .

S̄galileon =

∫
dp+1x

√
−ḡ e

n
2φ
{

R̄ − 2Λ + α̂Ḡ +
n
4 (n − 1)∂φ2 − α̂n(n − 1)Ḡµν∂µφ∂νφ

− α̂

4 n(n − 1)(n − 2)∂φ2�φ+
α̂

16n(n − 1)2(n − 2)
(
∂φ2)2

+e−φR̃
[
1 + α̂R̄ + α̂4(n − 2)(n − 3)∂φ2]+ α̂G̃e−2φ

}
,

Tilded quantities are related to compactified K̃ geometry and are
constants. They yield 4 dim potentials.
Barred quantities are 4 dimensional. Notice that Lovelock densities
interact with the scalar field.
Coefficient n is extended to the real line.
We have a generalised scalar tensor theory which admits 2nd order field
equations.



Take Lovelock black hole with m 2-spheres H = S(2)XS(2)..XS(2).
Compactify on m − 1 of these keeping one S(2) in 4 dims.
We obtain,

ds̄2(4) = −V (R)dt2 +
dR2

V (R)
+

R2

n + 1dS2 ,

V (R) = κ+
R2

α̃r

[
1∓

√
1− 2α̃2

rκ2

(n − 1)R4 +
4α̃rm

R3+n

]
,

α̃r = 2α̂n(n + 1), κ = 1

eφ/n =
R2

n + 1 ,

Taking n→ 0 gives us Schwarzchild.
Taking α̃r → 0 gives Einstein Dilaton solution [Chan Horne and Mann]

Solution has solid deficit angle. Solution is similar to the external field of
the gravitational monopole.
Solution for zero mass is therefore singular and has non-trivial topology
discinguishing it from GR.
For large R and small α̃r we have
V (R) ∼ 1 + α̃r

(n−1)R2 − 2m
Rn+1 + ...

Higher order terms give rise to an extra horizon, a bit like in RN geometry.
For m = 0 and 0 < n < 1 we hide the singularity at R = 0
Higher order term cloaks an otherwise naked singularity
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Weinberg’s no-go theorem and theCC problem

Universe is accelerating → Enter the cosmological constant

Easiest way out: Assume a tiny cosmological constant ρΛ = Λobs
8πG = (10−3eV )4,

ie modify Einstein’s equation by,
Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

In fact had we used planetary trajectories ,SchdS rather than Sch, we
would get, Λlocal < 1011Λobs

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Typical mass scale for neutrinos... In fact Λ for GR is a bit like mI and
mG in Newtonnian theory...
But things get worse...

Theoretically, the size of the Universe would not even include the island of Naxos!

Cosmological constant problem
C. Charmousis Higher order gravity theories
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Weinberg’s no-go theorem and theCC problem

Cosmological constant problem, [S Weinberg Rev. Mod. Phys. 1989]

Cosmological constant behaves as vacuum energy which according to the
strong equivalence principle gravitates,

Vacuum energy fluctuations are at the UV cutoff of the QFT
Λvac/8πG ∼ m4

Pl ...

Vacuum potential energy from spontaneous symmetry breaking
ΛEW ∼ (200GeV )4

Bare gravitational cosmological constant Λbare

Λobs ∼ Λvac + Λpot+Λbare

Enormous Fine-tuning inbetween theoretical and observational value
Why such a discrepancy between theory and observation? Weinberg

no-go theorem big CC
Why is Λobs so small and not exactly zero? small cc

Why do we observe it now ?
C. Charmousis Higher order gravity theories
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Weinberg’s no-go theorem and theCC problem

The Big CC problem

Assume an effective, conserved and covariant 4 dimensional theory
Consider gravity action including all contributions of cosmological
constant in the scalar potential term,

S[π1, ..., πN , gµν ] =

∫
d4x
√
−gR + L(π1, ..., πN , gµν , ∂m) + Matter

If gµν = ηµν , π
i = constant. Then Λ = 0 (Weinberg no-go)

It is impossible to find trivial solutions to Einstein’s field equations (flat
spacetime) without fine tuning the cosmological constant to zero.
Any dynamical solution will fine tune the parameters of my theory in the
action.

Clearly to have any chance here we must go beyond GR and break symmetries...

C. Charmousis Higher order gravity theories
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Weinberg’s no-go theorem and theCC problem

Self-Tuning: general idea
Weinberg’s no go theorem tells us that in GR we cannot have a Poincare
invariant vacuum with Λ 6= 0
Question: What if we break Poincare invariance but, at the level of the scalar
field?
Keep gµν = ηµν locally but allow for φ 6= constant.
Can we have a portion of flat spacetime whatever the value of the cosmological
constant and without fine-tuning any of the parameters of the theory?
Toy model theory of self-adjusting scalar field.

Solving this problem classically means that vacuum energy does not
gravitate and we break SEP not EEP.
Beyond leading order O(Λ4), radiative corrections O(Λ6/MPl2) may spoil
self-tuning.

We need:
1 A cosmological background
2 A sufficiently general theory to work with

C. Charmousis Higher order gravity theories
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A general scalar tensor theory

Consider φ and gµν as gravitational DoF.
Consider L = L(gµν , gµν,i1 , ..., gµν,i1...ip , φ, φ,i1 , ..., φ,i1...iq )
with p, q ≥ 2 but finite
L has higher than second derivatives

What is the most general scalar-tensor theory giving second order field
equations?

Similar to Lovelock’s theorem but for the presence of higher derivatives in L.
Here second order field equations in principle protect vacua from ghost
instabilities.

C. Charmousis Higher order gravity theories



The Horndeski action [Horndeski 1974, Int. J. Theor. Phys.], [Deffayet et al.]

L = κ1(φ, ρ)δijk
µνσ∇µ∇iφR νσ

jk − 4
3κ1,ρ(φ, ρ)δijk

µνσ∇µ∇iφ∇ν∇jφ∇σ∇kφ

+κ3(φ, ρ)δijk
µνσ∇iφ∇µφR νσ

jk − 4κ3,ρ(φ, ρ)δijk
µνσ∇iφ∇µφ∇ν∇jφ∇σ∇kφ

+F (φ, ρ)δij
µνR µν

ij − 4F (φ, ρ),ρδ
ij
µν∇iφ∇µφ∇ν∇jφ

−3[2F (φ, ρ),φ + ρκ8(φ, ρ)]∇µ∇µφ+ 2κ8(φ, ρ)δij
µν∇iφ∇µφ∇ν∇jφ

+κ9(φ, ρ),

ρ = ∇µφ∇µφ,

where κi (φ, ρ), i = 1, 3, 8, 9 are 4 arbitrary functions of the scalar field φ and
its kinetic term denoted as ρ and

F,ρ = κ1,φ − κ3 − 2ρκ3,ρ

δ
i1...ih
j1...jh = h!δi1

[j1
...δ

ih
jh ]

Field equations are second order in metric gµν and φ and theory is unique
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Cosmological field equations
Consider cosmological background:

1 Assume, ds2 = −dt2 + a2(t)
[

dr2
1−kr2 + r 2(dθ2 + sin2 θ dφ2)

]
, φ = φ(t)

2 Modified Friedmann eq (with some matter source).

H(a, ȧ, φ, φ̇) = −ρm

Third order polynomial in H = ȧ
a with coeffs depending on the Horndeski

functionals. Up to first derivatives present.
3 Scalar eq.

E(a, ȧ, ä, φ, φ̇, φ̈) = 0
φ̈f (φ, φ̇, a, ȧ) + g(φ, φ̇, a, ȧ, ä) = 0

Linear in φ̈ and ä.
Also have 2nd Friedmann equation or usual energy conservation.

C. Charmousis Higher order gravity theories
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Main Assumptions
Vacuum energy does not gravitate.
Assume that ρm = ρΛ, a piecewise discontinuous step function of time t.
Discontinuous points, t = t?, are phase transitions which are point like
and arbitrary in time.

x = time, and y = ρΛ.
Assume that spacetime is flat or a flat portion for all t
H2 + κ

a2 = 0, with κ = 0, or κ = −1 Milne spacetime (a(t) = t)
φ not constant but in principle a function of time t!

C. Charmousis Higher order gravity theories



Introduction-Motivation
Lovelock theory

Solving Lovelock’s equations: black holes and staticity theorems
Applications to 4 dimensional spacetime

The cosmological constant problem : Scalar-tensor and Self-tuning
Horndeski’s theory

The self-tuning filter
Conclusions

Milne spacetime

Milne space-time is the cosmological version of flat space-time,

ds2 = −dt2 +
t2

l2

(
dχ2

1 + χ2 + χ2dΩ2
)

Riemann curvature is everywhere zero and the slicing of space is hyperbolic ie.,
of negative scalar curvature, 1/l2

Hubble is H = 1/t

C. Charmousis Higher order gravity theories
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The self tuning filter
Mathematical regularity imposed by a distributional source

1 We are going to set H2 + κ
a2=0, with ρ(Λ) piecewise discontinuous. Then

2

H(a, φ, φ̇) = −ρΛ

a(t), ȧ and φ(t) are continuous whereas φ̇ is discontinuous at t = t?.
H has to depend on φ̇

3 Scalar eq. on shell is

E(a, φ, φ̇, φ̈) = φ̈f (φ, φ̇, a) + g(φ, φ̇, a) = 0
φ has a δ(t − t?) singularity at t = t?

4 Hence on shell, E has no dependance on φ. φ fixed by Friedmann eq.
5 In the presence of matter cosmology must be non trivial. Hence E must

depend on ä

C. Charmousis Higher order gravity theories
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Fab 4
Putting it all together
from Horndeski s general action,

L = κ1(φ, ρ)δijk
µνσ∇

µ∇iφR νσ
jk −

4
3
κ1,ρ(φ, ρ)δijk

µνσ∇
µ∇iφ∇

ν∇jφ∇
σ∇kφ

+κ3(φ, ρ)δijk
µνσ∇iφ∇

µ
φR νσ

jk − 4κ3,ρ(φ, ρ)δijk
µνσ∇iφ∇

µ
φ∇ν∇jφ∇

σ∇kφ

+F (φ, ρ)δij
µνR µν

ij − 4F (φ, ρ),ρδ
ij
µν∇iφ∇

µ
φ∇ν∇jφ

−3[2F (φ, ρ),φ + ρκ8(φ ρ)]∇µ∇µφ + 2κ8δ
ij
µν∇iφ∇

µ
φ∇ν∇jφ

+κ9(φ, ρ)

Self-tuning filter

Ljohn =
√
−gVjohn(φ)Gµν∇µφ∇νφ

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ

Lgeorge =
√
−gVgeorge(φ)R

Lringo =
√
−gVringo(φ)Ĝ

All are scalar-tensor interaction terms. No kinetic or potential scalar terms
All terms are induced from Lovelock densities via KK reduction.
divergence freedom of curvature tensors keeps order of PDE s down.

C. Charmousis Higher order gravity theories



The double dual tensor

In 4 dimensions we can define a dual of the curvature tensor
by dualising each pair of indices much like the Faraday tensor in EM

∗F ab =
1
2ε

abcd Fcd

Double Dual (∗R∗)

(∗R∗)µνσλ = −1
4ε

ij
µν Rijkl ε

kl
σλ = 1

4δ
ijkl
µνσλ Rijkl

As appearing in the Horndeski action

1 Same index properties as the Riemann tensor
2 But also divergence free:

∇i (∗R∗) i
jkl = 0

3 Simple trace is Einstein
(∗R∗)ik

jk = −G i
j ,
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Paul

Last term is not recognisable,

Lpaul =
√
−gVPaul (φ)

[
Rµναβ∇µφ∇αφ∇ν∇βφ+

+Gµν(∇µφ∇αφ− gµα(∇φ)2)∇α∇νφ
+Rµν(∇µ∇αφ− gµα�φ)∇αφ∇νφ]

???However,

(∗R∗)µναβ = Rµναβ + 2Rν[αgβ]µ − 2Rµ[αgβ]ν + Rgµ[αgβ]ν ,

Therefore

Lpaul =
√
−gVpaul (φ)(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ

Also a higher KK Lovelock density [K V Akoleyen]
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Cosmology equations and self tuning
Friedmann equation reads H = −ρΛ

Hjohn = 3Vjohn(φ)φ̇2
(

H2 +
κ

a2

)
+ 6Vjohn(φ)φ̇2H2

Hpaul = − 9Vpaul (φ)φ̇3H
(

H2 +
κ

a2

)
− 6Vpaul (φ)φ̇3H3

Hgeorge = −6Vgeorge(φ)

[(
H2 +

κ

a2

)
+ Hφ̇

V ′george

Vgeorge

]
Hringo = − 24V ′ringo(φ)φ̇H

(
H2 +

κ

a2

)
First find self tuning vacuum setting H2 + κ

a2 = 0
Algebraic equation with respect to φ̇. Hence φ is a function of time t
with discontinuous first derivatives at t = t∗
Ringo cannot self-tune without a little help from his friends.
Scalar field equation is identically zero for Milne. Non zero for any other
cosmology.
Need

{Vjohn,Vpaul ,Vgeorge ,Vringo} 6= {0, 0, constant, constant}
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A simple self-tuning solution
Consider a slowly varying scalar field for late time behavior:

Milne metric ds2 = −dt2 + t2
(

dχ2

1+χ2 + χ2dΩ2
)

Vjohn = Cj ,Vpaul = Cp ,Vgeorge = Cg + C1
g φ ,Vringo = Cr + C1

r φ−
1
4Cj φ

2

Friedmann equation reads,
cj (φ̇H)2 − cp(φ̇H)3 − c1

g (φ̇H) + ρΛ = 0

with ρΛ = Λ, vacuum cosmological constant. Note that φ̇H appear as
homogeneous powers of time.
Hence since H = 1/t for Milne, taking φ = φ0 + φ1t2 gives
cj (φ1)2 − cp(φ1)3 − c1

g (φ1) + ρΛ = 0 a constant constraint.
Integration constant φ1 is fixed by the cosmological constant for arbitrary
values of the theory potentials. Self tuning.
Rindler metric ds2 = dr 2 − r 2

(
−dT 2 + cosh2(t)dΩ2) with φ = φ0 + φ1r 2

instead.
In Minkowski coordinates same solution reads φ = φ0 + φ1(R2 − T 2).

C. Charmousis Higher order gravity theories
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Fab 4 black hole

Fab 4 theory reads.

LFab4 =
√
−g(Vjohn(φ)Gµν∇µφ∇νφ+(∗R∗)µναβ∇µφ∇αφ∇ν∇βφ+Vgeorge(φ)R+Vringo(φ)Ĝ

All terms are scalar-tensor interaction terms. There are no pure kinetic terms
for the scalar field. This enables the scalar field equation to be redundant for
flat space-time. We would like to be able to find black hole solutions that
self-tune the cosmological constant. In other words solutions to the above with
a cosmological constant where space-time will be asymptotically flat! A bit of
work shows that such a black hole must be radiating.

C. Charmousis Higher order gravity theories
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Conclusions
Modifying Einstein s theory of GR is an interesting but difficult task.
Have presented two well-defined theories of gravity modification:
Lovelock theory and Horndeski theory
Have presented a novel black hole solution of Horndeski theory
constructed from Lovelock theory
We have filtered out the theory with self-tuning properties starting from
Horndeski’s general theory
Theory has enchanting geometrical properties which we need to
understand
Still have 4 free functions which parametrise the theory. These need to be
fixed by cosmology, stability and local constraints.

Many questions unanswered:
1 What is the Fab 4 cosmology? In other words for which of the potentials

do we get usual Hot Big Bang cosmology?
2 What does perturbation theory around a self-tuning vacuum give?
3 Black hole solutions of such theories could really help. Also self tuning in

different backgrounds.
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Cosmology equations and self tuning
Scalar equation, Eφ = Ejohn + Epaul + Egeorge + Eringo = 0

Ejohn = 6 d
dt
[
a3Vjohn(φ)φ̇∆2

]
− 3a3V ′john(φ)φ̇2∆2

Epaul = −9 d
dt
[
a3Vpaul (φ)φ̇2H∆2

]
+ 3a3V ′paul (φ)φ̇3H∆2

Egeorge = −6 d
dt
[
a3V ′george(φ)∆1

]
+ 6a3V ′′george(φ)φ̇∆1 + 6a3V ′george(φ)∆2

1

Eringo = −24V ′ringo(φ)
d
dt

[
a3
(
κ

a2 ∆1 +
1
3∆3

)]
where

∆n = Hn −
(√
−κ
a

)n

which vanishes on shell as it should
For non trivial cosmology need

{Vjohn,Vpaul ,Vgeorge ,Vringo} 6= {0, 0, constant, constant}C. Charmousis Higher order gravity theories
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