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Introduction
We would like to give a meaning to the formal path integral for gravity

〈(Σ1, q1)|(Σ2, q2)〉phys =

∫
g|Σ=q

d[g] exp(iS).

In canonical loop quantum gravity, the kinematical states are given by spin
network states.

S2

S1

A spin foam model associates an amplitude to a two-complex interpolating
between the two boundary states:

W (∆) =

∫
dµ{jf}

∫
dµ{ie}

∏
f

Af (jf )
∏
e

Ae(jf⊃e, ie)
∏
v

Av(jf⊃v, ie⊃v).

Is this expression finite? How to find the individual amplitudes? Do we
have to sum over different two-complexes?
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Introduction

Spin network states S solve the Gauss and diffeomorphism constraints.

To obtain the dynamics, we have to solve the Hamiltonian constraint:

〈S1|S2〉phys = 〈PS1|S2〉kin “ = ”
∞∑

n=0

in

n!

∑
Fn:S1→S2

∏
v

Av.

→ The dynamics of canonical loop quantum gravity should in principle lead
to a spin foam evolution.

Since this is hard to realize in practice, we derive spin foam models based
on other prescriptions.

What is our understanding of the relation between the covariant and
canonical quantizations?
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3-dimensional quantum gravity (Λ = 0)

Covariant quantization

The partition function for the first-order action,

Z =

∫
d[e]d[ω] exp

(
i

∫
M

Tr(e ∧ F )

)
,

can be discretized on a two-complex to obtain the Ponzano-Regge spin
foam model:

Z(∆) =
∑

{j}→{f}

∏
f∈∆

(2jf + 1)
∏
v∈∆

{6j}v.

? The sum over the spins is divergent. Can we find a regularization?
? The model is triangulation-independent.

Canonical quantization

The Hamiltonian theory has two constraints:
Gauss constraint → solved by working with spin network states,
Flat curvature constraint → imposed by means of a regularized projector.

? The physical inner product is given by the Ponzano-Regge amplitudes.
? There are no (bubble) divergencies.
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3-dimensional quantum gravity (Λ 6= 0)

Covariant quantization

To regularize the divergencies of the Ponzano-Regge model, Turaev and
Viro suggested to replace su(2) with its quantum deformation Uq

(
su(2)

)
.

? This introduces a natural regularization when q is a root of unity.
? The Turaev-Viro spin foam model is a discretization of

S[e, ω] =

∫
M

(
Tr(e ∧ F ) +

Λ

6
Tr(e ∧ e ∧ e)

)
,

? as indicated by the results of Witten on SU(2) Chern-Simons theory, and
? the asymptotic behavior of the q-deformed 6j symbol.

Canonical quantization

The Hamiltonian theory has two constraints: dωe = 0, and F + Λ(e∧ e) = 0.

? At the kinematical level, quantization of the non-commutative
? holonomy A± = A± e

√
Λ leads to Kauffman’s q-deformed binor identity.

? It is necessary to complete the quantization following the Λ = 0 case.
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4-dimensional quantum gravity (Λ = 0)

Covariant quantization

The Plebanski action allows to write gravity as a topological field theory
with constraints:

S[e, ω,Φ] =

∫
M

(
BIJ ∧ F IJ + ΦIJKLBIJ ∧BKL

)
.

Strategy to build 4-dimensional spin foam models:
? Discretize the topological theory on a two-complex,
? Promote the basic variables to quantum operators,
? Impose the (second-class) simplicity constraints on the group

theoretical data.
Various ways to impose the constraints lead to different spin foam models.

See Carlo Rovelli’s lectures for the EPRL model.
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4-dimensional quantum gravity (Λ = 0)

Canonical quantization

A starting point for the canonical quantization is the Holst-Palatini action

S[e, ω] =

∫
M
eI ∧ eJ ∧

(
?+

1

γ

)
FIJ , γ ∈ R− {0}.

With the spacetime connection ω, one can construct three spatial
connections:
? The commutative su(2) Ashtekar-Barbero connection A,
? A commutative sl(2,C) connection A,
? A non-commutative sl(2,C) connection A.

The first two choices are equivalent. In particular, they lead to discrete
spectra for the geometric operators, and lead to SU(2) spin network states.

When working with A, we can solve the second-class simplicity constraints
at the classical level (in agreement with the EPRL prescription). Then, the
kinematical states agree with the boundary states of the covariant theory,
and the spectra of the geometric operators are identical.

Quantizing the theory with A is still an open problem.
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Conclusion and further directions

Several (intermediate) results support the idea of a correspondence between
the covariant spin foam approach and canonical loop quantum gravity.

More open questions for the 4-dimensional theory, which can however be
approached along other directions:
? Spin foam cosmology (see talks by Francesca Vidotto and Mercedes

Martín-Benito),
? Relation between topological BF theory and LQG (see Valentin

Bonzom’s talk).
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