Cosmology of multiscale spacetimes based on arXiv:1307.6382

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

September 26th, 2013

- E - - E Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

01/27- Dimensional flow in quantum gravity

Dimensional reduction or Dimensional flow

Changing behaviour of correlation functions, spacetime with scale-dependent "dimension" $(d_{\rm H}, d_{\rm S})$.

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

01/27- Dimensional flow in quantum gravity

Dimensional reduction or Dimensional flow

Changing behaviour of correlation functions, spacetime with scale-dependent "dimension" ($d_{\rm H}$, $d_{\rm S}$). "Universal" feature in quantum gravity related to UV finiteness ['t Hooft 1993; Carlip 2009,2010; G.C. 2010].

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

01/27- Dimensional flow in quantum gravity

Dimensional reduction or Dimensional flow

Changing behaviour of correlation functions, spacetime with scale-dependent "dimension" ($d_{\rm H}$, $d_{\rm S}$). "Universal" feature in quantum gravity related to UV finiteness ['t Hooft 1993; Carlip 2009,2010; G.C. 2010].

Noncommutative geometry [Connes 2006; Benedetti 2008; Alesci & Arzano 2012];
 CDT [Ambjørn, Jurkiewicz & Loll 2005; Benedetti & Henson 2009];
 Spin foams [Modesto (et al.) 2008–10];
 AS [Lauscher & Reuter 2005; Reuter & Saueressig 2011; G.C. et al. 2013];
 HL gravity [Hořava 2008,2009].

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

02/27- Field theory on multiscale spacetimes

 Formalism describing this and other features of QG theories with an alternative toolbox from multifractal geometry, transport and probability theory, complex systems. (Exceptions in ordinary HEP are the rule.)

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

02/27- Field theory on multiscale spacetimes

- Formalism describing this and other features of QG theories with an alternative toolbox from multifractal geometry, transport and probability theory, complex systems. (Exceptions in ordinary HEP are the rule.)
- Main idea and overviews: G.C., Phys. Rev. Lett. 2010 [arXiv:0912.3142]; G.C., Phys. Rev. D 2011 [arXiv:1106.0295]; G.C., AIP Conf. Proc. 2012 [arXiv:1209.1110].

Gianluca Calcagni

02/27- Field theory on multiscale spacetimes

- Formalism describing this and other features of QG theories with an alternative toolbox from multifractal geometry, transport and probability theory, complex systems. (Exceptions in ordinary HEP are the rule.)
- Main idea and overviews: G.C., Phys. Rev. Lett. 2010 [arXiv:0912.3142]; G.C., Phys. Rev. D 2011 [arXiv:1106.0295]; G.C., AIP Conf. Proc. 2012 [arXiv:1209.1110].
- Various works in 2009-2013 (also with M. Arzano, A. Eichhorn, J. Magueijo, G. Nardelli, D. Oriti, D. Rogríguez, F. Saueressig, M. Scalisi).

Gianluca Calcagni

03/27– In a nutshell

• Replace $d^D x \to d^D x v(x)$ in integrals (action, etc.) where v(x) is a fixed coordinate profile dictated by multifractal geometry.

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

03/27– In a nutshell

- Replace $d^D x \to d^D x v(x)$ in integrals (action, etc.) where v(x) is a fixed coordinate profile dictated by multifractal geometry.
- ② Modify the differential structure by changing ∂ operators according to the symmetries imposed on the system.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

03/27- In a nutshell

- Replace $d^D x \to d^D x v(x)$ in integrals (action, etc.) where v(x) is a fixed coordinate profile dictated by multifractal geometry.
- ② Modify the differential structure by changing ∂ operators according to the symmetries imposed on the system.
- Work out dynamics with usual variational principle and techniques.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

03/27– In a nutshell

- Replace $d^D x \to d^D x v(x)$ in integrals (action, etc.) where v(x) is a fixed coordinate profile dictated by multifractal geometry.
- ② Modify the differential structure by changing ∂ operators according to the symmetries imposed on the system.
- Work out dynamics with usual variational principle and techniques.
- Oiffers from ST theories (v is not a Lorentzian scalar field) and unimodular gravity (metric structure is fully dynamical).

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Introduction

04/27- Measures

• Embedding space or M^D .

★ 문 → ★ 문 →

Gianluca Calcagni

Cosmology of multiscale spacetimes

Instituto de Estructura de la Materia (IEM) - CSIC

04/27– Measures

- Embedding space or M^D .
- Action measure $d\varrho(x) = d^D x v(x) = d^D q(x)$. General factorizable measures:

$$v(\ell_n, x) = \prod_{\mu=0}^{D-1} v_\mu(\ell_n, x^\mu), \qquad v_\mu(\ell_n, x^\mu) \ge 0.$$

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

5/27- Example 1: Fractional measure

Represents random fractals.

$$\mathsf{d}\varrho_{\alpha}(x) = \mathsf{d}^{D}x \, v_{\alpha}(x) = \mathsf{d}^{D}x \, \prod_{\mu} \frac{|x^{\mu}|^{\alpha - 1}}{\Gamma(\alpha)}$$

Instituto de Estructura de la Materia (IEM) - CSIC

Image: A matrix

Gianluca Calcagni

5/27- Example 1: Fractional measure

Represents random fractals.

$$\mathsf{d}_{\varrho_{\alpha}}(x) = \mathsf{d}^{D}x \, v_{\alpha}(x) = \mathsf{d}^{D}x \, \prod_{\mu} \frac{|x^{\mu}|^{\alpha - 1}}{\Gamma(\alpha)}$$

"Geometric" coordinates:

$$q^{\mu} := \varrho_{\alpha}(x^{\mu}) = \frac{\operatorname{sgn}(x^{\mu})|x^{\mu}|^{\alpha}}{\Gamma(\alpha+1)} \qquad \Rightarrow \qquad \mathsf{d}\varrho_{\alpha} = \mathsf{d}^{D}q$$

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

D6/27- Example 1: Hausdorff dimension

Scaling property:

$$\varrho_{\alpha}(\lambda x) = \lambda^{D\alpha} \varrho_{\alpha}(x) \qquad \Rightarrow \qquad d_{\mathrm{H}} = D\alpha$$

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

D6/27- Example 1: Hausdorff dimension

Scaling property:

$$\varrho_{\alpha}(\lambda x) = \lambda^{D\alpha} \varrho_{\alpha}(x) \qquad \Rightarrow \qquad d_{\mathrm{H}} = D\alpha$$

Same result obtained via self-similarity theorem or via operational definition as the scaling of the volume of a *D*-ball of radius *R*: $\mathcal{V}^{(D)}(R) = \int_{D\text{-ball}} \mathsf{d}\varrho_{\alpha}(x) \propto R^{D\alpha}$.

Gianluca Calcagni

★ 문 ⊁ ★ 문 Instituto de Estructura de la Materia (IEM) – CSIC

Cosmology of multiscale spacetimes

Gianluca Calcagni

$$v_*(x) = \prod_{\mu} \left[\sum_n g_n v_{\alpha_n}(x^{\mu})
ight] \, .$$

→ 문 → ★ 문 Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

$$v_*(x) = \prod_{\mu} \left[\sum_n g_n v_{\alpha_n}(x^{\mu}) \right] \,.$$

Scale-dependent Hausdorff dimension.

Instituto de Estructura de la Materia (IEM) – CSIC

Gianluca Calcagni

$$v_*(x) = \prod_{\mu} \left[\sum_n g_n v_{\alpha_n}(x^{\mu}) \right]$$

.

Scale-dependent Hausdorff dimension. Simplest (but not toy) model, two terms (binomial measure):

$$I_D = I_D^{\alpha_1} + \ell_*^{D(\alpha_1 - \alpha_2)} I_D^{\alpha_2}, \qquad [I_D] = -D\alpha_1, \qquad \frac{1}{2} \le \alpha_1 < \alpha_2 \le 1.$$

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

$$v_*(x) = \prod_{\mu} \left[\sum_n g_n v_{\alpha_n}(x^{\mu}) \right]$$

.

Scale-dependent Hausdorff dimension. Simplest (but not toy) model, two terms (binomial measure):

$$I_D = I_D^{\alpha_1} + \ell_*^{D(\alpha_1 - \alpha_2)} I_D^{\alpha_2}, \qquad [I_D] = -D\alpha_1, \qquad \frac{1}{2} \le \alpha_1 < \alpha_2 \le 1.$$

$$\mathcal{V}^{(D)}(R) = \ell_*^{D\alpha_1} \left[\Omega_{D,\alpha_1} \left(\frac{R}{\ell_*} \right)^{D\alpha_1} + \Omega_{D,\alpha_2} \left(\frac{R}{\ell_*} \right)^{D\alpha_2} \right]$$

Instituto de Estructura de la Materia (IEM) - CSIC

.

Gianluca Calcagni

$$v_*(x) = \prod_{\mu} \left[\sum_n g_n v_{\alpha_n}(x^{\mu}) \right]$$

Scale-dependent Hausdorff dimension. Simplest (but not toy) model, two terms (binomial measure):

$$I_D = I_D^{\alpha_1} + \ell_*^{D(\alpha_1 - \alpha_2)} I_D^{\alpha_2}, \qquad [I_D] = -D\alpha_1, \qquad \frac{1}{2} \le \alpha_1 < \alpha_2 \le 1.$$

$$\mathcal{V}^{(D)}(R) = \ell_*^{D\alpha_1} \left[\Omega_{D,\alpha_1} \left(\frac{R}{\ell_*} \right)^{D\alpha_1} + \Omega_{D,\alpha_2} \left(\frac{R}{\ell_*} \right)^{D\alpha_2} \right]$$

 $egin{aligned} R \ll \ell_* : & \mathcal{V}^{(D)} \sim R^{Dlpha_1} \ R \gg \ell_* : & \mathcal{V}^{(D)} \sim ilde{R}^{Dlpha_2}, \end{aligned}$

Instituto de Estructura de la Materia (IEM) - CSIC

 $\tilde{R} = R\ell_*^{-1+\alpha_1/\alpha_2}$

.

Gianluca Calcagni

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

08/27- Example 3: Log-oscillating measure

$$\varrho_{\alpha}(x) \to \varrho_{\alpha,\omega} = c_{+}|x|^{\alpha + \mathbf{i}\omega} + c_{-}|x|^{\alpha - \mathbf{i}\omega}, \qquad \omega \ge 0.$$

Instituto de Estructura de la Materia (IEM) - CSIC

< A

Gianluca Calcagni

18/27– Example 3: Log-oscillating measure

$$\varrho_{\alpha}(x) \to \varrho_{\alpha,\omega} = c_{+}|x|^{\alpha+\mathsf{i}\omega} + c_{-}|x|^{\alpha-\mathsf{i}\omega}, \qquad \omega \geq 0.$$

Summing over α , ω and imposing *S* to be real,

$$S = \int \mathrm{d}\varrho(x) \mathcal{L}, \qquad \mathrm{d}\varrho(x) = \prod_{\mu} \left[\sum_{n} g_n \sum_{\omega} \mathrm{d}\varrho_{\alpha_n,\omega}(x^{\mu}) \right]$$

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

18/27– Example 3: Log-oscillating measure

$$\varrho_{\alpha}(x) \to \varrho_{\alpha,\omega} = c_+ |x|^{\alpha + \mathbf{i}\omega} + c_- |x|^{\alpha - \mathbf{i}\omega}, \qquad \omega \ge 0.$$

Summing over α , ω and imposing *S* to be real,

$$S = \int \mathrm{d}\varrho(x) \,\mathcal{L}\,, \qquad \mathrm{d}\varrho(x) = \prod_{\mu} \left[\sum_{n} g_n \sum_{\omega} \mathrm{d}\varrho_{\alpha_n,\omega}(x^{\mu}) \right]$$

where

$$\varrho_{\alpha,\omega}(x) = \frac{x^{\alpha}}{\Gamma(\alpha+1)} \left[1 + A_{\alpha,\omega} \cos\left(\omega \ln \frac{|x|}{\ell_{\infty}}\right) + B_{\alpha,\omega} \sin\left(\omega \ln \frac{|x|}{\ell_{\infty}}\right) \right]$$

 $A_{\alpha,\omega}$ and $B_{\alpha,\omega} \in \mathbb{R}$. Form of measure also dictated by fractal geometry arguments.

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

DB/27– Example 3: Log-oscillating measure

Represents deterministic (multi)fractals.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Example 3: Discrete scale invariance

Oscillatory part of ρ log-periodic under the transformation

$$\ln \frac{|x|}{\ell_{\infty}} \to \ln \frac{|x|}{\ell_{\infty}} + \frac{2\pi n}{\omega}, \qquad n = 0, 1, 2, \dots$$

()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < () Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Example 3: Discrete scale invariance

Oscillatory part of ρ log-periodic under the transformation

$$\ln \frac{|x|}{\ell_{\infty}} \to \ln \frac{|x|}{\ell_{\infty}} + \frac{2\pi n}{\omega}, \qquad n = 0, 1, 2, \dots$$

implying a DSI:

$$x \to \lambda_{\omega}^n x$$
, $\lambda_{\omega} = \exp(2\pi/\omega)$, $n = 0, 1, 2, \dots$

Gianluca Calcagni

Example 3: Discrete scale invariance

Oscillatory part of ρ log-periodic under the transformation

$$\ln \frac{|x|}{\ell_{\infty}} \to \ln \frac{|x|}{\ell_{\infty}} + \frac{2\pi n}{\omega}, \qquad n = 0, 1, 2, \dots$$

implying a DSI:

$$x \to \lambda_{\omega}^n x$$
, $\lambda_{\omega} = \exp(2\pi/\omega)$, $n = 0, 1, 2, \dots$

DSIs appear in chaotic systems [Sornette 1998].

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

10/27- Example: scalar field

$$S = \int \mathrm{d}^D x \, v(x) \, \left[-\frac{1}{2} \phi \, \mathcal{K} \, \phi - V(\phi) \right] \, .$$

The symmetries of ${\cal L}$ determine the Laplace–Beltrami operator ${\cal K}$

Gianluca Calcagni

< □ > < 同

Inequivalent models

★ 문 ► ★ 문 Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Inequivalent models

• Ordinary Laplacian: $\mathcal{K} = \partial_{\mu} \partial^{\mu}$. Difficult QM and QFT because $\mathcal{K}^{\dagger} = \check{\mathcal{D}}^2 := \frac{1}{v} \partial_{\mu} \partial^{\mu} [v \cdot].$

> - E - - E Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

11/27– Inequivalent models

- Ordinary Laplacian: K = ∂_μ∂^μ. Difficult QM and QFT because K[†] = Ď² := ¹/_v ∂_μ∂^μ[v ·].
- Weighted Laplacian: $\mathcal{K} = \mathcal{D}^2 := \frac{1}{\sqrt{v}} \partial_\mu \partial^\mu [\sqrt{v} \cdot] = \mathcal{K}^{\dagger}$. Dual to previous model (share the *same* diffusion equation). Not a fractal $(d_W \neq 2d_H/d_S)$.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

11/27– Inequivalent models

- Ordinary Laplacian: K = ∂_μ∂^μ. Difficult QM and QFT because K[†] = Ď² := ¹/_v ∂_μ∂^μ[v ·].
- Weighted Laplacian: $\mathcal{K} = \mathcal{D}^2 := \frac{1}{\sqrt{v}} \partial_\mu \partial^\mu [\sqrt{v} \cdot] = \mathcal{K}^{\dagger}$. Dual to previous model (share the *same* diffusion equation). Not a fractal $(d_W \neq 2d_H/d_S)$.
- *q*-Laplacian:

 $\mathcal{K} = \Box_q := \eta^{\mu\nu} \frac{\partial}{\partial q^{\mu}(x^{\mu})} \frac{\partial}{\partial q^{\nu}(x^{\nu})} = \eta^{\mu\nu} \frac{1}{v_{\mu}} \partial_{\mu} \left[\frac{1}{v_{\nu}} \partial_{\nu} \cdot \right] = \mathcal{K}^{\dagger}.$ Not trivial (physical momenta conjugate to *x*, not *q*!). It is a fractal.

Gianluca Calcagni
11/27– Inequivalent models

- Ordinary Laplacian: K = ∂_μ∂^μ. Difficult QM and QFT because K[†] = Ď² := ¹/_v ∂_μ∂^μ[v ·].
- Weighted Laplacian: $\mathcal{K} = \mathcal{D}^2 := \frac{1}{\sqrt{v}} \partial_\mu \partial^\mu [\sqrt{v} \cdot] = \mathcal{K}^{\dagger}$. Dual to previous model (share the *same* diffusion equation). Not a fractal $(d_W \neq 2d_H/d_S)$.
- q-Laplacian:

 $\mathcal{K} = \Box_q := \eta^{\mu\nu} \frac{\partial}{\partial q^{\mu}(x^{\mu})} \frac{\partial}{\partial q^{\nu}(x^{\nu})} = \eta^{\mu\nu} \frac{1}{\nu_{\mu}} \partial_{\mu} \left[\frac{1}{\nu_{\nu}} \partial_{\nu} \cdot \right] = \mathcal{K}^{\dagger}. \text{ Not trivial (physical momenta conjugate to$ *x*, not*q* $!). It is a fractal.}$

Multifractional Laplacian:

$$\mathcal{K} = \mathcal{K}_* := \eta^{\mu\nu} \left[\frac{1}{2} (\partial^{\gamma}_{\mu} \partial^{\gamma}_{\nu} + {}_{\infty} \bar{\partial}^{\gamma}_{\mu\infty} \bar{\partial}^{\gamma}_{\nu}) \cdot \right] = \mathcal{K}^{\dagger}_*.$$

Gianluca Calcagni

12/27- Scales hierarchy

- Boundary-effect regime (ℓ ~ ℓ_∞). |x|/ℓ_∞ ~ 1, ϱ(x) ~ ln |x|, natural relation with κ-Minkowski noncommutative spacetimes (ℓ_∞ = ℓ_{Pl}).
- Oscillatory transient regime ($\ell_{\omega} = \lambda_{\omega} \ell_{\infty} < \ell \ll \ell_*$). Notion of dim. and vol. ambiguous unless averaged. DSI.
- Multifractional regime (ℓ_ω ≪ ℓ ≤ ℓ_{*}). Mesoscopic scales, average of the measure:

 $\varrho_{\alpha}(x) := \langle \varrho_{\alpha,\omega}(x) \rangle \propto |x|^{\alpha}, \quad d\varrho(x) \sim \sum_{\alpha} g_{\alpha} d\varrho_{\alpha}(x).$ Dimensional flow. Continuous symmetries (affinities) emerge.

Classical regime (ℓ ≫ ℓ_{*}). Ordinary Poincaré-invariant field theory on Minkowski spacetime recovered,
 c(x) → c(x) = x. Dim. of spacetime is d = d = 4.

13/27- Status

	\Box, \Box^{\dagger}	\mathcal{D}^2	\Box_q	\mathcal{K}_*
Momentum transform	X ?	 Image: A start of the start of	 Image: A start of the start of	?
Relativistic mechanics	 Image: A set of the set of the	1	1	?
Perturbative field theory	√?	 Image: A second s	√?	√?
Symmetries and dynamics of				
scalar (Q)FT	?	1	1	?
Scalar QFT propagator	?	1	√?	√?
Electrodynamics	?	 Image: A second s	1	?
Perturbative renormalizability	?	X	×	√?
Avoids Collins et al.	?	1	1	?
Phenomenology (obs. constraints)	?	 Image: A second s	?	?
Gravity	 Image: A set of the set of the	?	?	?
Cosmology	√?	 Image: A second s	 Image: A second s	?

Gianluca Calcagni

2

<ロ> (日) (日) (日) (日) (日)

14/27– Characteristic landmarks

 Geometry of multiscale manifolds not Riemannian: possesses a nontrivial structure given a priori. Theory with weighted derivatives: Weyl integrable spacetimes.

Gianluca Calcagni

14/27– Characteristic landmarks

- Geometry of multiscale manifolds not Riemannian: possesses a nontrivial structure given a priori. Theory with weighted derivatives: Weyl integrable spacetimes.
- Only theory with *q* derivatives: What expected in a "covariant" description of a fractal: nontrivial geometric and differential structure at all points. Vielbeins move the measure "hole" around and maintain the anomalous scaling properties.

14/27– Characteristic landmarks

- Geometry of multiscale manifolds not Riemannian: possesses a nontrivial structure given a priori. Theory with weighted derivatives: Weyl integrable spacetimes.
- Only theory with *q* derivatives: What expected in a "covariant" description of a fractal: nontrivial geometric and differential structure at all points. Vielbeins move the measure "hole" around and maintain the anomalous scaling properties.
- Should be able to describe a sensible cosmology in an economic way: bounce and alternatives to inflation, big-bang and Λ problems reinterpreted.

15/27– Action: Will o' the WIST

Instituto de Estructura de la Materia (IEM) - CSIC

2

<ロ> <同> <同> < 同> < 同>

Gianluca Calcagni

Action: Will o' the WIST

$${}^{\beta}\Gamma^{\rho}_{\mu\nu}[g] := \frac{1}{2}g^{\rho\sigma}\left({}_{\beta}\mathcal{D}_{\mu}g_{\nu\sigma} + {}_{\beta}\mathcal{D}_{\nu}g_{\mu\sigma} - {}_{\beta}\mathcal{D}_{\sigma}g_{\mu\nu}\right), \quad {}_{\beta}\mathcal{D} = v^{-\beta}\partial[v^{\beta}\cdot]$$
$$\mathcal{R}^{\rho}_{\ \mu\sigma\nu} := \partial_{\sigma}{}^{\beta}\Gamma^{\rho}_{\mu\nu} - \partial_{\nu}{}^{\beta}\Gamma^{\rho}_{\mu\sigma} + {}^{\beta}\Gamma^{\tau}_{\mu\nu}{}^{\beta}\Gamma^{\rho}_{\sigma\tau} - {}^{\beta}\Gamma^{\tau}_{\mu\sigma}{}^{\beta}\Gamma^{\rho}_{\nu\tau}$$

Length of vectors changes under parallel transport:

$$abla_{\sigma}g_{\mu
u} = W_{\sigma}g_{\mu
u}, \qquad W_{\mu} = \partial_{\mu}\Phi, \qquad \Phi := \ln v^{\beta}.$$

★ 문 → ★ 문 → Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

15/27– Action: Will o' the WIST

$${}^{\beta}\Gamma^{\rho}_{\mu\nu}[g] := \frac{1}{2}g^{\rho\sigma}\left({}_{\beta}\mathcal{D}_{\mu}g_{\nu\sigma} + {}_{\beta}\mathcal{D}_{\nu}g_{\mu\sigma} - {}_{\beta}\mathcal{D}_{\sigma}g_{\mu\nu}\right), \quad {}_{\beta}\mathcal{D} = \nu^{-\beta}\partial[\nu^{\beta}\cdot]$$
$$\mathcal{R}^{\rho}_{\mu\sigma\nu} := \partial_{\sigma}{}^{\beta}\Gamma^{\rho}_{\mu\nu} - \partial_{\nu}{}^{\beta}\Gamma^{\rho}_{\mu\sigma} + {}^{\beta}\Gamma^{\tau}_{\mu\nu}{}^{\beta}\Gamma^{\rho}_{\sigma\tau} - {}^{\beta}\Gamma^{\tau}_{\mu\sigma}{}^{\beta}\Gamma^{\rho}_{\nu\tau}$$

Length of vectors changes under parallel transport:

$$abla_{\sigma}g_{\mu
u} = W_{\sigma}g_{\mu
u}, \qquad W_{\mu} = \partial_{\mu}\Phi, \qquad \Phi := \ln v^{\beta}.$$

D = 4 implies $\beta = 1$, the metric is a bilinear.

Instituto de Estructura de la Materia (IEM) - CSIC

イロト イヨト イヨト イヨト

Gianluca Calcagni

15/27– Action: Will o' the WIST

$${}^{\beta}\Gamma^{\rho}_{\mu\nu}[g] := \frac{1}{2}g^{\rho\sigma}\left({}_{\beta}\mathcal{D}_{\mu}g_{\nu\sigma} + {}_{\beta}\mathcal{D}_{\nu}g_{\mu\sigma} - {}_{\beta}\mathcal{D}_{\sigma}g_{\mu\nu}\right), \quad {}_{\beta}\mathcal{D} = v^{-\beta}\partial[v^{\beta}\cdot]$$
$$\mathcal{R}^{\rho}_{\mu\sigma\nu} := \partial_{\sigma}{}^{\beta}\Gamma^{\rho}_{\mu\nu} - \partial_{\nu}{}^{\beta}\Gamma^{\rho}_{\mu\sigma} + {}^{\beta}\Gamma^{\tau}_{\mu\nu}{}^{\beta}\Gamma^{\rho}_{\sigma\tau} - {}^{\beta}\Gamma^{\tau}_{\mu\sigma}{}^{\beta}\Gamma^{\rho}_{\nu\tau}$$

Length of vectors changes under parallel transport:

$$abla_{\sigma}g_{\mu\nu} = W_{\sigma}g_{\mu\nu}, \qquad W_{\mu} = \partial_{\mu}\Phi, \qquad \Phi := \ln v^{\beta}.$$

D = 4 implies $\beta = 1$, the metric is a bilinear.

$$S := \frac{1}{2\kappa^2} \int d^D x \, v \, \sqrt{-g} \left[\mathcal{R} - \omega \mathcal{D}_{\mu} v \mathcal{D}_{\nu} v - U(v) \right] + S_{\mathrm{m}}$$

$$= \frac{1}{2\kappa^2} \int d^D x \, \mathrm{e}^{\frac{1}{\beta}\Phi} \sqrt{-g} \left(\mathcal{R} - \frac{9\omega}{4\beta^2} \mathrm{e}^{\frac{2}{\beta}\Phi} \partial_{\mu} \Phi \partial^{\mu} \Phi - U \right) + S_{\mathrm{m}}.$$

Instituto de Estructura de la Materia (IEM) - CSIC

イロト イヨト イヨト イヨト

Gianluca Calcagni

Introduction

Gravity and cosmology

Weighted derivatives

16/27– D = 4 Einstein and Friedmann equations

Einstein frame:
$$\bar{g}_{\mu\nu} = e^{\Phi}g_{\mu\nu}$$
. $\Omega = (9\omega/4)e^{2\Phi} - 3/2$.

$$\kappa^{2}\bar{T}_{\mu\nu} = \bar{R}_{\mu\nu} - \frac{1}{2}\bar{g}_{\mu\nu}(\bar{R} - \mathbf{e}^{-\Phi}U) - \Omega\left(\partial_{\mu}\Phi\partial_{\nu}\Phi + \frac{1}{2}\bar{g}_{\mu\nu}\partial_{\sigma}\Phi\bar{\partial}^{\sigma}\Phi\right)$$

Instituto de Estructura de la Materia (IEM) - CSIC

・ロト ・回ト ・ヨト ・ヨト

Gianluca Calcagni

D = 4 Einstein and Friedmann equations

Einstein frame:
$$\bar{g}_{\mu\nu} = e^{\Phi}g_{\mu\nu}$$
. $\Omega = (9\omega/4)e^{2\Phi} - 3/2$.

$$\kappa^{2}\bar{T}_{\mu\nu} = \bar{R}_{\mu\nu} - \frac{1}{2}\bar{g}_{\mu\nu}(\bar{R} - \mathbf{e}^{-\Phi}U) - \Omega\left(\partial_{\mu}\Phi\partial_{\nu}\Phi + \frac{1}{2}\bar{g}_{\mu\nu}\partial_{\sigma}\Phi\bar{\partial}^{\sigma}\Phi\right)$$

Cosmology:

$$\begin{split} H^2 &= \frac{\kappa^2}{3}\,\bar{\rho} + \frac{\Omega}{2}\frac{\dot{v}^2}{v^2} + \frac{U(v)}{6v} - \frac{\kappa}{a^2}\,,\\ 2\dot{H} &- \frac{2\kappa}{a^2} + \kappa^2(\bar{\rho} + \bar{P}) = -\Omega\frac{\dot{v}^2}{v^2}\,. \end{split}$$

→ E → < E →</p> Instituto de Estructura de la Materia (IEM) - CSIC

< <p>O > < <p>O >

Gianluca Calcagni

Flat vacuum solution ($ho = P = \kappa = 0 = \omega$)

Binomial measure

$$v(t) = 1 + \left(\frac{t}{t_*}\right)^{\alpha - 1}$$

Instituto de Estructura de la Materia (IEM) - CSIC

・ロト ・回ト ・ヨト ・ヨト

Cosmology of multiscale spacetimes

Gianluca Calcagni

Flat vacuum solution (
$$ho = P = \kappa = 0 = \omega$$
)

Binomial measure

$$v(t) = 1 + \left(\frac{t}{t_*}\right)^{\alpha - 1}$$

Scale factor (always superacceleration)

$$a(t) = \left(1 + \sqrt{\frac{t_*}{t}}\right)^{\frac{3}{8}} \exp\left\{\frac{9}{8}\left[H_0\frac{t}{t_*} + \sqrt{\frac{t}{t_*}} - \frac{t}{t_*}\ln\left(1 + \sqrt{\frac{t_*}{t}}\right)\right]\right\}.$$

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

★ E → < E →</p>

< <p>O > < <p>O >

Flat vacuum solution (
$$\rho = P = \kappa = 0 = \omega$$
)

Binomial measure

$$v(t) = 1 + \left(\frac{t}{t_*}\right)^{\alpha - 1}$$

Scale factor (always superacceleration)

$$a(t) = \left(1 + \sqrt{\frac{t_*}{t}}\right)^{\frac{3}{8}} \exp\left\{\frac{9}{8}\left[H_0\frac{t}{t_*} + \sqrt{\frac{t}{t_*}} - \frac{t}{t_*}\ln\left(1 + \sqrt{\frac{t_*}{t}}\right)\right]\right\}$$

Minimum of the 'potential' *U* at late times $U_{\min} = U(v = 1) = 6H_0^2$.

Gianluca Calcagni

Instituto de Estructura de la Materia (IEM) - CSIC

< E > < E >

17/27– Flat vacuum solution ($ho = P = \kappa = 0 = \omega$)

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Frames and fractals

 Inertial frames clearly interpreted: Multiscale frames map a curvilinear coordinate system to the Cartesian one with the same measure structure.

$$e^{\ J}_{\mu} := \frac{v(x^J)}{v(x'^{\mu})} \bar{e}^{\ J}_{\mu} = \frac{v(x^J)}{v(x'^{\mu})} \frac{\partial x^J}{\partial x'^{\mu}} = \frac{\partial q^J}{\partial q'^{\mu}} \,.$$

(4) E (4) E (4) E Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

8/27– Frames and fractals

• Inertial frames clearly interpreted: Multiscale frames map a curvilinear coordinate system to the Cartesian one *with the same measure structure*.

$$e^{J}_{\mu} := rac{v(x^{J})}{v(x'^{\mu})} \overline{e}^{J}_{\mu} = rac{v(x^{J})}{v(x'^{\mu})} rac{\partial x^{J}}{\partial x'^{\mu}} = rac{\partial q^{J}}{\partial q'^{\mu}}$$

• Line element and metric:

$$\mathsf{d} s^2 := g_{\mu
u} \, \mathsf{d} q^\mu \otimes \mathsf{d} q^
u \,, \qquad g_{\mu
u} := \eta_{IJ} e^{\ I}_\mu e^{\ J}_
u \not\propto \bar{g}_{\mu
u} \,.$$

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

18/27– Frames and fractals

• Inertial frames clearly interpreted: Multiscale frames map a curvilinear coordinate system to the Cartesian one *with the same measure structure*.

$$e^{\ J}_{\mu} := rac{v(x^J)}{v(x'^{\mu})} \overline{e}^{\ J}_{\mu} = rac{v(x^J)}{v(x'^{\mu})} rac{\partial x^J}{\partial x'^{\mu}} = rac{\partial q^J}{\partial q'^{\mu}}$$

• Line element and metric:

$$\mathsf{d} s^2 := g_{\mu
u} \, \mathsf{d} q^\mu \otimes \mathsf{d} q^
u \,, \qquad g_{\mu
u} := \eta_{IJ} e^{\ I}_\mu e^{\ J}_
u \, \not\propto \, ar{g}_{\mu
u} \,.$$

 Gravity and cosmology easy to work out via x → q(x) mapping.

Instituto de Estructura de la Materia (IEM) – CSIC

Gianluca Calcagni

19/27– Action and Einstein equations

$${}^{q}\Gamma^{\rho}_{\mu\nu} := \frac{1}{2}g^{\rho\sigma} \left(\frac{1}{v_{\mu}} \partial_{\mu}g_{\nu\sigma} + \frac{1}{v_{\nu}} \partial_{\nu}g_{\mu\sigma} - \frac{1}{v_{\sigma}} \partial_{\sigma}g_{\mu\nu} \right) ,$$
$${}^{q}R^{\rho}_{\mu\sigma\nu} := \frac{1}{v_{\sigma}} \partial_{\sigma}{}^{q}\Gamma^{\rho}_{\mu\nu} - \frac{1}{v_{\nu}} \partial_{\nu}{}^{q}\Gamma^{\rho}_{\mu\sigma} + {}^{q}\Gamma^{\tau}_{\mu\nu} {}^{q}\Gamma^{\rho}_{\sigma\tau} - {}^{q}\Gamma^{\tau}_{\mu\sigma} {}^{q}\Gamma^{\rho}_{\nu\tau} ,$$

Action:

$$S = \frac{1}{2\kappa^2} \int \mathrm{d}^D x \, v \, \sqrt{-g} \left({}^q R - 2\Lambda\right) + S_\mathrm{m} \, , \label{eq:second}$$

Instituto de Estructura de la Materia (IEM) - CSIC

・ロト ・回ト ・ヨト ・ヨト

Gianluca Calcagni

19/27- Action and Einstein equations

$${}^{q}\Gamma^{\rho}_{\mu\nu} := \frac{1}{2}g^{\rho\sigma} \left(\frac{1}{\nu_{\mu}} \partial_{\mu}g_{\nu\sigma} + \frac{1}{\nu_{\nu}} \partial_{\nu}g_{\mu\sigma} - \frac{1}{\nu_{\sigma}} \partial_{\sigma}g_{\mu\nu} \right) ,$$
$${}^{q}R^{\rho}_{\mu\sigma\nu} := \frac{1}{\nu_{\sigma}} \partial_{\sigma}{}^{q}\Gamma^{\rho}_{\mu\nu} - \frac{1}{\nu_{\nu}} \partial_{\nu}{}^{q}\Gamma^{\rho}_{\mu\sigma} + {}^{q}\Gamma^{\tau}_{\mu\nu} {}^{q}\Gamma^{\rho}_{\sigma\tau} - {}^{q}\Gamma^{\tau}_{\mu\sigma} {}^{q}\Gamma^{\rho}_{\nu\tau} ,$$

Action:

$$S = \frac{1}{2\kappa^2} \int \mathrm{d}^D x \, v \, \sqrt{-g} \left({}^q R - 2\Lambda\right) + S_\mathrm{m} \, , \label{eq:selectropy}$$

Einstein equations:

$${}^{q}R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}({}^{q}R - 2\Lambda) = \kappa^{2} {}^{q}T_{\mu\nu}.$$

Instituto de Estructura de la Materia (IEM) - CSIC

글 🕨 🔸 글

Gianluca Calcagni

/27– Cosmology

$$\begin{split} \frac{H^2}{v^2} &= \frac{\kappa^2}{3}\,\rho + \frac{\Lambda}{3} - \frac{\mathsf{K}}{a^2}\,,\\ \dot{\rho} &+ 3H(\rho + P) = 0\,. \end{split}$$

Ordinary slow-roll approximation unnecessary.

Instituto de Estructura de la Materia (IEM) - CSIC

・ロト ・回ト ・ヨト ・ヨト

Gianluca Calcagni

Cosmology

$$\begin{split} \frac{H^2}{v^2} &= \frac{\kappa^2}{3}\,\rho + \frac{\Lambda}{3} - \frac{\mathrm{K}}{a^2}\,,\\ \dot{\rho} &+ 3H(\rho+P) = 0\,. \end{split}$$

Ordinary slow-roll approximation unnecessary. Geometric time coordinate

$$q(t) = \int^t \mathrm{d}t' \, v(t') \, .$$

★ 문 → ★ 문 → Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

21/27- "Power-law" solutions

$$\rho = \rho_0 a^{-\frac{2}{p}}, \qquad a(t) = \left[\frac{q(t)}{t_*}\right]^p, \qquad p := \frac{2}{(D-1)(1+w)},$$

Hubble parameter

$$H = p \frac{\dot{q}(t)}{q(t)} = p \frac{v(t)}{q(t)} \,.$$

Instituto de Estructura de la Materia (IEM) - CSIC

→ E → < E →</p>

Gianluca Calcagni

21/27- "Power-law" solutions

$$\rho = \rho_0 a^{-\frac{2}{p}}, \qquad a(t) = \left[\frac{q(t)}{t_*}\right]^p, \qquad p := \frac{2}{(D-1)(1+w)},$$

Hubble parameter

$$H = p \frac{\dot{q}(t)}{q(t)} = p \frac{v(t)}{q(t)} \,.$$

From now on choose log-oscillating measure

$$q(t) = t + t_* \left(\frac{t}{t_*}\right)^{\alpha} F_{\omega}(\ln t) ,$$

$$F_{\omega}(\ln t) = 1 + A \cos\left[\omega \ln\left(\frac{t}{t_{\text{Pl}}}\right)\right] + B \sin\left[\omega \ln\left(\frac{t}{t_{\text{Pl}}}\right)\right] .$$

Gianluca Calcagni

Cosmology of multiscale spacetimes

1

22/27- Geometric coordinate

H = 0 at peaks and troughs, log-oscillations end after some time.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

23/27– e-folds and cycles

Fully analytic properties.

Instituto de Estructura de la Materia (IEM) - CSIC

★ E > ★ E

Gianluca Calcagni

23/27- e-folds and cycles

Fully analytic properties.

Slope of an expanding/contracting phase:

$$\delta_{\uparrow} pprox p\left(lpha + rac{\omega}{\pi}\lnrac{1+A}{1-A}
ight) > p\,, \qquad \delta_{\downarrow} pprox p\left(lpha - rac{\omega}{\pi}\lnrac{1+A}{1-A}
ight).$$

Instituto de Estructura de la Materia (IEM) - CSIC

- E

< A

Gianluca Calcagni

23/27- e-folds and cycles

Fully analytic properties. Slope of an expanding/contracting phase:

$$\delta_{\uparrow} \approx p\left(\alpha + \frac{\omega}{\pi}\ln\frac{1+A}{1-A}\right) > p\,, \qquad \delta_{\downarrow} \approx p\left(\alpha - \frac{\omega}{\pi}\ln\frac{1+A}{1-A}\right).$$

Average slope of the trend of minima (or maxima):

$$\delta_{\uparrow\downarrow} = \frac{\ln(a_{m+1}/a_m)}{\ln(t_{m+1}/t_m)} = \mathcal{N}_{\uparrow\downarrow} \frac{\omega}{2\pi} \approx p\alpha \,.$$

Instituto de Estructura de la Materia (IEM) - CSIC

글 🕨 🖌 글

Gianluca Calcagni

23/27– e-folds and cycles

Fully analytic properties. Slope of an expanding/contracting phase:

$$\delta_{\uparrow} \approx p\left(\alpha + \frac{\omega}{\pi}\ln\frac{1+A}{1-A}\right) > p\,, \qquad \delta_{\downarrow} \approx p\left(\alpha - \frac{\omega}{\pi}\ln\frac{1+A}{1-A}\right).$$

Average slope of the trend of minima (or maxima):

$$\delta_{\uparrow\downarrow} = \frac{\ln(a_{m+1}/a_m)}{\ln(t_{m+1}/t_m)} = \mathcal{N}_{\uparrow\downarrow} \frac{\omega}{2\pi} \approx p\alpha \,.$$

Net number of e-foldings per cycle:

$$\mathcal{N}_{\uparrow\downarrow} := \ln \frac{a_{m+1}}{a_m} = (\delta_{\uparrow} + \delta_{\downarrow}) \frac{\pi}{\omega} \approx \frac{2\pi\alpha p}{\omega}$$

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

Introduction					Gravity and cosmology
q-derivatives					
	 			1-	

24/27– Alternative to inflation? (0

Horizon problem solved without invoking acceleration-inducing matter: particle horizon shrinks because of geometry!

Flatness problem not solved, unfortunately.

Instituto de Estructura de la Materia (IEM) - CSIC

Gianluca Calcagni

25/27– Cyclic mild inflation ($p \gtrsim 1$)

Horizon and flatness problem solved if mildly inflating matter is added.

Instituto de Estructura de la Materia (IEM) - CSIC

Image: A matrix

Gianluca Calcagni

6/27- Inflationary spectrum, big bang

Scalar power spectrum:

$$P_{\rm s} \sim \mathcal{A}\left(\frac{k}{k_*}\right)^{n_{\rm eff}-1} \left[F_{\omega}(\ln k)\right]^{1-n_{\rm s}}, \quad n_{\rm eff}-1 = \alpha(n_{\rm s}-1).$$

Scale invariance without slow-roll approximation and log-oscillating pattern!!

Instituto de Estructura de la Materia (IEM) - CSIC

- (E) (E)

Gianluca Calcagni

6/27- Inflationary spectrum, big bang

Scalar power spectrum:

$$P_{\rm s} \sim \mathcal{A}\left(\frac{k}{k_*}\right)^{n_{\rm eff}-1} \left[F_{\omega}(\ln k)\right]^{1-n_{\rm s}}, \quad n_{\rm eff}-1 = \alpha(n_{\rm s}-1).$$

Scale invariance without slow-roll approximation and log-oscillating pattern!!

Big bang **removed** by a homogeneous contribution to the measure (integration constant):

$$q(t) \rightarrow t_{\rm bb} + q(t)$$
.

Instituto de Estructura de la Materia (IEM) – CSIC

Gianluca Calcagni

27/27– Discussion

- Assuming the integro-differential structure of spacetime behaves as a multifractal leads to novel scenarios in particle physics and cosmology.
- Analytic cosmological solutions to be studies (stability, cosmic evolution with matter and radiation, etc.).
- Intriguing features purely generated by geometry (big bounces, acceleration without inflaton, alternative to inflation, mild inflation, cyclic cosmology).
- Power spectra at hand!

Gianluca Calcagni

$\varepsilon \upsilon \chi \alpha \rho \iota \sigma \tau \dot{\omega}$ (thank you)!

Instituto de Estructura de la Materia (IEM) - CSIC

크

・ロト ・聞 ト ・ 国 ト ・ 国 ト

Gianluca Calcagni