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Testing Quantum Gravity

QG thought to have significant effects only above the
Planck scale (∼ 1.22× 1019 GeV)

Highest energies achieved by LHC ∼16 orders of
magnitude smaller
→ No hope of directly detecting QG effects

However, CMB measurements provide us with
information about the very early Universe...
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Cosmological perturbations

Inflationary epoch: Quantum fluctuations in inflaton
field lead to fluctuations in the metric

Three types of perturbation:
scalar (density perturbation→ structure formation)
vector (vorticity, decay with time)
tensor (gravitational waves)

These perturbations are seeded by a quantum
fluctuation→ QG effects might survive until today
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The idea

Use Ashtekar formalism of Loop Quantum Gravity
(LQG) within cosmological perturbation theory

Two aims:
Show that formalism is consistent with well-established
results in Cosmology
See whether any novelties arise that might be linked to
QG effects

Note: We’re not trying to perturbatively quantise gravity;
we’re just testing (non-perturbative) LQG it in the
regime of cosmological P.T.
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Ashtekar formalism

Based on the Palatini-Kibble formulation of GR with an
additional topological term

S = − 1
2l2P

∫
ΣIJ ∧

(
FIJ +

1
γ
∗FIJ

)
where ΣIJ = eI ∧ eJ and γ is the Immirzi parameter
The Ashtekar canonical variables are

Ai
a = Γi

a + γΓ0i
a

Ea
i = det

(
ej

b

)
ea

i

→ form a canonical pair:
{Ai

a(x),Eb
j (y)} = γl2Pδ

b
aδ

i
j δ(x− y)
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Perturbation Theory

Consider tensor perturbations around de Sitter
background:

ds2 = a2[−dη2 + (δab + hab)dxadxb]

where scale factor a = − 1
Hη , η < 0 and hab is a TT

tensor perturbation
Using a Fourier space expansion we can define a
variable

v(k, η) =

√
εijεij

32πG
ah(k, η)

Solving Hamilton’s equation for the perturbation this
leads to

v ′′ +
(

k2 − 2
η2

)
v = 0
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Our approach

Start with Hamiltonian formulation of Ashtekar gravity

Expand Ashtekar variables in terms of perturbations
around de Sitter
→ Rederive e.o.m. for metric tensor perturbations given
by v in Cosmology

Find the corresponding Fourier space Hamiltonian (2nd
order in perturbations) to set up quantum theory

Consider case γ = ±i in the following (SD/ASD)
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Ashtekar Hamiltonian

H =
1

2l2P

∫
d3xNEa

i Eb
j εijk (F k

ab + H2εabcEc
k )

(+ boundary term)
In de Sitter with perturbations, Ashtekar’s variables are

Ai
a = γHaδi

a +
ai

a
a

Ea
i = a2δa

i − aδea
i

Dynamics given by 2nd order Hamiltonian in terms of
1st order variables
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The perturbed Hamiltonian

After taking a few subtleties into account... (see our
paper!)

Heff =
1

2l2P

∫
d3x [−aijaij − 2εijk (∂jδeli)akl

−2H2a2δeijδeij ]

Using Hamilton’s equations and torsion free condition

aij = εikl∂kδelj + γδe′ij

we can derive

δe′′ij −
(
∂2 +

2
η2

)
δeij = 0



Fluctuations
and ground
state of QG

Laura Bethke

Cosmology
and Quantum
Gravity

Ashtekar
formalism in
Perturbation
Theory

The Quantum
Hamiltonian

Conclusion

1 Cosmology and Quantum Gravity

2 Ashtekar formalism in Perturbation Theory

3 The Quantum Hamiltonian



Fluctuations
and ground
state of QG

Laura Bethke

Cosmology
and Quantum
Gravity

Ashtekar
formalism in
Perturbation
Theory

The Quantum
Hamiltonian

Conclusion

Fourier space expansion

We need to write the perturbation variables in Fourier
space:

Positive and negative frequency states
Graviton and anti-graviton states, independent before
reality conditions imposed
Right and left-hand helicities, corresponding to two
polarisations of graviton
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Fourier space expansion

Satisfied by

δeij =

∫
d3k

(2π)
3
2

∑
r

εrij(k)Ψe(k , η)er+(k)eik·x

+εr?ij (k)Ψ?
e(k , η)e†r−(k)e−ik·x

aij =

∫
d3k

(2π)
3
2

∑
r

εrij(k)Ψr+
a (k , η)ar+(k)eik·x

+εr?ij (k)Ψr−?
a (k , η)a†r−(k)e−ik·x

where εrij are polarisation tensors and, within the horizon
(|kη| � 1)

Ψ(k , η) ∼ e−ikη

Torsion free condition implies

Ψrp
a = (r − ipγ)kΨe
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The algebra

Writing ãrp = arpΨrp
a and ẽrp = erpΨe

Commutation relations

[ãrp(k), ẽ†sq(k′)] = −iγp
l2P
2
δrsδpq̄δ(k− k′)

Reality conditions

ẽr+(k) = ẽr−(k)

ãr+(k, η) + ãr−(k, η) = 2rkẽr+(k, η)

ã†r+(k, η) + ã†r−(k, η) = 2rkẽ†r−(k, η)



Fluctuations
and ground
state of QG

Laura Bethke

Cosmology
and Quantum
Gravity

Ashtekar
formalism in
Perturbation
Theory

The Quantum
Hamiltonian

Conclusion

Quantum Hamiltonian

Write Fourier space Hamiltonian in terms of graviton
creation and annihilation operators g†rp and grp:

Combinations of connection and metric operators
Before reality conditions imposed, half of the modes
unphysical

For γ = i , on-shell we obtain

Hph
eff ≈

1
l2P

∫
dk (gL−g†L− + g†R+gR+)

where e.g.

gL−(k) = −ãL+(k) + 2kr ẽL+(k) ≈ ãL−(k)

Only right handed graviton normal ordered→ only left
produces vacuum energy
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Vacuum fluctuations

CMB experiments measure 2-point correlation functions
describing vacuum fluctuations:

〈0|A†r (k)Ar (k′)|0〉 = Pr (k)δ(k− k′)

where
Ar (k) = ar+(k)e−ik ·x + a†r−(k)eik ·x

For γ = i ,

〈0|Aph†
R (k)Aph

R (k′)|0〉 = 0

〈0|Aph†
L (k)Aph

L (k′)|0〉 6= 0

In general,

PR − PL

PR + PL
= − 2γI

1 + |γ|2
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The Ground State

Use graviton operators to set up a Hilbert space
representation

Annihilation and creation operators define Fock space
Can define inner product; particle states normalisable

Known ground state of quantum gravity: Kodama state

Φ = N exp

(
iγ

2l2PH2
SCS

)

where SCS is the Chern-Simons form
Solves full Hamiltonian constraint
Not an eigenfunction of dynamical Hamiltonian to
second order⇒ cannot describe gravitons!
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Conclusion

Discovered a potentially measurable quantum gravity
effect

Ordering issues have to be addressed

Need to compare to other mechanisms that produce
chirality

Currently working on a connection representation of
graviton states
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Defining a Hilbert space

Graviton commutation relations:

[grp(k),g†sq(k′)] = −iγl2P(pr)kδrsδpqδ(k− k′)

Choose a holomorphic representation:
g†rpΦ(z) = zrpΦ(z)⇒ grpΦ = −iγl2P(pr)k ∂Φ

∂zrp

Inner product defined as

〈Φ1|Φ2〉 =

∫
dzdz̄eµ(z,z̄)Φ̄1(z̄)Φ2(z)

where

µ(z, z̄) =

∫
dk
∑
rp

pr
ikγl2P

zrp(k)z̄rp(k)

Ground and particle states given by Φ0 = 〈z|0〉 = 1,
Φn ∝ (g†rp)nΨ0 = zn

rp
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The Kodama state

A ground state of quantum gravity (solves all constraints)

Φ = N exp

(
iγ

2l2PH2
SCS

)
where SCS is the Chern-Simons form

It solves the Hamiltonian constraint, H = EES, where
S = B + H2E (“self dual" operator)
Dynamical part of Hamiltonian constraint to second
order:

2
1H = 2(0E)(1

1E)(1
1S) + (1

1E)(1
1E)(0S) + (0E)(0E)(2

1S)

But perturbed Kodama state 2
1Φ annihilated by 1

1S
⇒ Kodama state cannot describe gravitons!
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