Asymptotic Safety and the Gibbons-Hawking Term

A status report

Daniel Becker

Johannes Gutenberg University Mainz, Germany

Martin Reuter, Daniel Becker Work in Progress

Daniel Becker

Asymptotic Safety and the Gibbons-Hawking Term

Johannes Gutenberg University Mainz, Germany

Outline

Classical motivation

The Einstein-Hilbert action The Gibbons-Hawking (York) action

2 Functional renormalization group

Functional renormalization group equation Asymptotic Safety

3 The running Gibbons-Hawking term

366163	l mo	tiva	tion

Classical motivation

Daniel Becker Asymptotic Safety and the Gibbons-Hawking Term

Classical motivation	Functional renormalizatio
•	
The Einstein-Hilbert action	

Conclusion

The Einstein-Hilbert action

The geometrical content of General Relativity is encoded in the **Einstein-Hilbert action**:

group

$$S_{\mathsf{EH}} = -\frac{1}{16\pi G_N} \int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R \,, \qquad \qquad \partial \mathcal{M} = \emptyset$$

The principle of least action $(\delta S_{EH}=0)$ requires that

$$0 = \frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \left[R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R \right] \delta g_{\mu\nu} \right)$$

for all $\delta g_{\mu\nu}$.

Hence, one deduces the Einstein field equations in vacuum:

$$G^{\mu\nu}\equiv \quad R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R=0$$

Daniel Becker

Asymptotic Safety and the Gibbons-Hawking Term

Classical motivation	Functional renormalization group
• • •	

The Einstein-Hilbert action

The geometrical content of General Relativity is encoded in the **Einstein-Hilbert action**:

$$S_{\mathsf{EH}} = -\frac{1}{16\pi G_N} \int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R \,, \qquad \qquad \partial \mathcal{M} = \emptyset$$

The running Gibbons-Hawking term

The principle of least action $(\delta S_{EH}=0)$ requires that

$$0 = \frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \left[R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R \right] \delta g_{\mu\nu} \right)$$

for all $\delta g_{\mu\nu}$.

Hence, one deduces the Einstein field equations in vacuum:

$$G^{\mu\nu}\equiv \quad R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R=0$$

Classical motivation	Functional renormalizat
0	
The Einstein-Hilbert action	

The Einstein-Hilbert action

The geometrical content of General Relativity is encoded in the **Einstein-Hilbert action**:

on group

$$S_{\mathsf{EH}} = -\frac{1}{16\pi G_N} \int_{\mathcal{M}} \mathsf{d}^d x \sqrt{g} \, R \,, \qquad \qquad \partial \mathcal{M} = \emptyset$$

The principle of least action ($\delta S_{EH}=0$) requires that

$$0 = \frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \left[R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R \right] \delta g_{\mu\nu} \right)$$

for all $\delta g_{\mu\nu}.$ Hence, one deduces the Einstein field equations in vacuum:

$$G^{\mu\nu} \equiv R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R = 0$$

Daniel Becker

Asymptotic Safety and the Gibbons-Hawking Term

Classical motivation	Functional
•	
The Flores is 100 and a stress	

Functional renormalization group

Conclusion

The Einstein-Hilbert action: $\partial \mathcal{M} \neq \emptyset$

The geometrical content of General Relativity is encoded in the **Einstein-Hilbert action**:

$$S_{\mathsf{EH}} = -\frac{1}{16\pi G_N} \int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R \,, \qquad \qquad \partial \mathcal{M} \neq \emptyset$$

The principle of least action ($\delta S_{EH}=0$) requires that

$$0 = \frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathsf{d}^d x \sqrt{g} \left[G^{\mu\nu} + \frac{\mathsf{D}_{\sigma}}{\mathsf{D}} \left(g^{\mu\nu} D^{\sigma} - g^{\nu\sigma} D^{\mu} \right) \right] \delta g_{\mu\nu} \right)$$

for **all** $\delta g_{\mu\nu}$.

Classical motivation	Functional
•	
The Flore is 100 and a street	

The Einstein-Hilbert action: $\partial \mathcal{M} \neq \emptyset$

The geometrical content of General Relativity is encoded in the **Einstein-Hilbert action**:

renormalization group

$$S_{\mathsf{EH}} = -\frac{1}{16\pi G_N} \int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R \,, \qquad \qquad \partial \mathcal{M} \neq \emptyset$$

The principle of least action $(\delta S_{EH}=0)$ requires that

$$0 = \frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, G^{\mu\nu} \delta g_{\mu\nu} + \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} x \sqrt{H} \, H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} \right)$$

for all $\delta g_{\mu\nu}$, satisfying Dirichlet boundary conditions $\delta g_{\mu\nu}|_{\partial\mathcal{M}} = 0$.

Asymptotic Safety and the Gibbons-Hawking Term

Daniel Becker

Conclusion

The running Gibbons-Hawking term

Classical motivation	Functiona
•	
The Flore de Little de la des	

Functional renormalization group O

The Einstein-Hilbert action: $\partial \mathcal{M} \neq \emptyset$

The geometrical content of General Relativity is encoded in the **Einstein-Hilbert action**:

$$S_{\mathsf{EH}} = -\frac{1}{16\pi G_N} \int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R \,, \qquad \qquad \partial \mathcal{M} \neq \emptyset$$

The principle of least action ($\delta S_{EH}=0$) requires that

$$0 = \frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, G^{\mu\nu} \delta g_{\mu\nu} + \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} x \sqrt{H} \, H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} \right)$$

for all $\delta g_{\mu\nu}$, satisfying Dirichlet boundary conditions $\delta g_{\mu\nu}|_{\partial \mathcal{M}} = 0$.

- $H_{\mu\nu} = g_{\mu\nu}|_{\partial\mathcal{M}}$ induced metric on $\partial\mathcal{M}$
- n^{μ} normal vector on $\partial \mathcal{M}$

Classical motivation	Functiona
•	
The Floreste 100 and and as	

Functional renormalization group O

Conclusion

The Einstein-Hilbert action: $\partial \mathcal{M} \neq \emptyset$

The geometrical content of General Relativity is encoded in the **Einstein-Hilbert action**:

$$S_{\mathsf{EH}} = -\frac{1}{16\pi G_N} \int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R \,, \qquad \qquad \partial \mathcal{M} \neq \emptyset$$

The principle of least action $(\delta S_{EH}=0)$ requires that

$$0 = \frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, G^{\mu\nu} \delta g_{\mu\nu} + \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} x \sqrt{H} \, H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} \right)$$

for all $\delta g_{\mu\nu}$, satisfying Dirichlet boundary conditions $\delta g_{\mu\nu}|_{\partial\mathcal{M}} = 0$.

Hence, the boundary contribution obstructs the derivation of field equations as stationary points of $S_{\rm EH}.$

Classical motivation	Functional rei
<u>o</u>	
0	
The Gibbons-Hawking (York) action	

Functional renormalization group

Conclusion

The Gibbons-Hawking (York) term

Einstein field equation can be recovered by adding a boundary term to $S_{\rm EH}$ which has the variation:

$$\delta S_{\rm GHY} = -\frac{1}{16\pi G_N} \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, H^{\alpha\beta} n^\mu D_\mu \delta g_{\alpha\beta}$$

Note the identity

$$+2 \cdot \delta K|_{\text{Dirichlet}} = H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} |_{\text{Dirichlet}} , \qquad \delta H_{\mu\nu} = 0 \,.$$

where

K_{µν} = D_µn_ν is the extrinsic curvature of ∂M
 and K = H^{µν}K_{µν} is its trace

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Co
0			
The Gibbons-Hawking (York) action			

Einstein field equation can be recovered by adding a boundary term to $S_{\rm EH}$ which has the variation:

$$\delta S_{\rm GHY} = -\frac{1}{16\pi G_N} \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, H^{\alpha\beta} n^\mu D_\mu \delta g_{\alpha\beta}$$

Note the identity

$$+2 \cdot \delta K|_{\text{Dirichlet}} = H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} |_{\text{Dirichlet}} , \qquad \delta H_{\mu\nu} = 0 \,.$$

where

K_{µν} = D_µn_ν is the extrinsic curvature of ∂M
 and K = H^{µν}K_{µν} is its trace

Asymptotic Safety and the Gibbons-Hawking Term

nclusion

Einstein field equation can be recovered by adding a boundary term to $S_{\rm EH}$ which has the variation:

$$\delta S_{\rm GHY} = -\frac{1}{16\pi G_N} \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, H^{\alpha\beta} n^\mu D_\mu \delta g_{\alpha\beta}$$

Note the identity

$$+2 \cdot \delta K|_{\text{Dirichlet}} = H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} |_{\text{Dirichlet}} , \qquad \delta H_{\mu\nu} = 0 \,.$$

where

• $K_{\mu\nu} = D_{\mu}n_{\nu}$ is the extrinsic curvature of $\partial \mathcal{M}$

• and $K = H^{\mu\nu}K_{\mu\nu}$ is its trace

Einstein field equation can be recovered by adding a boundary term to $S_{\rm EH}$ which has the variation:

$$\delta S_{\rm GHY} = -\frac{1}{16\pi G_N} \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta}$$

Note the identity

$$+2 \cdot \delta K|_{\text{Dirichlet}} = H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} \Big|_{\text{Dirichlet}} , \qquad \delta H_{\mu\nu} = 0 \,.$$

where

- $K_{\mu\nu} = D_{\mu}n_{\nu}$ is the extrinsic curvature of $\partial \mathcal{M}$
- and $K = H^{\mu\nu}K_{\mu\nu}$ is its trace

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Con
0			
The Gibbons-Hawking (York)	action		

Einstein field equation can be recovered by adding a boundary term to $S_{\rm EH}$ which has the variation:

$$\delta S_{\rm GHY} = -\frac{2}{16\pi G_N} \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, \delta K$$

Note the identity

$$+2 \cdot \delta K|_{\text{Dirichlet}} = H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} |_{\text{Dirichlet}} , \qquad \delta H_{\mu\nu} = 0 \,.$$

where

- $K_{\mu\nu} = D_{\mu}n_{\nu}$ is the extrinsic curvature of $\partial \mathcal{M}$
- and $K = H^{\mu\nu}K_{\mu\nu}$ is its trace

lusion

Einstein field equation can be recovered by adding a boundary term to $S_{\rm EH}$ which has the variation:

$$\delta S_{\mathsf{GHY}} = \delta \left(-\frac{2}{16\pi G_N} \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} x \sqrt{H} \, K \right)$$

Note the identity

$$+2 \cdot \delta K|_{\text{Dirichlet}} = H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} |_{\text{Dirichlet}} , \qquad \delta H_{\mu\nu} = 0 \,.$$

where

- $K_{\mu\nu} = D_{\mu}n_{\nu}$ is the extrinsic curvature of $\partial \mathcal{M}$
- and $K = H^{\mu\nu}K_{\mu\nu}$ is its trace

Classical mo	tivation Functional renormalization grou	up The running Gibbons-Hawking term	Conclu
0 •			
The Gibbon	s-Hawking (York) action		

Einstein field equation can be recovered by adding a boundary term to S_{EH} the Gibbons-Hawking (York) action:

$$S_{\rm GHY} = -\frac{2}{16\pi G_N} \int_{\partial \mathcal{M}} \mathrm{d}^{d-1} x \sqrt{H} \, K$$

Note the identity

$$+2 \cdot \delta K|_{\text{Dirichlet}} = H^{\alpha\beta} n^{\mu} D_{\mu} \delta g_{\alpha\beta} |_{\text{Dirichlet}} , \qquad \delta H_{\mu\nu} = 0 \,.$$

where

- $K_{\mu\nu} = D_{\mu}n_{\nu}$ is the extrinsic curvature of $\partial \mathcal{M}$
- and $K = H^{\mu\nu}K_{\mu\nu}$ is its trace

sion

$$S_{\mathsf{EH-GHY}} = -\frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R + 2 \oint_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, H^{\mu\nu} K_{\mu\nu} \right)$$

yields the Einstein equation as a stationary point in case of

- non-empty boundary $\partial \mathcal{M} \neq \emptyset$
- Dirichlet boundary condition $\delta g_{\mu\nu}|_{\partial\mathcal{M}} = 0$
- a relative coefficient of exactly +2

$$S_{\mathsf{EH-GHY}} = -\frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R + 2 \oint_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, H^{\mu\nu} K_{\mu\nu} \right)$$

yields the Einstein equation as a stationary point in case of

- non-empty boundary $\partial \mathcal{M} \neq \emptyset$
- Dirichlet boundary condition $\delta g_{\mu\nu}|_{\partial\mathcal{M}} = 0$
- a relative coefficient of exactly +2

$$S_{\mathsf{EH-GHY}} = -\frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R + 2 \oint_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, H^{\mu\nu} K_{\mu\nu} \right)$$

yields the Einstein equation as a stationary point in case of

- non-empty boundary $\partial \mathcal{M} \neq \emptyset$
- Dirichlet boundary condition $\delta g_{\mu\nu}|_{\partial\mathcal{M}} = 0$
- a relative coefficient of exactly +2

$$S_{\mathsf{EH-GHY}} = -\frac{1}{16\pi G_N} \left(\int_{\mathcal{M}} \mathrm{d}^d x \sqrt{g} \, R + 2 \oint_{\partial \mathcal{M}} \mathrm{d}^{d-1} y \sqrt{H} \, H^{\mu\nu} K_{\mu\nu} \right)$$

yields the Einstein equation as a stationary point in case of

- non-empty boundary $\partial \mathcal{M} \neq \emptyset$
- Dirichlet boundary condition $\delta g_{\mu\nu}|_{\partial\mathcal{M}} = 0$
- a relative coefficient of exactly +2

Johannes Gutenberg University Mainz, Germany

Classical motivation

Ö

С

č

Functional renormalization group

Daniel Becker Asymptotic Safety and the Gibbons-Hawking Term Johannes Gutenberg University Mainz, Germany

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	0		
Functional renormalization group eq	uation		

$$\left\{ \left. \Gamma_{k} \left[\right. \right] \right|$$

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	0		
Functional renormalization group eq	uation		

$$\left\{ \left. \Gamma_{k}\left[g_{\mu
u} \right. \right. \right]
ight|$$

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	0		
Functional renormalization group eq	uation		

 $\left\{ \Gamma_k \left[g_{\mu\nu}, \bar{g}_{\mu\nu} \right] \right|$

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	•		
Functional renormalization group eq	uation		

 $\left\{ \left. \Gamma_{k}\left[g_{\mu\nu},\bar{g}_{\mu\nu},C^{\mu},\bar{C}_{\mu}\right]\right| \right.$

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	•		
Functional renormalization group eq	juation		

... acts on theory space:

 $\left\{ \left. \Gamma_k\left[g_{\mu\nu}, \bar{g}_{\mu\nu}, C^{\mu}, \bar{C}_{\mu}\right] \right| \text{ invariant under diffeomorphisms} \right\}$

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	• 0		
Functional renormalization group equ	uation		

... acts on theory space:

 $\left\{ \left. \Gamma_k\left[g_{\mu\nu}, \bar{g}_{\mu\nu}, C^{\mu}, \bar{C}_{\mu}\right] \right| \text{ invariant under diffeomorphisms} \right\}$

Functional renormalization group equation

 $k\partial_k\Gamma_k$

exact, closed functional differential equation

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	•		
Functional renormalization group equ	Jation		

... acts on theory space:

 $\left\{ \left. \Gamma_k\left[g_{\mu\nu}, \bar{g}_{\mu\nu}, C^{\mu}, \bar{C}_{\mu}\right] \right| \text{ invariant under diffeomorphisms} \right\}$

Functional renormalization group equation

$$k\partial_k\Gamma_k = +\frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + R_k\right)^{-1} \cdot k\partial_k R_k\right]$$

exact, closed functional differential equation

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
Functional renormalization group equ	Jation		

... acts on theory space:

$$\left\{ \left. \Gamma_k \left[g_{\mu\nu}, \bar{g}_{\mu\nu}, C^{\mu}, \bar{C}_{\mu} \right] \right| \text{ invariant under diffeomorphisms} \right\}$$

Functional renormalization group equation

$$k\partial_k\Gamma_k = +\frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + R_k\right)^{-1} \cdot k\partial_k R_k\right]$$

exact, closed functional differential equation

Truncations

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	•		
Functional renormalization group equ	uation		l .

... acts on theory space:

 $\left\{ \left. \Gamma_k\left[g_{\mu\nu}, \bar{g}_{\mu\nu}, C^{\mu}, \bar{C}_{\mu}\right] \right| \text{ invariant under diffeomorphisms} \right\}$

Functional renormalization group equation

$$k\partial_k\Gamma_k = +\frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + R_k\right)^{-1} \cdot k\partial_k R_k\right]$$

exact, closed functional differential equation

Truncations

$$\Gamma_k = u_k^{(a)} \int \sqrt{g} + u_k^{(b)} \int \sqrt{g} R + u_k^{(c)} \int \sqrt{g} R^{\mu\nu} R_{\mu\nu} + \dots$$

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
	•		
Functional renormalization group equ	uation		l .

... acts on theory space:

 $\left\{ \left. \Gamma_k\left[g_{\mu\nu}, \bar{g}_{\mu\nu}, C^{\mu}, \bar{C}_{\mu}\right] \right| \text{ invariant under diffeomorphisms} \right\}$

Functional renormalization group equation

$$k\partial_k\Gamma_k = +\frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + R_k\right)^{-1} \cdot k\partial_k R_k\right]$$

exact, closed functional differential equation

Truncations

$$\Gamma_k = u_k^{(a)} \int \sqrt{g} + u_k^{(b)} \int \sqrt{g} R + u_k^{(c)} \int \sqrt{g} R^{\mu\nu} R_{\mu\nu} + \dots$$

 $\{u_k^{(n)}\}$ coordinatize the **infinite** dimensional theory space

Daniel Becker

Classical motivation	Functional renormalization group	The running Gibbons-Hawking term	Conclusion
Functional renormalization group eq	uation		

... acts on theory space:

 $\left\{ \left. \Gamma_k\left[g_{\mu\nu}, \bar{g}_{\mu\nu}, C^{\mu}, \bar{C}_{\mu} \right] \right| \text{ invariant under diffeomorphisms} \right\}$

Functional renormalization group equation

$$k\partial_k\Gamma_k = +\frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + R_k\right)^{-1} \cdot k\partial_k R_k\right]$$

exact, closed functional differential equation

Truncations

Truncations: subspaces of span $\{u_k^{(n)}\}$

$$\Gamma_k = u_k^{(a)} \int \sqrt{g} + u_k^{(b)} \int \sqrt{g} R + u_k^{(c)} \int \sqrt{g} R^{\mu\nu} R_{\mu\nu} + \dots$$

 $\{u_k^{(n)}\}$ coordinatize the **infinite** dimensional theory space

Asymptotic Safety and the Gibbons-Hawking Term

Daniel Becker

Restricts the possible evolutions of Γ_k by physical arguments

- Existence of a Non-Gaussian fixed point (NG-FP) Fundamental (non-trivial) theory in the UV
 - $\mathscr{S}_{UV} = \{ actions pulled into the NG-FP under the inverse flow <math>\}$ (inverse flow = increasing k)
- Finite dimensional UV-critical hypersurface \mathscr{S}_{UV} $\dim(\mathscr{S}_{UV}) \equiv n < \infty : \# \text{ of measurements needed to fix initial conditions}$

Restricts the possible evolutions of Γ_k by physical arguments

• Existence of a Non-Gaussian fixed point (NG-FP)

• Finite dimensional UV-critical hypersurface \mathscr{S}_{UV} $\dim(\mathscr{S}_{UV}) \equiv n < \infty : \# \text{ of measurements needed to fix initial conditions}$

Restricts the possible evolutions of Γ_k by physical arguments

• Existence of a Non-Gaussian fixed point (NG-FP) Fundamental (non-trivial) theory in the UV

> $\mathscr{S}_{UV} = \{ \text{actions pulled into the NG-FP under the inverse flow} \}$ (inverse flow = increasing k)

• Finite dimensional UV-critical hypersurface \mathscr{S}_{UV} $\dim(\mathscr{S}_{UV}) \equiv n < \infty : \# \text{ of measurements needed to fix initial conditions}$

Restricts the possible evolutions of Γ_k by physical arguments

- Existence of a Non-Gaussian fixed point (NG-FP) Fundamental (non-trivial) theory in the UV
 - $\mathscr{S}_{UV} = \{ actions pulled into the NG-FP under the inverse flow \} (inverse flow = increasing k)$
- Finite dimensional UV-critical hypersurface \mathscr{S}_{UV} $\dim(\mathscr{S}_{\text{UV}}) \equiv n < \infty : \# \text{ of measurements needed to fix initial conditions}$

Restricts the possible evolutions of Γ_k by physical arguments

• Existence of a Non-Gaussian fixed point (NG-FP) Fundamental (non-trivial) theory in the UV

 \Rightarrow

 $\mathscr{S}_{UV} = \{ actions pulled into the NG-FP under the inverse flow \}$ (inverse flow = increasing k)

• Finite dimensional UV-critical hypersurface \mathscr{S}_{UV} $\dim(\mathscr{S}_{\text{UV}}) \equiv n < \infty : \#$ of measurements needed to fix initial conditions

 \Rightarrow

Restricts the possible evolutions of Γ_k by physical arguments

- Existence of a Non-Gaussian fixed point (NG-FP) Fundamental (non-trivial) theory in the UV
 - $\mathscr{S}_{UV} = \{ actions pulled into the NG-FP under the inverse flow \} (inverse flow = increasing k)$
- Finite dimensional UV-critical hypersurface $\mathcal{S}_{\rm UV}$

 $\dim(\mathscr{S}_{\mathrm{UV}})\equiv n<\infty:$ # of measurements needed to fix initial conditions

Restricts the possible evolutions of Γ_k by physical arguments

 Existence of a Non-Gaussian fixed point (NG-FP) Fundamental (non-trivial) theory in the UV
 ⇒

 $\mathscr{S}_{UV} = \{ actions pulled into the NG-FP under the inverse flow \} (inverse flow = increasing k)$

• Finite dimensional UV-critical hypersurface \mathscr{S}_{UV}

 $\dim(\mathscr{S}_{\mathrm{UV}})\equiv n<\infty:\#$ of measurements needed to fix initial conditions

Classical motivation

Functional renormalization group O

Conclusion

The running Gibbons-Hawking term

Daniel Becker Asymptotic Safety and the Gibbons-Hawking Term Johannes Gutenberg University Mainz, Germany

EH-GHY-truncation

$\int_{\mathcal{M}} \sqrt{g}$	$\int_{\mathcal{M}} \sqrt{g}R$
$\int_{\partial \mathcal{M}} \sqrt{H}$	$\int_{\partial \mathcal{M}} \sqrt{H} K$

EH-GHY-truncation

$$\begin{split} \Gamma_k &= + u_k^{(a)} \int_{\mathcal{M}} \sqrt{g} + u_k^{(b)} \int_{\mathcal{M}} \sqrt{g} R \\ &+ u_k^{(c)} \int_{\partial \mathcal{M}} \sqrt{H} + u_k^{(d)} \int_{\partial \mathcal{M}} \sqrt{H} K \end{split}$$

EH-GHY-truncation

$$\Gamma_{\boldsymbol{k}} = + \frac{2\lambda_{k}k^{d}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g} - \frac{k^{d-2}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g}R \\ + \frac{2\lambda_{k}^{2}k^{d-1}}{16\pi g_{k}^{2}} \int_{\partial\mathcal{M}} \sqrt{H} - \frac{2k^{d-2}}{16\pi g_{k}^{2}} \int_{\partial\mathcal{M}} \sqrt{H}K$$

EH-GHY-truncation

$$\begin{split} \Gamma_{k} &= + \frac{2\lambda_{k}k^{d}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g} & - \frac{k^{d-2}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g}R \\ &+ \frac{2\lambda_{k}^{2}k^{d-1}}{16\pi g_{k}^{2}} \int_{\partial \mathcal{M}} \sqrt{H} & - \frac{2k^{d-2}}{16\pi g_{k}^{2}} \int_{\partial \mathcal{M}} \sqrt{H}K \end{split}$$

where $g_k,\,g_k^\partial$ dimensionless Newton type couplings on $\mathcal{M},\,\partial\mathcal{M}$

Truncation ansatz

EH-GHY-truncation

$$\begin{split} \Gamma_{k} &= + \frac{2\lambda_{k}k^{d}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g} & - \frac{k^{d-2}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g}R \\ &+ \frac{2\lambda_{k}^{0}k^{d-1}}{16\pi g_{k}^{0}} \int_{\partial \mathcal{M}} \sqrt{H} & - \frac{2k^{d-2}}{16\pi g_{k}^{0}} \int_{\partial \mathcal{M}} \sqrt{H}K \end{split}$$

where $\lambda_k, \, \lambda_k^\partial$ dimensionless cosmological type couplings on $\mathcal{M}, \, \partial \mathcal{M}$

EH-GHY-truncation

$$\Gamma_{k} = + \frac{2\lambda_{k}k^{d}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g} - \frac{k^{d-2}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g}R$$
$$+ \frac{2\lambda_{k}^{2}k^{d-1}}{16\pi g_{k}^{2}} \int_{\partial\mathcal{M}} \sqrt{H} - \frac{2k^{d-2}}{16\pi g_{k}^{2}} \int_{\partial\mathcal{M}} \sqrt{H}K$$

Dirichlet boundary conditions $\delta g_{\mu\nu}|_{\partial\mathcal{M}} =$ fixed, i.e.

 $(\text{metric fluctuations})|_{\partial \mathcal{M}} = 0 \,.$

EH-GHY-truncation

$$\Gamma_{\mathbf{k}} = + \frac{2\lambda_k k^d}{16\pi g_k} \int_{\mathcal{M}} \sqrt{g} \qquad - \frac{k^{d-2}}{16\pi g_k} \int_{\mathcal{M}} \sqrt{g}R \\ + \frac{2\lambda_k^2 k^{d-1}}{16\pi g_k^2} \int_{\partial \mathcal{M}} \sqrt{H} \qquad - \frac{2k^{d-2}}{16\pi g_k^\partial} \int_{\partial \mathcal{M}} \sqrt{H}K$$

Results

EH-GHY-truncation

$$\Gamma_{k} = + \frac{2\lambda_{k}k^{d}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g} - \frac{k^{d-2}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g}R + \frac{2\lambda_{k}^{2}k^{d-1}}{16\pi g_{k}^{2}} \int_{\partial\mathcal{M}} \sqrt{H} - \frac{2k^{d-2}}{16\pi g_{k}^{\partial}} \int_{\partial\mathcal{M}} \sqrt{H}K$$

gk
 λ_k NG fixed point g_k
 λ_k 0.707
0.193 ψ
 g_k^{∂}
 λ_k^{∂} -2.292
 ψ
 λ_k^{∂}

Daniel Becker

Asymptotic Safety and the Gibbons-Hawking Term

EH-GHY-truncation

$$\Gamma_{k} = + \frac{2\lambda_{k}k^{d}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g} - \frac{k^{d-2}}{16\pi g_{k}} \int_{\mathcal{M}} \sqrt{g}R + \frac{2\lambda_{k}^{2}k^{d-1}}{16\pi g_{k}^{2}} \int_{\partial\mathcal{M}} \sqrt{H} - \frac{2k^{d-2}}{16\pi g_{k}^{2}} \int_{\partial\mathcal{M}} \sqrt{H}K$$

Daniel Becker

Asymptotic Safety and the Gibbons-Hawking Term

Running action in EH-GHY truncation:

$$\Gamma_k = \frac{k^2}{16\pi} \left(\frac{1}{g_k} \int_{\mathcal{M}} \sqrt{g} R + \frac{2}{g_k^{\partial}} \int_{\partial \mathcal{M}} \sqrt{H} K \right) + \dots$$

Running action in EH-GHY truncation:

$$\Gamma_k = \frac{k^2}{16\pi} \left(\frac{1}{g_k} \int_{\mathcal{M}} \sqrt{g} R + \frac{2}{g_k^{\partial}} \int_{\partial \mathcal{M}} \sqrt{H} K \right) + \dots$$

Beta-functions of Newton-type couplings:

The running Gibbons-Hawking term

Running action in EH-GHY truncation: mismatch, $\partial_k g_k \neq \partial_k g_k^{\partial}$

$$\Gamma_k = \frac{k^2}{16\pi} \left(\frac{1}{g_k} \int_{\mathcal{M}} \sqrt{g} \, R + \frac{2}{g_k^{\partial}} \int_{\partial \mathcal{M}} \sqrt{H} \, K \right) + \dots$$

Beta-functions of Newton-type couplings:

 $\partial_k g_k \neq \partial_k g_k^\partial$

The running Gibbons-Hawking term

Running action in EH-GHY truncation: mismatch, $\partial_k g_k \neq \partial_k g_k^{\partial}$

$$\Gamma_k = \frac{k^2}{16\pi} \left(\frac{1}{g_k} \int_{\mathcal{M}} \sqrt{g} R + \frac{2}{g_k^{\partial}} \int_{\partial \mathcal{M}} \sqrt{H} K \right) + \dots$$

'Correct' relative coefficient at most at one scale

The running Gibbons-Hawking term

Running action in EH-GHY truncation: mismatch, $\partial_k g_k \neq \partial_k g_k^{\partial}$

$$\Gamma_k = \frac{k^2}{16\pi} \left(\frac{1}{g_k} \int_{\mathcal{M}} \sqrt{g} R + \frac{2}{g_k^{\partial}} \int_{\partial \mathcal{M}} \sqrt{H} K \right) + \dots$$

'Correct' relative coefficient at most at one scale

Example: d = 4, near G-FP $(g=\lambda=0)$

Daniel Becker

The running Gibbons-Hawking term

Running action in EH-GHY truncation: mismatch, $\partial_k g_k \neq \partial_k g_k^{\partial}$

$$\Gamma_k = \frac{k^2}{16\pi} \left(\frac{1}{g_k} \int_{\mathcal{M}} \sqrt{g} R + \frac{2}{g_k^{\partial}} \int_{\partial \mathcal{M}} \sqrt{H} K \right) + \dots$$

'Correct' relative coefficient at most at one scale

Example: d = 4, near G-FP $(g=\lambda=0)$

First approximation to the scale dependence of g_k , g_k^{∂} :

$$g_k = g_0 \left(1 - \frac{11}{6\pi} g_0 \cdot k^2 \right) , \qquad g_k^{\partial} = g_0^{\partial} \left(1 + \frac{1}{6\pi} g_0^{\partial} \cdot k^2 \right)$$

Daniel Becker

Asymptotic Safety and the Gibbons-Hawking Term

sical motivation	Functional renormalization group	The running Gibbons-Hawking term

Running action in EH-GHY truncation: mismatch, $\partial_k g_k \neq \partial_k g_k^{\partial}$

$$\Gamma_k = \frac{k^2}{16\pi g_0} \left(\frac{1}{1 - ck^2} \int_{\mathcal{M}} \sqrt{g} \, R + \frac{2}{1 + \tilde{c}k^2} \int_{\partial \mathcal{M}} \sqrt{H} \, K \right) + \dots \quad c, \tilde{c} > 0$$

'Correct' relative coefficient at most at one scale , k=0, say. $(g_0=g_0^\partial)$

Example: d = 4, near G-FP $(g=\lambda=0)$

First approximation to the scale dependence of g_k, g_k^{∂} :

$$g_k = g_0 \left(1 - \frac{11}{6\pi} g_0 \cdot k^2 \right) , \qquad g_k^\partial = g_0^\partial \left(1 + \frac{1}{6\pi} g_0^\partial \cdot k^2 \right)$$

Daniel Becker

Asymptotic Safety and the Gibbons-Hawking Term

Conclusion

Classical general relativity

- Gibbons-Hawking-(York) term needed for $\partial \mathcal{M} \neq \emptyset$
- Relative coefficient has to be +2

- Einstein-Hilbert subsystem is uneffected by boundary contribution
- Truncation shows a Non-Gaussian fixed point
- Couplings for EH and GHY show different scale dependence
- Well defined variational principle at one scale only, with the standard FRGE . . .

Classical general relativity

- Gibbons-Hawking-(York) term needed for $\partial \mathcal{M} \neq \emptyset$
- Relative coefficient has to be +2

- Einstein-Hilbert subsystem is uneffected by boundary contribution
- Truncation shows a Non-Gaussian fixed point
- Couplings for EH and GHY show different scale dependence
- Well defined variational principle at one scale only, with the standard FRGE . . .

Classical general relativity

- Gibbons-Hawking-(York) term needed for $\partial \mathcal{M} \neq \emptyset$
- Relative coefficient has to be +2

- Einstein-Hilbert subsystem is uneffected by boundary contribution
- Truncation shows a Non-Gaussian fixed point
- Couplings for EH and GHY show different scale dependence
- Well defined variational principle at one scale only, with the standard FRGE . . .

Classical general relativity

- Gibbons-Hawking-(York) term needed for $\partial \mathcal{M} \neq \emptyset$
- Relative coefficient has to be +2

- Einstein-Hilbert subsystem is uneffected by boundary contribution
- Truncation shows a Non-Gaussian fixed point
- Couplings for EH and GHY show different scale dependence
- Well defined variational principle at one scale only, with the standard FRGE . . .

Classical general relativity

- Gibbons-Hawking-(York) term needed for $\partial \mathcal{M} \neq \emptyset$
- Relative coefficient has to be +2

- Einstein-Hilbert subsystem is uneffected by boundary contribution
- Truncation shows a Non-Gaussian fixed point
- Couplings for EH and GHY show different scale dependence
- Well defined variational principle at one scale only, with the standard FRGE . . .

Classical general relativity

- Gibbons-Hawking-(York) term needed for $\partial \mathcal{M} \neq \emptyset$
- Relative coefficient has to be +2

- Einstein-Hilbert subsystem is uneffected by boundary contribution
- Truncation shows a Non-Gaussian fixed point
- Couplings for EH and GHY show different scale dependence
- Well defined variational principle at one scale only, with the standard FRGE . . .