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General Relativity

GR is based on two important principles:
@ Mach’s principle The presence of matter curves the geometry of spacetime

@ Equivalence principle Locally a free-falling observer and an inertial
observer are indistinguishable
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Why we should modify GR

) In 4 dimensions, consider
L=L(M,g,Vg,VVg). Then Lovelock’s theorem in D = 4 states that
GR with cosmological constant is the unique metric theory emerging from,

So= [ v/ =g@IR-2n
M

giving,
o Equations of motion of 2"d-order
e given by a symmetric two-tensor, G, + Ag..
e and admitting Bianchi identities.

Under these hypotheses GR is the unique massless-tensorial 4 dimensional
theory of gravity!

(s
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Introduction-Motivation

GR, theoretical and experimental status
Cosmol al constant?
Sign of new physics?

Experimental and observational data in weak gravity

°
-Excellent agreement with solar system tests
-Strong gravity tests on binary pulsars
-Laboratory tests of Newton's law (tests on extra dimensions)

Time delay of light & Planetary tajectories
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For strong gravity

General Relativity is very well tested for strong
gravity-Hulse-Taylor pulsar

Cumulctive shift of periastron tme (s)
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Orbital decay of the
Hulse-Taylor binary pulsar
[Taylor&Weisberg04].



Introduction-Motivation

ical and experimental status
| constant?

What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gy =81GT,,
cosmological and astrophysical observations dictate the matter content of

74 % DARK ENERGY. 22% DARK MATTER

J 3.6% INTERGALACTIC GAS
0.4% STARS, ETC.

the Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope
to see more at LHC. But even then...

If we assume only ordinary sources of matter (DM included) there
is disagreement between local. astrophysical and cosmological data.
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Introduction-Motivation

GR, theoretical and experimental status
Cosmological constant?
Sign of new physics?

Universe is accelerating — Enter the cosmological constant

Easiest way out: Assume a tiny cosmological constant py = 22 = (10 >eV/)*,
ie modify Einstein's equation by,

Gy,u + /\obsgpu = 87rGTy,V

@ Cosmological constant introduces v/A and generates a cosmological
horizon

V/A is as tiny as the inverse size of the Universe today, o = H,*

In fact had we used planetary trajectories ,SchdS rather than Sch, we
would get, Ajpcar < 10 Agps

@ Note that Solar syst'em scales ~ 10 élu — 10714
Cosmological Scales H,

@ Typical mass scale for neutrinos... In fact A for GR is a bit like m; and l;’\
mg in Newtonnian theory...
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Introduction-Motivation

<perimental status

Sign of new physics?

Maybe . is a cosmological constant.

What if the need for exotic matter or cosmological constant is the sign for

novel gravitational physics at very low energy scales or large distances.
PERIHELION OF MERCURY

Perihelion ¥/

moves around —r -
the sun /

574 per 100 years ana 43 are sus o tne reatvsic stect ~Same situation at the advent of GR.
-Even then a next order correction with one additional parameter was enough
to save Newton's laws (at the experimental precision of the time..)
-Just like successes of GR are not only the advance of Mercury’s perihelion,
modification of gravity cannot only be "an explanation" of the cosmological l >
constant. .\3’
-Furthermore, modifying GR is similar to opening Pandora s box...
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Introduction-Motivation

GR, theoretical and experimental status
Cosmological constant?
Sign of new physics?

Modified gravity theories

@ Extra dimensions : Extension of GR to Lovelock theory with
modified yet second order field equations. Braneworlds,
Kaluza-Klein compactfication

@ 4-dimensional modification of GR: Scalar-tensor theories,
Einstein-Aether, Hofava gravity, Galileon/Hornedski.

@ Massive gravity, decoupling limit of DGP

@ Theories modifying geometry: torsion, choice of geometric
connection

10
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Lovelock theory

Geometric origin

© Lovelock theory
@ Geometric origin

C. Charmousis Higher order gravity theories



Lovelock theory

Geometric origin

A metric gravity modification: Lovelock theory

@ In 4 dimensions, consider £ = £(M, g, V,V?). GR with cosmological
constant A is the unique metric theory emerging from,

So= [ v/ g@IR-2n
M

depending on a,
e symmetric two-tensor, G, + Agu,+aH,,
e giving Equations of motion as 2"9-order metric PDE’ s
e and Bianchi identities.

with Hag = #4B G — 2RRag + 4RacRG + 4RcpRG Y — 2Racpe RLCPE
@ In d > 4 consider £ = L(M, g, V,V?). The above action is no longer
unique. The unique, d-dimensional theory with the same properties is due
to [Lovelock71’] and its d = 5, 6-dimensional version includes the 2nd order l >
5

term,

6 0 D A o
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Lovelock theory

Geometric origin

Lovelock theory basics

As a result Lovelock theory is the classical extension of GR in higher
dimensions. It is one of the rare well defined modifications of gravity
@ Term G = RagcpR*BP — 4RAsR"E + R? has dimensionful coupling
with dimension /2
@ Some 4 dimensional black hole “theorems” still valid.
@ Relation to 4 dimensional higher order scalar-tensor Hordenski theory via
Kaluza-Klein compactification
@ Well defined perturbation operator and stable vacua
@ Generalised junction conditions ([cc and zegers]) and applications to
braneworlds (codimension 2 braneworld cosmology ([cc, kofinas,
Papazoglou] ) ).
@ EOM deeply complex for lesser spacetime symmetry. No extension of
Kerr, black string, any Weyl metric etc. l D)
@ Perturbative relation to string theory leading o’ correction to certain 3’
string theory effective actions; taking into account, the finite length of
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Lovelock densities and their geometric origin

@ Gauss working on surface theory noted that scalar curvature only
depended on the first fundamental form. Theorema Egregium

@ In d = 2, manifolds are topologically classified by their Euler number x:
xM]=2-2h
@ This number is related to curvature via the Gauss-Bonnet theorem

@ For each even dimensional manifold, d = 2n an analogue theorem relating
this topological number to curvature is due to Chern.

(Y (= oV .
— () e
=2, ¥=0, =2 ..
d=2 d=4

XMo] =& [ R | xIMal = 34 [, 6

@ These are topological invariants in d = 2n.

@ Dimensionally extending these scalar densities we obtain just the right
densities whose variation leads to second order field equations.

P IR T R D T T T T T T T



Solving Lovelock's equations: black holes and staticity theorems

© Solving Lovelock's equations: black holes and staticity theorems
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Solving Lovelock's equations: black holes and staticity theorems

Staticity theorems in GR

Einstein's theory for d=4

The spherically symmetric solutions of Einstein's field equations in the vacuum
are locally static. In the presence of a cosmological constant the horizon metric
is a constant curvature space.

— a generalised version of Birkhoff's theorem with cosmological constant.

Black hole solution:
dr?
Vv (r)

homogeneous space

ds® = -V (r)de®* + + r2k£4y) (x) dx"dx”

. . . ) _ 5,
with horizon sections k., = 7o, X}LXV
and lapse function, V =k — %r

In adS space-time we can have black holes with planar or hyperbolic topology.

72m

Einstein's theory for d > 4

In d > 4 any Ricci flat (Einstein) space horizon is admissible [cibbonst Hartno11].
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Solving Lovelock's equations: black holes and staticity theorems

Horizon degeneracy in higher dimensions?

@ What of this horizon degeneracy in Lovelock’s theory? Are
these degenerate solutions valid due to the fact that we are
generalizing GR only by name?

@ To answer this question we assume an arbitrary 4 dimensional
internal space (#, h,,) for d = 6 dimensional spacetime.

@ Are arbitrary Einstein spaces allowed as horizon sections of
LOVG|OCk b|aCk hO|eS [Gleiser and Dotti], [Bogdanos et.al.]?

e
5
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An integrabilility condition

@ Assume an arbitrary 4 dimensional internal space (H, h,.) for d =6
dimensional spacetime.

@ Consider a time and space dependent warped Anzatz
@ Go to light cone coordinates
ds® = — 2B (u,v)"/*dudv + B (u, v)l/2 ) (x)dx"dx”
Insert into Lovelock egs in 6 dims (GR limit for o = 0),
Eas = Gap + Ngag + aHag =0,
Hapg = gAB G — 2RRag + 4RacRG + 4RcpR% '3 — 2RacpeRe ™"

The uu- and vv-equations

Eu = [1—!—& (Bfl/ZR(A)_F 26721/

875/4/3#3#)} (2vuBy— B.uw) =0,

& = [1 . (B*”R(“) n ge*“B*/“B,uB,Vﬂ (2v.,B., — B.y) = 0.

They allow to classify the solutions:
@ Class-I Pure GB solutions
@ Class-1l Black hole GR like solutions

( D[Boulware&Deser85,CC&Dufaux02,Dotti&Gleiser05) ) 5

e Class-1l1 (B(u,v):const, D[Dadhich&MaedaOG]), Kaluza-Klein metrics



Class-Il solutions : Constant curvature

For hﬁj‘) = k,(ﬁ} = ﬁ, a constant curvature space (sphere, plane,
7 Opv
hyperboloid), we have a black hole solution,
2 2 dr? 2, (4) wyov
ds* = -V (r)dt" + m + riky, (x) dx"dx

with lapse function,

r 12 aM
V(r) = — |1 1+ —alN+24—
(r)=r+ 12c * * 5 ¢ + i

with £ = 0, £1 the horizon curvature and M related to mass (Boulware and

Deser, Cai)
@ For small « and large r we pick up the GR static black hole with
cosmological constant for the "-" branch.

@ Similar black hole solutions to GR with a possible additional branch
singularity where the square root hits zero.

@ Setting the mass parameter M = 0 gives us the vacua of the theory.

r? 12

@ « couples to the cosmological constant and shifts its value. There are two
branches, a GR branch and a pure GB branch with no GR limit.



Class Il solutions: Gleiser&Dotti condition

When however the horizon metric, hgy) is arbitrary,

dr?

ds® = -V (r)dt® + Vo)

+ P A (x) dx*dx”

solving the field equation we find:

RO P2 \/ 12 a? (R —6G®) oM
Vi) = L Y Y Wi Gl Al A, ViS L)
(=T *1a T e 2z s

@ where R(4), R® _ 6Q(4) are constant horizon quantities

@ and hffg is an Einstein space.

@ Therefore, the horizon is an Einstein space (R*) = {5) with constant and
positive Weyl square (CM"* Cyp1p = 406, (Gleiser-Dotti condition)).

2 2
V(r) =K+ — (1\/1+12a/\24a?+24ay>
r r

12« 5

@ Example: H = 5% x §%: ds? = p? (d()f + sin® 01d¢? + d63 + sin? 02d¢§).

— 1 — 4
k=372 9= 32



Solving Lovelock's equations: black holes and staticity theorems

Example: $2XS? horizon black hole

The lapse function is

2
V(r) =k + — 1—\/+/\ 24ﬁ+24—

12c
@ For the horizon geometry we have k = #, e = 3;% where p is the
sphere radius.
° is an integration constant related to the mass of the solution, © stems

from the non-zero Weyl curvature of the horizon. For GR only « appears.
@ Since k # 1/p® we have a solid angle deficit. Similar to the asymptotics
of a global monopole.
@ For M =0, and a = 0 the solution is singular at r = 0.
The GR solution is singular. But, for a # 0 even the solution without
mass can have a horizon formed due to the geometrical term © [Bogdanos et l

al.].
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Applications to 4 dimensional spacetime e . .
PP P -Klein reduction and scalar-tensor theories

A galileon black hole

0 Applications to 4 dimensional spacetime
@ Braneworlds
@ Kaluza-Klein reduction and scalar-tensor theories
@ A galileon black hole
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Braneworlds
K a-Klein reduction and scalar-tensor theories
< hole

Applications to 4 dimensional spacetime

Braneworld

Central idea

Matter lives on a distributional brane
gravity lives in a higher dimensional space-time
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Braneworlds
Kaluza-Klein reduction and scalar-tensor theories
A galileon black hole

Applications to 4 dimensional spacetime

Codimension 2 braneworld

Codimension 2

Analogue of a 2 dimensional cosmic string living in 4 dimensions

A1

Al

g dimens oy

ds® = —dt® + dz® + dp® + p>52d6? with tension related )
to conical deficit 8w G4 T = —27(1 — ) 3’

@ In GR only a pure tension distributional brane can be described

M.,Hn/
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Braneworlds
Kaluza-Klein reduction and scalar-tensor theories
A galileon black hole

Applications to 4 dimensional spacetime

Matching conditions in Lovelock theory

Codimension 2

Higher order terms in Lovelock theory render possible the description of a
cosmological braneworld of codimension 2

@ Junction conditions read, 8w Ge T, = 27(1 — ﬁ)[—k‘(fu) + 2 (Guv + W)
where

® WY =K,K{ — KK + 16/ (K> — K., K*”) brane bending terms and G,.,
is the induced brane Einstein tensor [Bostock et al., CC and Zegers].

@ Hence (in principle) we can now consider a perfect fluid induced matter

tensor

@ Notice that GR 4 dimensional behavior is provided by the GB term of the
bulk.

@ The deficit angle is now a function of time. § = 3(t) in accord with the [)?
space-time symmetries T

Higher order gravity theories
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Braneworlds
Kaluza-Klein reduction and scalar-tensor theories
A galileon black hole

Applications to 4 dimensional spacetime

Codimension 2 brane cosmology

Codimension 2 cosmology

Solve at brane location matching conditions and EOM [cc,Papazoglougkotinas]

for distributional perfect fluid matter.

@ We have geometric acceleration due to EH term of the bulk

@ Effectively we have a scalar tensor theory with 8 scalar dof. Time varying

Ga)

@ Generically energy is not conserved.
_B_
B(1-p)
The conical deficit angle is a free function of time 8 = 3(t) that has to

be fixed by the bulk solution at infinity. In other words "dark radiation" o
constant of codimension 1 is now promoted to a free function. 3’

ﬁ+3H(p+P)+ p=0

@ For codimension 1 we were helped by Birkhoff's theorem here this is no |
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Braneworlds
Kaluza-Klein reduction and scalar-tensor theories
A galileon black hole

Applications to 4 dimensional spacetime

Codimension 2 brane cosmology

Codimension 2 cosmology

Solve locally at brane location matching conditions and EOM

@ We have geometric acceleration due to EH term of the bulk

@ We find FRW cosmology supplemented by an extra fluid (from brane
bending terms)

@ Example: Setting zero brane tension and admitting constant 8 we have

K 1 k2 c?

H2y &~ - = 4 "6 -
+ a2 2 + 3a(l —B) p(t) + 22(1=3w)
3 1 c? (14 3w)kd
2= "2 T Ga(i- ) ")

@ Ordinary perfect fluid yields a two-component perfect fluid. For example [)?
w = 1/3 yields cosmological constant, or w = 0 yields curvature.
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What effect has Lovelock theory to 4 dim gravity?

Scalar tensor theories: galileon symmetry

@ Start with 5 or 6 dimensional Lovelock theory.
/d4x d"Xv=g [R+ al]

@ Consider a toroidal compactification
ds® = gﬁ)(x)dxadxb—i-e“b(x)/NéABdXAdXB

Small Manifold of extra dimensions.

Space (Large Dimension)

@ Question: What does Kaluza-Klein reduction of Lovelock theory give?
@ Higher order scalar-tensor-(EM) theory [Madore, Mueller-Hoysen, Horndeski,
Kerner, Binetruy et al.]
For explicit calculation see [s ¢ pavis], and for full blast see [ v Acoleyen et
al.]

@ Field equations are of second order! Covariant galileon terms [k v acoleyen

e <1



Kaluza-Klein reduction

Start from Einstein — Lovelock theory in vacuum [cc, Gouteraux and Kiritsis]

Statny = / d**"x/—gtn [R = 2A + ] ,G = RascoR*®° —4Ras R+ R?

Consider a simple metric Anzatz and show it is a consistent truncation (see eg.

[Kanitscheider and Skenderis]),
dsfar) = dFp4) + *dKG

Compactify on some curved n dimensional constant curvature manifold K.

Sgall/eon —/dp+1X \/ — ez¢ { — 2N+ (Yg 9 = (n - 1)8¢2 - é\”"(n - 1)C/Wau¢au¢

_ %n(n —1)(n - 2)8¢°0 + %n(n —1)(n—2) (9¢°)°
+e R [14aR + &4(n — 2)(n — 3)9¢%] + aGe >},

-} quantities are related to compactified K geometry and are
constants. They yield 4 dim potentials.

@ Barred quantities are 4 dimensional. Notice that Lovelock densities
interact with the scalar field.

@ Coefficient n is extended to the real line.



Take Lovelock black hole with m 2-spheres H = S\3 XS\?) xS\,
Compactify on m — 1 of these keeping one $@ in 4 dims.

We obtain,
o ,  dR? R |
R? 2G62K2 48, m
V(R) = — |1 1-—
(R) 'Ha,[jF\/ (hn—DRrR* "R |
& = 2an(n+1), k=1
om - R’
n+1’
@ Taking n — 0 gives us Schwarzchild.

Taking &, — 0 gives Einstein Dilaton solution [chan Horne and Mann)

Solution has solid deficit angle. Solution is similar to the external field of
the gravitational monopole.

Solution for zero mass is therefore singular and has non-trivial topology
discinguishing it from GR.

For large R and smaII &, we have

V(R) ~1+ (n— 1)R2 - RznT1 + .

Higher order terms give rise to an extra horizon, a bit like in RN geometry.
For m =0 and 0 < n < 1 we hide the singularity at R =0

Higher order term cloaks an otherwise naked singularity



Weinberg's no-go theorem and the CC problem

The cosmological constant problem : Scalar-tensor and Self-tuning

© The cosmological constant problem : Scalar-tensor and
Self-tuning
@ Weinberg's no-go theorem and the CC problem /)"
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Weinberg's no-go theorem and the CC problem

The cosmological constant problem : Scalar-tensor and Self-tuning

Universe is accelerating — Enter the cosmological constant

Easiest way out: Assume a tiny cosmological constant py = Q;bé = (107%eV)*,
ie modify Einstein's equation by,

Gp,l/ oty /\obsgﬂu = SﬂGTHV

@ Cosmological constant introduces v/A and generates a cosmological
horizon

@ /Ais as tiny as the inverse size of the Universe today, rp = H,*

@ In fact had we used planetary trajectories ,SchdS rather than Sch, we

would get, Ajpcar < 1011/\01,5

@ Note that Solar syst'em scales ~ 10 elu — 10—14
Cosmological Scales H,

@ Typical mass scale for neutrinos... In fact A for GR is a bit like m; and
mg in Newtonnian theory... l)’\

@ But things get worse... -\

] Theoretically, the size of the Universe would not even include the island of Naxos!
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Weinberg's no-go theorem and the CC problem

The cosmological constant problem : Scalar-tensor and Self-tuning

Cosmological constant problem, [S Weinberg Rev. Mod. Phys. 1989]

Cosmological constant behaves as vacuum energy which according to the
strong equivalence principle gravitates,

@ Vacuum energy fluctuations are at the UV cutoff of the QFT
Avac /870G ~ mpy...

@ Vacuum potential energy from spontaneous symmetry breaking
Aew ~ (200GeV)*

@ Bare gravitational cosmological constant

S e iitif

Enormous Fine-tuning inbetween theoretical and observational value

@ Why such a discrepancy between theory and observation? Weinberg

no-go theorem blg CC A’\

@ Why is Aops so small and not exactly zero? small cc -\
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The cosmological constant problem : Scalar-tensor and Self-tuning Wb oo diseram and die CC Richlely

The Big CC problem

@ Assume an effective, conserved and covariant 4 dimensional theory
Consider gravity action including all contributions of cosmological
constant in the scalar potential term,

S[r1y ey TN, Guv] = /d4X\/—gR + L(m1,y .oy TN, Guv, OT) + Matter

If g = 1w, ™ = constant. Then A = 0 (Weinberg no-go)

@ It is impossible to find trivial solutions to Einstein’s field equations (flat
spacetime) without fine tuning the cosmological constant to zero.

@ Any dynamical solution will fine tune the parameters of my theory in the
action.

10
Clearly to have any chance here we must go beyond GR and break symmetries... ‘\3’
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The cosmological constant problem : Scalar-tensor and Self-tuning Wb oo diseram and die CC Richlely

Self-Tuning: general idea

Weinberg's no go theorem tells us that in GR we cannot have a Poincare
invariant vacuum with A # 0

Question: What if we break Poincare invariance but, at the level of the scalar
field?

Keep gu. = nuv locally but allow for ¢ # constant.

Can we have a portion of flat spacetime whatever the value of the cosmological
constant and without fine-tuning any of the parameters of the theory?

Toy model theory of self-adjusting scalar field.

@ Solving this problem classically means that vacuum energy does not
gravitate and we break SEP not EEP.

@ Beyond leading order O(A*), radiative corrections O(A®/Mp) may spoil

self-tuning.
We need:
. 10
@ A cosmological background 3’

@ A sufficiently general theory to work with
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Horndeski's theory

@ Horndeski's theory



Horndeski's theory

A general scalar tensor theory

@ Consider ¢ and g, as gravitational DoF.

@ Consider £ = [,(gm,,g,w,,-l, ey Buvsiy...ips qb, qb,,-l, 5009 ¢),,'1”_,'q)
with p, g > 2 but finite

@ L has higher than second derivatives

Similar to Lovelock’s theorem but for the presence of higher derivatives in L.

Here second order field equations in principle protect vacua from ghost l

. . D
instabilities. _\,
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The HorndeSkl aCtlon [Horndeski 1974, Int. J. Theor. Phys.], [Deffayet et al.]

L = k(4 p)0ie V*VigRy V7 — gm,p(@,p)éz&gwww%wwm
+r3(0, P)Obe VidV SRy 7 — 4k (0, p)3le VigVH$V V¢V Vi
+F (¢, p)3 Ry M — 4F(,p) 00, VigV ¢V V0
—3[2F (¢, p). + prs(6, p)IVu V¥ b + 2r5($, p)0h, VipV* SV V6
+ro(, p),

p = V.eV*s,

where xi(¢, p), i = 1,3,8,9 are 4 arbitrary functions of the scalar field ¢ and
its kinetic term denoted as p and

Fp = K1, — K3 — 2/)/“73./)

Field equations are second order in metric g, and ¢ and theory is unique




Horndeski's theory

Cosmological field equations

Consider cosmological background:

@ Assume, ds> = —dt® + a°(t) o 4 r’(d6* +sin® 0 d¢?) |, ¢ = ¢(t)

1—kr2

@ Modified Friedmann eq (with some matter source).

H(a7 é? ¢7 ¢) = —Pm

Third order polynomial in H = g with coeffs depending on the Horndeski
functionals. Up to first derivatives present.

@ Scalar eq.
£(a,3,3,¢,,0) =0
(6, 6,2,8) + g(¢,6,2,8,3) = 0 o
Linear in ng and a. 3’
Also have 2nd Friedmann equation or usual energy conservation. |

C. Charmousis Higher order gravity theories



The self-tuning filter
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The self-tuning filter

Main Assumptions

@ Vacuum energy does not gravitate.

@ Assume that p, = pa, a step function of time t.
Discontinuous points, t = t,, are phase transitions which are point like
and arbitrary in time.

°
x = time, and y = pa.
@ Assume that spacetime is flat or a flat portion for all t l ~
o H*+ % =0, with K =0, or & = —1 Milne spacetime (a(t) = t) 3’

@ ¢ not constant but in principle a function of time t!

C. Charmousis Higher order gravity theories



The self-tuning filter

Milne spacetime

Milne space-time is the cosmological version of flat space-time,

2 2
ds? = —di? + = ( X, x2d§22>

2\ 14 x2

Riemann curvature is everywhere zero and the slicing of space is hyperbolic ie.,
of negative scalar curvature, 1//?

Hubble is H =1/t

19
5
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The self-tuning filter

The self tuning filter

Mathematical regularity imposed by a distributional source

@ We are going to set H? + %5=0, with p(A) piecewise discontinuous. Then

o .
H(a, ¢» ¢) = —PA

a(t), a and §(t) are continuous whereas  is discontinuous at t = t,.
H has to depend on ¢

© Scalar eq. on shell is

£(a,0,6,9) = ¢f(¢, ¢, a) +g(¢,$,a) =0
¢ has a §(t — t,) singularity at t = t.
@ Hence on shell, £ has no dependance on ¢. ¢ fixed by Friedmann eq.

/

@ In the presence of matter cosmology must be non trivial. Hence & must 1}’\
depend on a
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The self-tuning filter

Fab 4

Putting it all together
from Horndeski s general action,

4 "
7 n <ijk . 2 L
£ = ri(dp)6  VHViGR, VT — EHL,,(.,«)_,»)(,W VHV VY V6V Vo

Hro

+r3(e, p) Wﬂv PVH IRy V7 —ar3 (9, ,,)awav,-¢7v“qbv”vjq‘;v"vk(f)

+F($, p)8T R. MY —4aF(¢,p) 60

TR, VipVH eV Vb

pnv

—3[2F($, p) ¢ + pre(é PV VH ¢ +2k560  VigVH eV V¢

pv

+ro(®, p)

Self-tuning filter

Liohn = /—8Viorn(9)G*"'V .6V ¢

Lpau V=8 Vipaul(9) (xR*)"*°V 1V 0 V., V 5
Loeoge = V—8Vieorge(®)R

Lingo = /—8Viingo(6)G
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The double dual tensor

@ In 4 dimensions we can define a dual of the curvature tensor
by dualising each pair of indices much like the Faraday tensor in EM

1 aba
+F* = Se ! Fea

@ Double Dual (*Rx)

1 y
_ ij kI __ 1 gijkl
(*R*)pvor = —2&w Rijia €55 = 30, Riu

As appearing in the Horndeski action

@ Same index properties as the Riemann tensor

@ But also divergence free:

V,—(*R*)J-k, i =0

© Simple trace is Einstein ‘ A
(+Re) 5 = G},



The self-tuning filter

@ Last term is not recognisable,
°

Epau/ = vV —8 VPaul(¢) [R”VQBVH¢VDC¢VVV5¢+

G (V1 dpVad — 8ua(VE))VV, 6
+R™(VuVad — £ualp) V¢V, ¢]

@ ?7??However,
(xRx)ives — Ruved 4 opvlaghln _ gpulaghly | panla g8l

@ Therefore

Losst = V& Viau(8) (<R 0V u6V 0V, V36 9
@ Also a higher KK Lovelock density [x v axoleyen] -\
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The self-tuning filter

Cosmology equations and self tuning

@ Friedmann equation reads H = —pa
o
Hion = 3Viown(@)5" (H* + 25 ) + 6Viom(8)9H
Hpau/ = - 9Vp3u1(¢>)q'53H (H2 + g) - 6Vpau/(¢)d>3H3
2 K ] Vg/eorge
ngorge = —6 Vgeorge(qb) (H + 7) + qui
a Vgeorge
/ i 2 K
Hringo = —24 ringo(¢)¢H (H + ?)
@ First find self tuning vacuum setting H? + =0
@ Algebraic equation with respect to ¢. Hence ¢ is a function of time t l S
with discontinuous first derivatives at t = t. 3’

@ Ringo cannot self-tune without a little help from his friends. |
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The self-tuning filter

A simple self-tuning solution

Consider a slowly varying scalar field for late time behavior:

@ Milne metric ds® = —dt? + t2 <1ixx22 + X2d92)

1
Vjohn = q: Vpaul = Cp7 Vgeorge = Cg iy C; ¢7 vringo =C + Crl Qb - Zq¢2

@ Friedmann equation reads,
G(9H)? = co(@H)’ = cg(¢H) + pn =0
with ppo = A, vacuum cosmological constant. Note that <j.>H appear as
homogeneous powers of time.
@ Hence since H = 1/t for Milne, taking ¢ = ¢o + ¢1t° gives
ci(¢1)? — cp(¢1)® — ca(#1) + pa = 0 a constant constraint.
@ Integration constant ¢ is fixed by the cosmological constant for arbitrary l)?

L

values of the theory potentials. Self tuning. B
@ Rindler metric ds? = dr®> — r? (—dT? 4 cosh?(t)dQ?) with ¢ = ¢o + ¢1r°
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The self-tuning filter

Fab 4 black hole

Fab 4 theory reads.
Lrats = V/=8(Viohn($) G* V u$V p+-(xR¥)* PV , ¢V 0 V., V s ¢+ Vigeorge (¢) R+ Viingo!

All terms are scalar-tensor interaction terms. There are no pure kinetic terms
for the scalar field. This enables the scalar field equation to be redundant for
flat space-time. We would like to be able to find black hole solutions that
self-tune the cosmological constant. In other words solutions to the above with
a cosmological constant where space-time will be asymptotically flat! A bit of

work shows that such a black hole must be radiating.

10
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Conclusions

Conclusions

@ Modifying Einstein s theory of GR is an interesting but difficult task.

@ Have presented two well-defined theories of gravity modification:
Lovelock theory and Horndeski theory

@ Have presented a novel black hole solution of Horndeski theory
constructed from Lovelock theory

@ We have filtered out the theory with self-tuning properties starting from
Horndeski's general theory

@ Theory has enchanting geometrical properties which we need to
understand

@ Still have 4 free functions which parametrise the theory. These need to be
fixed by cosmology, stability and local constraints.

Many questions unanswered:

D)
@ What is the Fab 4 cosmology? In other words for which of the potentials l>’
do we get usual Hot Big Bang cosmology? ju
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Cosmology equations and self tuning

@ Scalar equation, E¢ = Ejohn iy Epaul ol Egsorge + Eringo =0

o
d ] .
Ejonn = 6 [2* Viom(9)$2] — 32 Vionn(6)6° 22
d . .
Epaul = 79& [33 Vpaul(¢)¢2HA2] + 333 Vp/au/(¢)¢3HA2
d .
Egeorge = _65 |:a3 Vgleorge(d))Al] + 633 Vé;orge(¢)¢A1 + 633 Vg/eorge((z))Ai
A ’ d 3 (i 1 )}
Erlngo = 24 nngo(¢) dt |:a 32 Al =+ 3A3
@ where .,
A, = H" — (M)
a l S
@ which vanishes on shell as it should -\3’

@ For non trivial cosmology need
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