
Canonical Quantum

Cosmology,

The Problem of Time and

Decoherent Histories

Petros Wallden∗

13th September 2011

6th Aegean Summer School, Naxos

∗Department of Physics, University of Athens

• T. Christodoulakis & PW: J. Phys.: Conf. Ser.
283, 012041 (2011)

• PW: Int. J. Theor. Phys. 47, 1512 (2008).
• J.J. Halliwell & PW: PRD 73, 024011 (2006).



Contents

• Quantum Cosmology & Interpretation

• Introduce the Problem of Time and moti-
vate the construction of timeless theories.

• Introduce the decoherent histories approach
to Quantum Theory.

• Examine the decoherent histories analysis
of the Problem of Time.

• Construct rep-invariant Class Operators &
get probabilities and decoherent conditions.

• Give an example of an FRW quantum cos-
mology with a scalar field

• Summary & Conclusion

1



Quantum Cosmology

and Interpretation

• Quantum Cosmology: Full gravity assum-

ing certain symmetries to reduce the phys-

ical degrees of freedom

• Twofold interest:

1. Toy model for full gravity (shares similar

problems)

2. May resolve open cosmological questions

(singularity resolution)

• Interpretation:

1. Define physical Hilbert space (take into

account Diffeo’s and inner product)
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2. Physical wavefunction (respecting dif-

feos and thus solutions of the Wheeler

DeWitt equation)

3. Observables:

(a) self-adjoint

(b) commute with the constraints

(c) correspond to intuitive physical ques-

tions



Problem of Time

Diffeomorphism invariance in GR Vs
Fixed parameter time in Newtonian Physics.

• Time in Quantum Theory:

– Not Observable

– Appears as a parameter

– Physical clocks run backwards in abstract
Newtonian Time

• Time in General Relativity:

– How does ‘change’ appears?

– Time is locally defined

– How to make it compatible with QT
that is based on Newtonian Time?
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GR as Constrained System
The “gauge” in general relativity is the in-
variance of the theory under diffeomorphisms,
Diff(M), which breaks into:

(a)Spatial “three”-dimensional diffeomorphisms.
Variables could be the 3-metric (geometrody-
namics), or loop variables

(b) Hamiltonian constraint: Ĥ|ψ⟩ = 0

• Observables commute with constraints

i~
dÂ(t)

dt
= [Ĥ, Â(t)] = 0

for any Â observable, due to the constraint:

Any observable Â, is independent of time!

• General feature of ANY theory that has van-
ishing Hamiltonian
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Timeless Theories

• Need to construct a Quantum Theory that

time does not have any fundamental role.

• Time “emerges” as a coarse grained property

of the relative field configurations.

All physical questions can be translated

to questions about the possible relative

configurations of the universe and its

material content.

(a) Evolving Constants

(b) Partial Vs Complete Observables

(c) Decoherent Histories
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The Decoherent Histories

Approach to QT

An alternative formulation of Quantum Theory
designed to deal with closed systems. Among
other things it aims to

(a) Assign probabilities to histories of closed
system.

(b) Deal with time-extended questions.

(c) Put space and time in equal footing. Time
is no longer in a preferred position, since we
are dealing with whole histories of the sys-
tem (rather than single time propositions).

Due it these facts, it suits well for dealing with
the problem of time.
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Decoherent Histories:

Non-relativistic QM

Copenhagen probabilities for sequential mea-

surements:

P (αt1 at t1 and αt2 at t2 · · · αtn at tn; ρ(t0))=

Tr(αtn(tn) · · ·αt1(t1)ρ(t0)αt1(t1) · · ·αtn(tn))

This is NOT probability for closed system, fails

to satisfy the “additivity of disjoint regions of

the sample space”, due to interference.

Under certain conditions this probability CAN

be assigned to histories of closed systems.

Class operator: Cα = αtn(tn) · · ·αt1(t1)
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Decohernece Functional (measures interference):

D(α, α′) = Tr(CαρC
†
α′)

A set of histories {αi}, that is disjoint and
exhaustive is called complete.

Probabilities are assigned to a history αi, pro-
vided it belongs to a complete set such that:

D(αi, αj) = 0, for all i ̸= j.

The probability is then p(αi) = D(αi, αi).

• Typically, there exist more than one com-
plete set that obeys the decoherence condition.
There is some interpretational ambiguity.

• The above can be generalized (relativistic
QT or quantum gravity). Construction of (a)
Class Operators that correspond to physical
questions, and (b) an inner product to define
probabilities and the decoherence condition.



Decoherent Histories and

the Problem of Time

Histories and Classical Timeless Questions:

Does a (classical) trajectory cross a given
region ∆ of the configuration space? If
it is the full trajectory, then this is in-
deed reparametrization invariant.

In the Quantum Case, we require also:

(i) Initial state has to obey: Ĥ|ψ⟩ = 0

(ii) Class operator: [Ĉα, H] = 0

(iii) We have to use the induced (or Rieffel)
inner product. (essentially an inner product
defined on solutions of the constraint.)
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Proposed Class Operator

What is the probability that the sys-

tem crosses region ∆ of configuration

space, with no reference in time.

Need to find a Class Operator (CO) that com-

mutes with the Hamiltonian and gives (semi-

classically) sensible results.

Since the classical reparametrization invariant

object is full trajectory we consider the unphys-

ical parameter time running from −∞ to +∞.

CO Crossing ∆= 1- CO Always in ∆̄

C∆̄ =
t=+∞∏
t=−∞

P̄ (t)
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[C∆̄, H] = 0

C∆̄ = lim
t′′→∞,t′→−∞

exp(−iHt′′)gr(t′′, t′) exp(iHt′)

C∆ = 1− C∆̄

This expression resembles the arrival time prob-

lem in standard non-relativistic quantum me-

chanics (see J.J. Halliwell & E. Zafiris in PRD

also PW in IJTP and recently Halliwell & Years-

ley).



General No-Crossing

Probabilities and D.Condition

Using the property of the restricted propagator

g†r(t, t0)gr(t, t0) = P̄ (1)

we have (candidate) probability for not cross-

ing:

p∆̄ = ⟨ψ|C†
∆̄
C∆̄|ψ⟩ = ⟨ψ|P̄ |ψ⟩

p∆ = 1− p∆̄ = ⟨ψ|P |ψ⟩

Provided we have decoherence, while as deco-

herence condition we get:
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lim
t→∞,t0→−∞

eiE(t−t0)⟨ψ|gr(t, t0)|ψ⟩ = ⟨ψ|P̄ |ψ⟩

which becomes the need to vanish on the bound-

ary of the region, i.e.:

⟨x|ψ⟩ = 0, ∀x ∈ ∂∆̄

• The decoherence condition is Ψ vanishes

on the boundary and in this case

• We assign probability for crossing the re-

gion ∆ the part of the wavefunction pro-

jected at the region in question



Model: FRW-QC

Homogeneous and isotropic universe with k =
1 (3-sphere). First (a) empty and then (b)
with a scalar field with potential V (ϕ) = e2ϕ.
In both cases, we use quantum geometrody-
namics. Loop QC analysis could be done in
future work.First case:

Ψ′′(α)/4α−Ψ′(α)/8α2 + αΨ(α) = 0

The solutions are Bessel functions we take one
of them, Ψ(α) ∝ α3/4J−2

3
(α2) with graph

2 4 6 8 10
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1.0

And can ask the probability that it never crosses
the region α > 6. It coincides with a zero of
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the Bessel function and thus decoheres. The

probability turns out to be pc ≃ 0.27

Second case (with scalar field). Wheeler De-

Witt equation

(2α− α3e2ϕ)Ψ(α, ϕ)−
1

2α

∂2Ψ(α, ϕ)

∂α2

−
1

2α2
∂Ψ(α, ϕ)

∂α
+

1

2α3
∂2Ψ(α, ϕ)

∂ϕ2
= 0

The general solution is

Ψ(α, ϕ) = C2 exp
α2e−2ϕ(−4C2

1 − 4e4ϕ+6e6ϕα2)

8C1

Consider one solution (note that it is NOT

normalizable in the normal inner product, and

we need to use an inner product on solutions)



Ψ(α, ϕ) = exp
α2e−2ϕ(−42 − 4e4ϕ+6e6ϕα2)

8
−

exp
α2e−2ϕ(−4 · 1.52 − 4e4ϕ+6e6ϕα2)

12
Which looks like

-2

0

2

-4

-2

0

2

4

-4

-2

0

2

We can ask which is the probability that the

universe never crosses the region defined by:
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Since our solution vanish at the above bound-

ary, we have decoherence and we can assign

the crossing probability (note that the inte-

gral |Ψ(α, ϕ)|2 at the region is no-zero, how-

ever in the induced inner product it results to

zero probability) pc = 0.

Other solutions (involving superpositions) or

systems with more degrees of freedom (e.g.

Bianchi Cosmologies, different matter content),

result to non-trivial questions.

Choose questions like “value(s) of α when ϕ =

15 or when ϕ > 15”. This corresponds to an

observable that projects at the range of ϕ in



question. The resulting operator does NOT
commute with Hamiltonian. Fails only on the
boundary of the region.

If one restricted attention to a single solution
(not formally allowed at this approach) that
vanishes at this boundary, he would recover
exactly our result.

- We followed the general prescription for con-
structing class operators that was described
earlier.

- For particular models-examples it is possi-
ble to construct meaningful class operators in
different ways (e.g. D. Craig and P. Singh,
PRD82, 123526 (2010)) For those models it
is possible to answer questions involving the
existence of singularity.

-In the model examined, the class operators
constructed was not decoherent for the ques-
tion involving the existence of singularity.



Summary & Conclusions

• We examined the DH analysis of timeless
QT. We got Class Operators that respect the
Hamiltonian constraint.

• They consisted of a general enough set of
physical questions of the type:

“Which is the prob that it crosses a region in
configuration space with no reference in time”

• We have got an easy but restrictive decoher-
ence condition “The initial state has to vanish
on the boundary of the region considered”

• The probabilities for those histories are easily
calculated.

• We considered as an example the case of
FRW Quantum Cosmology with scalar field.
Given a solution of the Wheeler-DeWitt equa-
tion we found questions that can be answered
and compared with other works.
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