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Introduction: the ultraviolet problems of gravity

Our currently agreed picture of fundamental physics involves four
principal forces: strong, weak, electromagnetic; and gravitational.

I The first three are well described by the Standard Model, based
on the Yang-Mills gauge group
SU(3)strong × (SU(2)× U(1))

electroweak
. In the process of unifying

these forces, one necessarily has had to postulate new physical
phenomena going beyond the desired unification. Thus, in order
to make the SU(2)× U(1) electroweak unification, in addition to
the desired charged W± intermediate vector fields (needed to
resolve the nonrenormalizable 4-fermion Fermi theory), one had
to accept also the neutral Z0. The experimental discovery of this
particle was a triumph of the Standard Model.
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I Another key ingredient is the notion of spontaneous symmetry
breaking: symmetries of the field equations may be broken by the
vacuum, thus becoming non-linearly realized and allowing for the
generation of masses for gauge fields – the Higgs effect.

I The Standard Model is renormalizable: although ultraviolet
infinities exist, they can be corralled into renormalizations of a
finite set of parameters, allowing for consistent perturbative
analysis of the rest of the theory.

I And most important, the Standard Model is now confirmed to
very high precision by experiments at CERN, Fermilab and other
laboratories.
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Gravity

Einstein’s General Theory of Relativity, on the other hand, is
nonrenormalizable, causing it to break down when interpreted as a
quantum theory. One immediate indication of this is the dimensional
character of the gravitational coupling constant κ =

√
8πG, which has

dimensions of length (in units where ~ = c = 1).

Einstein gravity’s uncontrolled divergences also corrupt otherwise
well-behaved theories.

Consider a radiative correction to the Higgs mass caused by a
gauge-particle emission and reabsorption

�
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In the Standard Model, with gauge coupling constant g, incoming
momentum p and loop momentum k, the corresponding integral with
a cutoff Λ has the form

g2

∫ Λ

d4k
k2

k2((p+ k)2 +m2)

which has logarithmic divergences ∼ g2 ln Λ p2, requiring a
counterterm (∂φ)2 and another ∼ g2 ln Λm2, requiring a counterterm
m2φ2. Since both of these counterterm operators are present in the
Standard Model Lagrangian from the start, they can be accounted for
by standard wavefunction and mass renormalizations.
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When the system is coupled to gravity, however, the ultraviolet
divergences get much worse:

κ2

∫ Λ

d4k
k4

k2((p+ k)2 +m2)

producing now logarithmic divergences additional to the flat-space
SM divergences ∼ κ2 ln Λ (p4 ,m2p2 ,m4). Th p4 divergence would
require a counterterm (∂2φ)2, which is an operator not present in the
original theory.

I Moreover, this bad ultraviolet behavior gets worse and worse as
the loop-order increases. At two loops, one encounters
divergences ∼ κ4 ln Λ p6 + . . . , requiring a counterterm like
(∂3φ)2 . Each new loop adds 2 to the divergence count.

Thus, Einstein gravity is not only uncontrolled in its own divergence
structure; it also renders otherwise well-behaved matter theories such
as the Standard Model uncontrollable when coupled to gravity.
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Gravity and supergravity counterterms

When confronting the ultraviolet problem of quantum gravity, one
wants to focus on the most serious divergent structures, whose
elimination would require the introduction of genuinely new operators
not present in the classical Lagrangian. For this purpose, candidate
counterterms that vanish subject to the classical field equations can be
handled by a more standard procedure, by making field-redefinition
renormalizations, generalizing the wavefunction renormalizations of
renormalizable theories.

Leaving these more easily handled divergence structures to one side,
one searches for counterterm structures that do not vanish subject to
the classical equations of motion.

• Pure General Relativity has a näıve degree of divergence at L loops
in spacetime dimension D given by ∆ = (D − 2)L+ 2.
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• Using dimensional regularization to ensure a manifestly
generally-coordinate-invariant quantization, one captures only the
logarithmic divergences of a straight momentum-cutoff procedure. To
balance engineering dimensions, this requires a number of factors of
external momentum to be present on the external lines of a divergent
diagram, in order to pick out just the logarithmically divergent part.

• Accordingly, at L = 2 loops in D = 4 dimensions, one expects
∆ = 6, which could be achieved by counterterms like∫
d4x
√
−g(RµνρσR

ρσλτRλτ
µν) or

∫
d4x
√
−g(Rµνρσ Rρσµν) where

is a covariant d’Alembertian. However, use of the Bianchi identities
shows that the second of these types vanishes subject to the classical
equations of motion, so it may be dealt with by field-redefinition
renormalizations. Only the first is a truly dangerous type. And
indeed, in pure GR, such a (curvature)3 counterterm does occur at
the 2-loop order in D = 4. Goroff & Sagnotti 1985; van de Ven 1992
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• In supergravity theories, local supersymmetry places additional
constraints on counterterms. This has the consequence that the 2-loop
divergence of pure GR is absent. In pure supergravities, the first
counterterm that does not vanish subject to the classical equations of
motion (“on-shell” in the jargon) then occurs at the 3-loop level.

The corresponding D = 4 counterterm has ∆ = 8 and starts with a
purely gravitational part that is quadratic in the Bel-Robinson tensor,
i.e. quartic in curvatures Deser, Kay & K.S.S. 1977∫

d4x
√
−gTµνρσTµνρσ , Tµνρσ = Rµ

α
ν
βRρασβ + ∗Rµ

α
ν
β ∗Rρασβ

For lesser supergravities (N ≤ 4 independent gravitini), extensions of
this structure remain as candidates for the first anticipated serious
nonrenormalizable divergence.
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String Theory
The fundamental excitations of String Theory are not point particles,
as in ordinary quantum field theories, but extended objects. Thus,
point-particle worldline interactions such as

�
become smoothed out to string worldsheet interactions like

with a consequent loss of sharpness in the spacetime zone of the
interaction.

13 / 80



• The field-theory propagator� which has the
usual overall momentum-space 1

k2 structure

becomes in closed-string theory that for a cylinder
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with characteristic string length scale `s and momentum-space

structure e−α
′k2

k2 where α′ is the string slope parameter, related to the

characteristic string length scale by α′ =
`2s

2~2c2 .

• The decreasing exponentials arising from string propagators give
rise to convergent loop diagrams for quantum corrections, yielding
effectively a cutoff to the field-theory divergences at a scale
Λ ∼ (`s)

−1.
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Reparametrization invariance
Begin with the analog of a relativistic particle, whose action is
obtained geometrically from the invariant proper length of its
worldline

Particle worldline

giving thus a worldline reparametrization-invariant action

Iparticle = −m
∫
dτ

(
−dx

µ

dτ

dxν

dτ
gµν(x)

) 1
2
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This worldline action has the following manifest local invariances:

1. Spacetime general covariance

xµ → xµ
′
(x) g′µν(x′) =

∂xρ

∂xµ′
∂xσ

∂xν′
gρσ(x)

2. worldline reparametrization invariance

τ → τ ′
x′µ(τ ′) = xµ(τ) worldline scalar

dxµ

dτ →
dxµ

dτ ′ = dxµ

dτ
dτ
dτ ′

• The worldline reparametrization invariance is physically important
because it removes a negative-energy mode: for a metric gµν of
Minkowski signature (−+ + + . . .), the x0(τ) “scalar field” along the
d = 1 worldline has the wrong sign of kinetic energy. However, this
potential ghost mode is precisely removed from the theory by the
worldline reparametrization invariance.
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• As is generally the case for gauge theories, the worldline
reparametrization invariance gives rise, in the Hamiltonian formalism,
to a constraint on the conjugate momenta:

pµpνg
µν(x) = −m2 , where pµ =

∂L
∂
(
∂xµ

∂τ

)
• Thus, for a particle in D dimensional spacetime, (D − 1) degrees of
freedom remain after taking into account the worldline
reparametrization invariance and the corresponding Hamiltonian
constraint.

• The constraint is recognized as the mass-shell condition for the
relativistic particle.
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The string action
Now generalize the relativistic particle action to that of a relativistic
extended object with intrinsic spatial dimensionality p = 1. Instead of
a worldline, we now have a 2-dimensional worldsheet (illustrated here
for an open string; for a closed string, one needs to identify σ = 0 and
σ = π):

Open string worldsheet
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The string worldsheet action is then the reparametrization-invariant
area of the worldsheet W:

Istring = −T
∫
W
d2ξ
(
− det

(
∂ix

µ(ξ)∂jx
ν(ξ)gµν(x(ξ)

)) 1
2

As in the particle case, one has a number of local worldsheet
invariances:

1. Spacetime general covariance xµ(τ, σ)→ xµ
′
(τ, σ)

2. d = 2 worldsheet reparametrization invariance
x′
µ
(τ ′, σ′) = xµ(τ, σ)

3. Exceptionally for the d = 2↔ p = 1 case among the general class
of “p-branes”, one has an additional local worldsheet invariance:
Weyl invariance.
• Weyl invariance is crucial to the ability to carry out
quantization of the string.
• Jealously preserving it leads to the notion of a critical
dimension for string theory.
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To see the Weyl invariance, reformulate the string action with an
independent worldsheet metric γij(ξ) Brink, diVecchia & Howe 1977; Polyakov 1981 :

Istring BdVH = −1

2
T

∫
d2ξ
√
−det γ

(
γij(ξ)Mij

)
where Mij = ∂ix

µ∂jx
νgµν(x) is the induced metric on the worldsheet

and γij is the matrix inverse of γjk.

• Varying γij as an independent field, obtain its field equation
(γikγjl − 1

2γ
ijγkl)Mkl = 0 . Note that for d = 2 worldsheet

dimensions, the trace of this equation vanishes identically:
γklMkl − 1

2γ
ijγijγ

klMkl ≡ 0 .

• This weakening of the set of algebraic equations for γij corresponds
to the local Weyl invariance of the BdVH action:

γij → Ω(ξ)γij

ξi → ξi

where Ω(ξ) is an arbitrary positive local scale factor.
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Open and closed strings

Varying the string action, one obtains the algebraic equation
determining γij(ξ) = Ω(ξ)Mij , with Ω(ξ) left undetermined, and the
d = 2 covariant wave equation for xµ(ξ): ∇i(γ,g)∂ix

µ = 0 .

• For closed bosonic strings, the above equations, plus periodicity in
the spatial worldsheet coordinate σ (conventionally taken to identify
σ = 0 with σ = π), gives the full classical dynamical system of
closed-string equations.

• For open strings, the σ coordinate is conventionally considered to
take its values in the closed interval σ ∈ [0, π].

• Then, considering the surface term arising in the variation of IBdVH

from integration by parts, one finds in addition the Neumann
boundary conditions:

M0iε
ik∂kx

µ = 0 at σ = 0 , π
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String spectra

Considering strings in a flat spacetime background, gµν = ηµν , and
picking the conformal gauge for the worldsheet reparametrization
symmetries, γij = Ω(ξ)diag(−1, 1) , the xµ(ξ) wave equation and
open-string boundary conditions become

xµ = 0 where is the flat-space d = 2 d’Alembertian

∂

∂σ
xµ = 0 at σ = 0 , π

• These may be interpreted classically as requiring waves to travel
back and forth along the string at speed c = 1, while the boundary
conditions imply that the endpoints of the open string travel through
the embedding spacetime at c = 1.

• For closed strings, there are periodicity conditions instead of
reflective boundary conditions. In that case, there can be independent
left- and right-moving waves travelling around the string at speed
c = 1.
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• A simple solution to the open-string equations of motion and
boundary conditions is

x0 =
1

2
(p+ +

A2

p+
)τ x3 =

1

2
(p+ − A2

p+
)τ

x1 = A cosσ cos τ x2 = A cosσ sin τ

• Boosting to a Minkowski reference frame where x3 = 0, find

p+ = A2

p+ = ±A; in this frame, the center-of-mass of the open string at

σ = π/2 remains stationary while the string profile at any time τ
describes a straight line of length 2A rotating with period 2πA (with
respect to the background Minkowski time t = x0 = Aτ).

• The total string energy for this solution is E = π
2 `T , where ` = 2A

is the string length. Thus, the parameter T should be interpreted as
string tension.

• The angular momentum for this solution is J3 = π
8 `

2T = E2

2πT . This
linear relationship between angular momentum and (energy)2 is
known as Regge behavior.
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• Make a rough Bohr-Sommerfeld estimate of the quantum spectrum,
requiring |J | = n~ , n ∈ Z and considering the excitations in their

rest frames where E = M . Then n = |J|
~ = α′M2 where α′ = 1

2π~cT is
the string slope parameter. The quantized states lie on linear Regge
trajectories making an angle α′ in a J/~ versus M2 plot:

• Of course, finding such Regge trajectories in the particle spectrum
would be a spectacular confirmation of string theory.
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Intercepts and massless states

The above semiclassical analysis makes the lowest-lying string state a
massless scalar. However, a more careful quantum analysis reveals a
feature missed by the Bohr-Sommerfeld analysis: the intercept at
n = 0 is shifted down : α′E2 = n− 1↔M2 = n−1

α′c4 .

• Thus, the n = 0 lowest-lying state of the bosonic string becomes a
tachyon, while the n = 1 first excited state with |J | = ~ becomes
massless. Accordingly, the open-string quantum spectrum contains
massless spin 1 gauge fields.

• The closed string dispenses with the reflective open-string boundary
conditions and accordingly has twice as many modes: independent
left- and right-moving excitations. It turns out that the closed-string
spectrum is a tensor product of open-string spectra in the R & L
sectors, together with a level-matching condition: the R and L level
numbers must be equal.

• The closed-string (nL, nR) = (1, 1) states thus contain the tensor
product of (spin 1)L × (spin 1)R states: the closed-string spectrum
contains massless spin 2.
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Effective field equations

The spin 2 mode identified in the closed-string spectrum is not merely
a hint that closed-string theory has something to do with gravity: the
full Einstein action also emerges when one considers string theory
from an effective-field-theory point of view. The key to understanding
this is the requirement that anomalies in the local Weyl symmetry
cancel.

• Analysis of the spectrum of any string theory shows the presence of
at least three types of massless field: the graviton gµν(x), a 2-form
antisymmetric tensor gauge field Bµν(x) and a “dilatonic” scalar φ(x).
In supersymmetric theories, the infamous tachyon of bosonic string
theory is absent. In non-supersymmetric contexts, the tachyon is
interpreted as indicating that the presumed “vacuum” around which
one is trying to quantize is unstable and so one should shift to a stable
vacuum background. This shift is made explicit in string field theory.

• To begin with, consider just the massless backgrounds
(gµν(x), Bµν(x), φ(x)) .
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• The string action on this effective-field background is then

Igen. back. =

− 1

4πα′

∫
d2ξ
√
−γ
[
(γijgµν(x)− εijBµν(x))∂ix

µ∂jx
ν + α′R(γ)φ(x)

]
• Note that the 2-form background gauge field Bµν(x) has the natural
rank to pull back using ∂ix

µ to a 2-form on the worldsheet, precisely
what is needed to contract with the d = 2 Levi-Civita tensor εij . Note
also that the coupling to the dilaton φ(x) involves the worldsheet
Ricci scalar R(γ) and enters with an additional factor of α′, as is
appropriate if gµν , Bµν , φ and γij are all taken to be dimensionless.

• The worldsheet Weyl symmetry γij(ξ)→ Ω(ξ)γij(ξ) is respected by

the Bµν coupling (since
√
−γεijtensor = εijdensity is γij independent), but it

is violated by the dilaton coupling φR(γ). This is intentional: the
dilaton coupling is introduced precisely to complete the cancellation
of Weyl-symmetry anomalies arising in the perturbative α′ expansion.
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• Igen. back. is manifestly invariant under spacetime general coordinate

transformations xµ → xµ
′

provided gµν and Bµν transform as tensors
and the dilaton φ is a scalar. It is also invariant under the Bµν gauge
transformation Bµν → Bµν + ∂µζν − ∂νζµ, which causes the integrand
of Igen. back. to vary by a total derivative.

• The general-coordinate and 2-form gauge invariances are precisely
what are needed to give agreement with the expected
degree-of-freedom counts for these massless backgrounds:
( 1
2
D(D − 3) ,

metric

1
2
(D − 2)(D − 3))

2-form

• Imposing on this background-coupled string system the requirement
that the Weyl symmetry anomalies cancel gives differential-equation
restrictions on the background fields (gµν , Bµν , φ); these may be
viewed as effective field equations for these massless modes.
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• The system of effective field equations for (gµν , Bµν , φ) is,
remarkably, derivable from an effective action for the D dimensional
massless modes Callan, Friedan, Martinec & Perry 1985

Ieff =

∫
dDx
√
−ge−2φ

[
(D − 26)− 3

2
α′(R+ 4∇2φ− 4(∇φ)2

− 1
12FµνρF

µνρ +O(α′)2
]

• Note the appearance of a critical dimension : the “cosmological
term” vanishes only for D = 26, showing that, for a flat background,
the Weyl anomalies can be cancelled in this way only in 26
dimensional spacetime.

• In superstring theories, there are additional anomaly contributions
from the fermionic modes which change the critical dimension to 10.
Moreover, in supergravity theories, the tachyon is absent, so D = 10
flat space becomes a stable background of the massless modes. Aside
from the change of the critical dimension to 10, however, the above
effective action remains valid for a subset of the bosonic background
of the theory, known as the Neveu-Schwarz sector.
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• Now specialize to D = 10 and accordingly drop the cosmological
term. Moreover, the unfamiliar e−2φ factor in front of the Ricci scalar
R may be eliminated together with the 4e−2φ∇2φ term by redefining

the metric: g
(e)
µν = e−φ/2g

(s)
µν where g(s) is the previous string-frame

metric and g(e) is the new Einstein-frame metric.

• In the Einstein frame, the Neveu-Schwarz sector effective action
then becomes

IEinstein =

∫
d10x

√
−g(e)

[
R(g(e))− 1

2∇µφ∇
µφ− 1

12e
−φFµνρF

µνρ
]

• Including effective-action contributions for the other (Ramond
sector) bosonic backgrounds and also for fermionic backgrounds, one
obtains thus a correspondence between superstring theories and
related supergravity theories: a supergravity theory describes the
massless field-theory sector of the corresponding superstring theory.
One obtains in this way effective supergravity theories for the
following superstring theory variants: type IIA, type IIB, type I with
gauge group SO(32), heterotic SO(32) and heterotic E8 × E8.
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Dimensional reduction

In order to extract a more realistic physical scenario from the
higher-dimensional contexts native to string theory, one needs to
reduce the effective theory to D = 4 one way or another. The most
straightforward way to do this is by traditional Kaluza-Klein
reduction.

• The basic idea can be explained in terms of a massless scalar field in
D = 5 on a spacetime with the 5th direction periodically identified:
y ∼ y + 2πR. Periodicity requirements on the de Broglie waves eipy/R

then require the momenta in the y direction to be quantized, pn = n~
R .

• Thus expand the D = 5 field φ(xµ, y), µ = 0, 1, 2, 3, using a
complete set of eigenfunctions of the Laplace operator on a circle, i.e.
in terms of plane waves with quantized momenta:

φ(xµ, y) =
∑
n∈Z

φn(xµ)einy/R
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• Inserting this expansion into the D = 5 Klein-Gordon field equation
gives an infinite number of D = 4 equations for the independent
modes φn(xµ):

1

c2
∂2φn
∂t2

−∇2φn +
n2

R2
φn = 0

Thus, the n 6= 0 modes φn are massive, with masses mn = n
R .

• The basic physical picture is that at energies low compared to ~
cR ,

the massive modes φn>0 are frozen out, so the theory effectively
reduces to just φ0.

• Dimensional reduction of the supergravity theories associated to the
various D = 10 string theories produces the family of supergravity
theories in lower spacetime dimensions, including the maximally
extended N = 8 supergravity in D = 4.
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Dimensional reduction of strings and T-duality

Consider now string theory in a background spacetime with a
compactified direction, xM → (xµ, y), µ = 0, . . . , (D − 2). The Regge
towers of string states can be individually treated as particle fields;
massless string states give rise to massless states in the (D − 1) lower
dimensions plus Kaluza-Klein towers of states with masses n

R , just
like in Kaluza-Klein field theory.

• Strings, however, can do something different from particles in that
they can wrap around the compactified dimension. Consider a
closed-string mode expansion

xM(τ, σ) = qM(τ) + pM`2τ + 2ñRσδMy

+
i`

2

∑
k 6=0

(
αMk
k
e−2ik(τ−σ) +

α̃Mk
k
e−2ik(τ+σ)

)

where n, ñ ∈ Z and `2 = 2α′, (string length)2.
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• As expected, the momentum in the compactified direction is
quantized, py = n

R .

• However, owing to the fact that the string can wind around the
compactified y dimension a number ñ times, the energy (i.e. mass)
formula for the string spectrum considered from the viewpoint of the
dimensionally reduced theory has a generalized form:

M2 =
~2

c2
(
n2

R2
+
ñ2R2

α′2
) + contributions from ordinary oscillator modes

• This mass formula suggests a striking symmetry of string theory
that is not present for particle theories: interchanging n↔ ñ and
simultaneously inverting the compactification radius, R → α′

R leaves
the spectrum invariant.
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• This symmetry is T-duality: a string propagating on a compact
direction of radius R with momentum mode n and winding mode ñ is
equivalent to a string propagating on a compact direction of radius α′

R
with interchanged mode numbers: momentum ñ, winding n.

Winding modes with various ñ values

• Because string & background configurations related by a T-duality
transformation are identified, this symmetry, although discrete,
extends the notion of local symmetry in string theory beyond the
ordinary context of general coordinate and gauge invariances.
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T-duality effect on the background geometry

T-duality has a dramatic effect on curved background geometries.
Start from a simplified closed-string action without the dilaton:

Ig,B = −1

2

∫
d2ξ
√
−γ(γij∂ix

M∂jx
NgMN − εij∂ixM∂jxNBMN)

• Now suppose that there is an isometry in the y direction, i.e. that
gMN and BMN don’t depend on y. Of course, y(τ, σ) is still a string
variable – the string is not prevented from moving in the y direction
of spacetime. But the background functional dependence on y is
trivial. Accordingly, the string variable y(τ, σ) appears only through
its derivative ∂iy.

• Now replace ∂iy everywhere in the action by vi, a worldsheet vector.
Enforce the curl-free nature of vi by a Lagrange multiplier term∫
d2ξ
√
−γεij∂izvj . Then eliminate vi by its algebraic equation of

motion. The result is the T-dualized version of the string action
written in terms of x̃M̃(τ, σ) = (xµ(τ, σ), z(τ, σ)).
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• The net effect of a T-duality transformation may be seen by
reassembling the results into an action Ig̃,B̃ of the same general form

as Ig,B but now for string variables x̃M̃(τ, σ) and with dualized

backgrounds g̃M̃Ñ(x̃), B̃M̃Ñ(x̃) given by Buscher 1987

g̃µν = gµν + g−1
yy (BµyBνy − gµygνy)

g̃µz = g−1
yy Bµy g̃zz = g−1

yy

B̃µν = Bµν + g−1
yy (gµyBνy − gνyBµy)

B̃µz = g−1
yy gµy

• Careful attention to the effect of T-duality transformations reveals
that they can map not only between different solutions of a given
string theory, but they can even map between solutions of different
string theories. In particular, paying careful attention to the effect on
spinor backgrounds shows that T-duality maps between type IIA and
type IIB closed-string theories:

Type IIA on S1 of radius R T

←→
Type IIB on S1 of radius α′

R

Dai,Leigh & Polchinski 1989; Dine, Huet & Seiberg 1989; Cvetič,Lü,Pope & K.S.S. 2000
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S-duality

Another essential duality symmetry of string theory is strong-weak
coupling duality, or S-duality. The dilaton field plays a crucial rôle in
this, as its expectation value serves as the coupling constant for string
interactions. String theory has no other à priori determined
parameters (except for the scale-setting slope parameter α′).

All the essential coupling constants are determined by vacuum
expectation values of scalar fields present in the theory, with coupling
constants typically given by the v.e.v.s of exponentials like eφ. Since,
in a dimensional-reduction context, massless scalar fields derive from
the moduli of the reduction manifold (e.g. torus circumferences, twist
parameters, etc.), scalar fields with undetermined vacuum expectation
values are generically called moduli fields.

• The most accessible illustration of the geometry of such moduli and
the symmetries acting upon them is to be found in the massless sector
of Type IIB theory, whose effective action is Type IIB supergravity.
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• The bosonic part of the action for Type IIB supergravity is

IIIB
10 =

∫
d10x

[
eR+ 1

4e tr(∇µM−1∇µM)− 1
12eH

T
[3]MH[3]

− 1
240eH

2
[5] − 1

2
√

2
εij
∗(B[4] ∧ dA

(i)
[2] ∧ dA

(j)
[2] )
]

subject to the further constraint of self-duality for the 5-form field
strength Hµ1...µ5

= 1
5!εµ1...µ5µ6...µ10

Hµ1...µ10 . The 3-form field

strengths H[3] =
(
dB1

[2]

dB2
[2]

)
contract into the 2× 2 matrix built from the

scalars φ and χ

M =

(
e−φ + χ2eφ χeφ

χeφ eφ

)
• Multiplying out the scalar kinetic terms, one finds a more familiar
form − 1

2

∫
d10x
√
−g(∂µφ∂νφg

µν + e2φ∂µχ∂νχg
µν).
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• From the above form of the IIB action, one can see that it has an
SL(2,R) symmetry M→ ΛMΛT , H[3] → (ΛT )−1H[3] , H[5] → H[5]

where Λ =

(
a b
c d

)
with det Λ = 1 is an SL(2,R) matrix. While the

action of SL(2,R) on M is linear, the action on (φ, χ) is nonlinear:
these fields form an SL(2,R)/U(1) nonlinear sigma model. The action
of SL(2,R) on the scalars may be reformulated in terms of its action
on the modular field τ = χ+ ie−φ, which transforms in a fractional
linear fashion as τ → aτ+b

cτ+d .

• At the nonperturbative quantum level, the SL(2,R) symmetry gets
reduced to its discrete subgroup SL(2,Z). This is necessary for the
Gauss’s law charges associated to Hi

[3] to obey a Dirac quantization

condition; SL(2,Z) is the subgroup that preserves the resulting charge
lattice. The surviving SL(2,Z) may be considered to be generated by
two elementary transformations, τ → τ + 1 and τ → − 1

τ . For χ = 0,
the second of these inverts the v.e.v. of eφ, hence the string coupling
constant gs. So this is called S-duality because it exchanges strong
and weak string coupling.
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M-theory

Given that apparently different string theories can be related by
T-duality transformations and that different coupling-constant
regimes can be related by S-duality transformations, one naturally
searches for the full interrelated set of theories and coupling regimes
related by duality transformations, known as the “web of dualities”.

A key link in this web of dualities concerns the strong-coupling limit
of type IIA theory. There is no known duality that gives this limit
purely within the type IIA theory, but the relation between
string-theory dualities and supergravity dualities does suggest what
the strong-coupling regime of type IIA string theory might become.
There is one more maximal supergravity theory which had not yet
been integrated into the general picture of string & supergravity
theories: supergravity in 11-dimensional spacetime. This theory has as
bosonic fields just the metric gMN and a 3-form gauge field CMNP , and
as fermionic field the gravitino ψαM (α = 1, . . . , 32); it has 128 bosonic
and 128 fermionic degrees of freedom per spacetime point.
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• D = 11 supergravity contains no scalar fields, but when it is
dimensionally reduced to D = 10 on a circle S1, straightforward
Kaluza-Klein reduction generates one scalar, basically from the g11 11

component of the D = 11 metric. The reduced theory precisely
reproduces D = 10 type IIA theory at the classical level, with the
Kaluza-Klein scalar φ becoming the dilaton of the type IIA theory
and gs = 〈eφ〉 being the supergravity realization of the type IIA string
coupling constant. Since g11 11 gives the metric on the reduction circle
S1, the modulus field φ controls the circumference of that circle.
Thus, strong coupling, gs →∞, corresponds to the limit where the S1

reduction circle circumference tends to infinity.

• Now consider just compactification of D = 11 supergravity instead
of dimensional reduction down to D = 10, i.e. define the theory on a
circle S1 but don’t discard the Kaluza-Klein towers of massive states.
Taking the limit gs →∞ now corresponds to returning the theory to
uncompactified D = 11 supergravity.
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• If there is to be a D = 11 picture of D = 10 Type IIA theory, where
can the Kaluza-Klein towers of states come from? Well, the
dimensional reduction of massless D = 11 states produces massive
states that also carry a U(1) charge corresponding to the
Kaluza-Klein vector, derived from g11,µ: they are 1

2 BPS states
originating in the Ramond sector of the theory. And, in fact, Type
IIA theory does have just such states: the tower of 1

2 BPS black hole
states, carrying charges under the vector gauge field Aµ of the Type
IIA theory. Hull & Townsend 1995; Witten 1995

• For increasing gs = 〈eφ〉, the spacing between the BPS mass levels
decreases, approaching a continuum as one approaches the
decompactification limit of infinite S1 circumference, where the full
D = 11 nature of the theory becomes more and more manifest.

• Accordingly, the strong gs coupling limit of Type IIA string theory
is hypothesized to be described by a phase whose full quantum
properties remain incompletely known, but which has D = 11
supergravity as a field-theory limit. This phase of the overall picture
has been called M-Theory.
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The Web of Dualities

A quote from Steven Hawking: “Not to take this web of dualities as a
sign that we are on the right track would be a bit like believing that
God had put fossils into the rocks in order to mislead Darwin about
the evolution of life.”
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D-branes
Consider a T-duality transformation on the worldsheet variable
y(τ, σ) now in a bit more detail, specializing to a flat background
spacetime in which gyy = k. The relevant part of the string action is
− 1

2

∫
d2ξ
√
−γγij∂iy∂jyk . Now replace ∂iy → vi and include as before

a Lagrange multiplier z(τ, σ) in order to enforce the vanishing of
∂ivj − ∂jvi :

∫
d2ξ(−k2

√
−γγijvivj + εijvi∂jz). For vi, find the

algebraic equation vi = 1
k ε
ij∂jz. Substituting back into the action

then gives the T-dualized result − 1
2

∫
d2ξ
√
−γγij∂iz∂jz 1

k .

• Now consider, however, the effect of the above procedure on the
usual open-string Neumann boundary condition ∂σy = 0 at the
endpoints (endpoint worldline normal derivative vanishes). After
T-dualization, this becomes ∂τz = 0 at the endpoints (endpoint
worldline tangential derivative vanishes). Thus, for the T-dualized
coordinate z(τ, σ), one obtains a Dirichlet boundary condition
z = constant at the endpoints:

Neumann b.c.
T

←→
Dirichlet b.c.
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• The surfaces on which Dirichlet boundary conditions are imposed
obviously would break Lorentz invariance if they were considered to
be imposed externally to the theory. However, considering them to be
dynamical objects similar to solitons in the theory restores Lorentz
symmetry.

•Analysis of the open-string modes in which p background spatial
dimensions are treated with Dirichlet and the remaining (10− (p+ 1))
spatial dimensions with Neumann boundary conditions reveals modes
associated to the (p+ 1) dimensional “worldvolume” of the Dirichlet
surface (p spatial dimensions plus time). These are a massless U(1)
gauge field Ai together with (9− p) massless scalar modes.

Open string starting and ending with Dirichlet boundary conditions on a
p-dimensional hyperplane in the target spacetime.
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• The massless worldvolume modes can be interpreted as Goldstone
modes for the broken antisymmetric tensor gauge symmetry and for
the Poincaré translation symmetries broken by the choice of Dirichlet
boundary-condition constants. In other words, these massless scalar
worldvolume modes may be seen to describe motions of the Dirichlet
surface transverse to the worldvolume. This dynamical object is
called a Dp brane.

• The motions of a Dp brane are described by an effective action of
Dirac-Born-Infeld type: Fradkin & Tseytlin 1985

IDp = −Tp
∫
dp+1ξe−φ(x(ξ)) [−det(Mij +Bij + 2πα′Fij)]

1
2

Mij = ∂ix
µ∂jx

νgµν(x) Bij = ∂ix
µ∂jx

νBµν(x) Fij = ∂iAj(ξ)− ∂jAi(ξ)
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p-branes in supergravity

The dynamical extended-object hypersurfaces seen as D-branes in
string theory have natural analogue solutions in the associated
supergravity theories. In fact, the supergravity solutions extend the
brane family beyond those seen directly as Dp branes in perturbative
string theory, indicating a yet richer family of nonperturbative
extended-object solutions.

• A representative example is the string itself, viewed now as an
extended-object solution to the effective theory’s field equations. In
the various D = 10 supergravities associated to superstring theories,
one always has the Neveu-Schwarz sector

INS =

∫
d10x
√
−g
[
R− 1

2
∇µφ∇µφ−

1

12
HµνρH

µνρ

]
where Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBνµ.
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• This effective action has an explicit solution

ds2 = H− 3
4 (y)dxidxjηij +H 1

4 (y)dymdym

Bij = εijH−1(y)

eφ = H− 1
2 (y) H(y) = 1 +

k

(ymym)3

• The singular surface at y =
√
ymym = 0, parametrized by xi,

i = 0, 1, corresponds to the static worldsheet of an infinite string
extending from x1 = −∞ to x1 = +∞, with an 8-dimensional
transverse space M8 in which the solution is spherically symmetric.

• The solution has a charge as well, given by Gauss’s law:
U =

∫
∂M8

d7ΣmHm01 = 6kΩ7, where Ω7 is the volume of the unit
7-sphere corresponding to the infinite boundary of M8. This charge is
equal to the ADM tension (energy/unit x1 length) of the solution, so
this string solution is an analogue of the extremal Reissner-Nordstrom
solution of Einstein-Maxwell theory.
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Supergravity p-brane scan
There is a great variety of p-brane solutions in supergravity theories,
of diverse worldvolume and transverse dimensionalities.

1

2

3

4

5

6

7

8

9

10

11

D

d1 2 3 4 5 6 70

particle string membrane 3-brane 4-brane 5-brane 6-braneinstanton

4 4 4 4 4

44

2 2

4/3,1' 4/3,1'2

4/3 4/3

1,4/5,2/3,4/71,4/5, 2/3,4/7 1'

1/2 1/2

elementary

solitonic

Kaluza-Klein descendants

4 ! values

self-dual

vertical reduction trajectories

diagonal reduction trajectories

} "stainless"

“Brane-scan” of supergravity p-brane solutions, linked by worldvolume
(diagonal) and transverse space (vertical) dimensional reductions
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U duality

The supersymmetric p-brane spectrum naturally generalizes the
extremal black holes of Einstein-Maxwell theory, which may be
viewed as 0-branes. In a given dimension of spacetime, the brane
spectrum also naturally carries a representation of the corresponding
supergravity duality group.

• Dimensional reduction of the maximal theory down from D = 11
automatically generates a GL(11−D,R) nonlinearly realized
symmetry of the D dimensional reduced supergravity. However,
special features of supergravity theories lead to an enhancement of
this anticipated duality group. These features include the
combination of vectors and scalars coming from the D = 11 metric
and the D = 11 3-form gauge field, and also the dualization of
higher-rank form fields to lower-rank fields by Hodge dualization of
the corresponding field strengths.
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• The resulting duality groups for maximal supergravity are given in
the following Table, where E11−D(11−D) is the nonlinearly realized
duality symmetry in spacetime dimension D, KD is its linearly
realized maximal compact subgroup and E11−D(11−D)(Z) is the
discretized “U-duality” form consistent with the Dirac quantization
condition, which is conjectured to survive in superstring theory.
Hull & Townsend 1995; Witten 1995

D E11−D(11−D)(R) KD E11−D(11−D)(Z)
10A R+ 1 1
10B Sl(2,R) SO(2) Sl(2,Z)

9 Sl(2,R)× R+ SO(2) Sl(2,Z)
8 Sl(3,R)× Sl(2,R) SO(3)× SO(2) Sl(3,Z)× Sl(2,Z)
7 Sl(5,R) SO(5) Sl(5,Z)
6 SO(5, 5,R) SO(5)× SO(5) SO(5, 5,Z)
5 E6(6)(R) USp(8) E6(6)(Z)
4 E7(7)(R) SU(8)/Z2 E7(7)(Z)
3 E8(8)(R) SO(16) E8(8)(Z)
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The Onset of Supergravity Divergences

The dimensional character of Newton’s constant and the related
nonlinearity of the Einstein-Hilbert action leads to a general
expectation of nonrenormalizability in gravity and supergravity
theories. Resolving the ultraviolet problem of quantum gravity has
consequently been one of the main aims of superstring theory.
However, it is important to understand precisely how the quantum
properties of superstring theories differ from those of the
corresponding supergravities when the latter are subject to standard
field-theoretic quantization.

• In order to understand this relation, the precise order of onset of
nonrenormalizable divergences in supergravity theories remains an
intensely studied question. Local supersymmetry brings about at
least significant delays in the onset of ultraviolet divergences, but the
full reach of the corresponding nonrenormalization theorems is still
not fully clear.
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• Explicit calculations of ultraviolet divergence coefficients have been
carried out using traditional Feynman diagram techniques up to the
2-loop level. Goroff & Sagnotti 1985; van de Ven 1992 Continuing on this way to
higher loop orders, however, quickly becomes prohibitive: for the
important 3-loop level at which the first dangerous counterterms
occur, an estimate of the number of terms in a standard Feynman
diagram calculation is of the order of 1020, owing to the complexity of
the vertices and propagators.

• Nonetheless, important progress using new techniques developed
since 1998 has been made in the calculation of loop-diagram
divergences in maximal supergravity and maximal super Yang-Mills
theories. These new methods use heavily the unitarity properties of
Feynman diagrams, which generalize the optical theorem ImT = T ∗T
of ordinary quantum mechanics.
Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, Perelstein, Roiban, Rozowsky et al. 1998-2011
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• Normally, one might think that one can only learn about the
imaginary parts of quantum amplitudes using unitarity. However
when the unitarity diagram cutting rules are combined with an
expanded use of dimensional regularization, much more can be
learned. In dimensional regularization, one analytically continues the
dimension of spacetime in Feynman integrals away from the
dimension of interest, e.g. replacing

∫
d4k loop integrals by

∫
d4+εk.

• The ordinary use of dimensional regularization focuses simply on
the 1

ε poles in amplitudes, corresponding to logarithmic divergences in
a straightforward high momentum cutoff regularization. However, one
gets useful information by retaining the full (4 + ε) dimensional
amplitude. In such an analytically continued integral, an integrand
f(s) (where, e.g. s is a Mandelstam momentum invariant quadratic in
loop momenta) will become deformed to f(s)s−ε/2 in order to balance
dimensions. Then, since s−ε/2 = 1− (ε/2) ln s+ . . . and
ln(s) = ln(|s|) + iπθ(s), one can learn about the real parts of an
amplitude by retaining imaginary terms at order ε.
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• The unitarity-based techniques allow for large classes of diagrams to
become cut constructible, and allowing for the eventual reduction of a
higher-loop amplitude to integrals over products of tree amplitudes.
At that point, other recent progress in the understanding of tree
amplitudes comes into play. Although the individual Feynman
diagrams at tree level are very complicated, the sums of diagrams
representing complete amplitudes have striking simplicity, and in
particular satisfy powerful recursion
relations. Britto, Cachazo, Feng & Witten 2005

• To date, these techniques have allowed the explicit calculation of
maximal supergravity divergences to proceed to the 4-loop level,
something that would have been unthinkable using traditional
Feynman diagram techniques. Bern, Carrasco, Dixon, Johansson & Roiban 2009

Four out of the 50 diagrams arising in the calculation of the 4-loop
divergences in maximal supergravity
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• The current status of the maximal supergravity loop calculations is
as follows, with known divergences shown in blue. The BPS degree
represents the degree of supersymmetry invariance of the integrand
prior to superspace integration.

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6? 5?

BPS degree 0 0 1
2

1
4

1
8 0 1

4

Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 ∂12R4 ∂4R4

Maximal supergravity first possible divergences & BPS degree from
unitarity-based calculations

• The surprizing feature of these results is the tardiness of maximal
supergravity in getting around to revealing its ultraviolet divergences.
At L = 8 loops, one does indeed encounter the expected R4

counterterm, but in lower spacetime dimensions this 1
2 BPS

divergence does not occur, leaving it to significantly less constrained
counterterms to be the first UV candidates.
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Counterterm analysis

The surprizing resilience of maximal N = 8 supergravity to the threat
of anticipated ultraviolet divergences has led to some speculation that
perhaps superstring theory isn’t actually necessary after all.
Certainly, it has led to more than a decade of discussion between the
unitarity-based calculators and supersymmetry practitioners in order
to try to understand what is going on. The current state of affairs
reflects a significant deepening in understanding of the consequences
of local supersymmetry and also of the duality symmetries of the
maximal theory.

• In the 1980’s, the understanding was that allowable counterterms
would be those subject to nonrenormalization theorems based upon
linearly realized supersymmetry, generalizing the famous
nonrenormalization theorem that disallows as counterterms chiral
superspace integrals (also called “F terms”) like

∫
d4x d2θW (φ) in

N = 1, D = 4 supersymmetry, where W (φ) is a holomorphic function
and φ is a chiral superfield, D̄φ = 0.
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• Although such terms are fully allowed in a theory’s classical action
(and, indeed, play a critical rôle in supersymmetric extensions of the
Standard Model), only full superspace integrals like∫
d4x d2θd2θ̄ K(φ, φ̄) can occur as counterterms.

• It was known by the mid 1980’s that maximal supergravity and
maximal super Yang-Mills theory could be quantized with at least
half of their full supersymmetry manifestly linearly realized – in a
so-called “off-shell” formalism. This was explicitly constructed for the
full maximal N = 4 super Yang-Mills theory, but only for the
linearized theory in the case of maximal N = 8 supergravity.

• The resulting expectation was that the first allowed counterterms
would have

∫
d8θ superspace integral structure in the case of maximal

super Yang-Mills and
∫
d16θ structure in the case of maximal

supergravity – i.e. full-superspace integrals for the linearly-realizable
half supersymmetry.

65 / 80



• Accordingly, the first allowed counterterms in maximal super
Yang-Mills and maximal supergravity were considered to be
Howe, Townsend & K.S.S 1981; Kallosh 1981

Half-BPS candidate counterterms for maximal super Yang-Mills and
maximal supergravity

• Since
∫
d16θ integration has dimension 16/2=8, one finds terms

with 8 derivatives among the many terms produced by superspace
integration in the maximal supergravity counterterm; general
covariance requires these to be of the general form

∫
R4. So the above

understanding would just allow the dangerous 3-loop anticipated
counterterm.
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• This expectation of L = 3 loop first divergences has clearly been
upset by the unitarity-based calculations. This led to a more detailed
investigation of the nonrenormalization theorems, and in particular to
use of the Ward identities for the full supersymmetry using a
Batalin-Vilkovisky version of the BRST quantum formalism – even
though the transformations for the maximal theories are nonlinear
and close to form an expected supersymmetry algebra only subject to
the classical equations of motion.

•This requires adding source fields for a whole range of additional
operators needed to formulate the Ward identities. The resulting
identities then take the form of a cohomology problem for a
generalized exterior derivative, acting on triples of forms of adjacent
rank. In addition, instead of computing beta functions for the
coefficients of the expected counterterms, it is advantageous to
consider operator insertions of the classical Lagrangian and its cocycle
into its own quantum amplitudes and to calculate gamma functions
for the allowed operator mixings with candidate counterterms and
their cocycles, which have to be consistent in structure to that of the
Lagrangian cocycle. Bossard, Howe & K.S.S. 2009
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• In the case of maximal super Yang-Mills, such considerations are
sufficient to explain all the previously unanticipated single-trace
operator cancellations. In the case of maximal supergravity, similar
arguments show why the R4 counterterm is in the end ruled out. But
the unanticipated maximal supergravity cancellations found by the
unitarity methods go much further than that: D = 5, L = 2 & 4 and
D = 4, L = 3 & 4 divergences have all failed to occur.

• In order to understand these further divergence cancellations, one
needs to turn an apparent bug of the supergravity Ward identities
into a feature. Their analysis is complicated by the density character
of integrands in a locally supersymmetric theory. Counterterm cocycle
component forms need to be pulled back to a bosonic, or “body”
coordinate frame, and in local supersymmetry this involves not only
the gravitational vielbeins, but also the fermionic gravitino fields.
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• To turn this density character to advantage, one needs to combine it
with the requirements of maximal supergravity’s continuous duality
invariance: E7(7)(R) in the D = 4 case. One needs for this purpose to
know how to quantize while maintaining manifest duality symmetry,
and this can be done in the case of the maximal N = 8, D = 4 theory
by sacrificing manifest Lorentz invariance to handle the fact that only
the F iµν field strengths of the 28 vector fields can form an E7(7)(R)
representation, by separating them into self-dual and anti-self-dual
parts in order to form a 56 of E7(7)(R).

• Sacrificing manifest Lorentz symmetry, one can double the number
of spacelike components of the vector fields, but reduce the number
by a factor of 1

2 by a duality constraint. In this formalism, one needs
to check for the absence of anomalies in the non-manifest Lorentz
symmetry and also in the SU(8) divisor subgroup of the duality
group. Happily, these anomaly checks succeed, and as a result one
may require that the perturbative field-theory counterterms preserve
the continuous duality symmetry. Bossard, Hillman & Nicolai 2007
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• Combining then the requirements of the full local supersymmetry
Ward identities with the requirement of continuous duality symmetry,
all the outstanding divergence cancellations found by the unitarity
methods are explained, and new cancellations are predicted at D = 4,
L = 5 & 6. The resulting pattern of anticipated first divergences is as
follows, again with known divergences in blue and the anticipated first
divergences in D = 4 & 5 in green.

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6 7

BPS degree 0 0 1
2

1
4

1
8 0 0

Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 ∂12R4 ∂8R4

Maximal supergravity current first divergence expectations & BPS degree
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Supergravity Divergences from Superstrings

A satisfying aspect of the current understanding of the relation
between superstring theory and maximal supergravity is that one now
obtains exactly the above predictions for the onset of supergravity
divergences also from a superstring perspective. In this regard, one
may view superstring theory as a rather elaborate “regulator” of the
supergravity quantum amplitudes.

• In the critical dimension D = 10 for superstrings, the R4 correction
to the effective field-theory Lagrangian occurs with a coefficient α′

3
,

as can be seen on dimensional grounds, since α′ has dimensions of
(length)2, so α′

3
R4 has the same dimensions as R. How then can

there be divergences in the effective field theory, which is obtained by
taking the limit α′ → 0?

• Recall that in order to compare D = 4 maximal supergravity to the
string-theory effective action, one must dimensionally reduce on a
torus T 6.
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• Start from the string frame, in which the gravitational Lagrangian
e−2φR has a scalar prefactor whose v.e.v. g−2

s gives a D = 10
Newton’s constant G10 ∼ g2

s`
8
s, where `s is the string scale, needed on

dimensional grounds and related to α′ by α′ ∼ `2s
2~2c2 ; gs is the string

coupling constant.

• If the typical scale of one of the compact toroidal dimensions is R,
then reduction of the effective action on T 6 produces an extra
prefactor of R6 in the D = 4 effective action, giving a D = 4

Newton’s constant G4 ∼ g2
s`

8
s

R6 . Thus, the D = 4 Plank length

`4 ∼ (G4)
1
2 is related to the string coupling constant by gs ∼ R

3

`4s
`4.

• In order to compare the dimensionally reduced string effective
action to quantized D = 4 maximal supergravity, one needs to ensure
that the D = 4 Newton’s constant remains finite, while the towers of
excited string states and also the Kaluza-Klein excitations from the
dimensional reduction all have masses that are infinitely large
compared to the D = 4 Planck scale `4.
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• This is achieved by taking 1
R ,

1
`s

& R
`2s
� 1

`4
, which is compatible

with holding gs and `4 fixed while taking `s ∼ R
3
4 ( `4gs )

1
4 → 0.

• This analysis would seem to indicate that the effective field theory
should be ultraviolet finite. However, this string analysis can be
misleading because string nonperturbative effects can conspire to
swamp what one might otherwise want to identify as the
field-theoretic supergravity contribution.

• Analysis of this “decoupling” problem in the above supergravity
limit shows that decoupling can be carried out for loop orders L ≤ 6,
but that beyond that order the decoupling issues prevent conclusions
about field-theoretic finiteness from being made. Green, Russo & Vanhove 2010

• Moreover, analysis of the superstring effective action contributions
also shows they can be continuously E7(7)(R) invariant to the same
order.
Elvang & Kiermaier 2010; Beisert, Elvang, Freedman, Kiermaier, Morales and Stieberger 2010
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String scale for Standard Heterotic String
Compactification

If we start in D = 10 with I10 = `−8
s

∫
d10x e−2φ(R+ `2sF

2), where F
represents the Yang-Mills field strength, then dimensional reduction
down to D = 4 on a manifold of volume V6 while replacing φ by
φ0 = 〈φ〉, the D = 4 reduced action becomes

I4 =
V6

`8s
e−2φ0

∫
d4x(R+ `2sF

2) .

so in D = 4 we can identify

MPl =
V

1
2

6

`s
4 e
−φ0 and gYM =

eφ0`3s

V
1
2

6

• Now, to avoid strong coupling in the D = 10 string theory, one
requires eφ0 < 1 while g2

YM ∼ 1
30 . Hence V6`

−6
s = e2φ0g−2

YM ≤ 30 and so
for V6 ∼ L6, one finds `s ∼ L. Moreover, substituting for e−φ0 in
terms of gYM, one finds MPl = (`sgYM)−1, so `s ∼ 10

MPl
.
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String scale for D-brane Compactification

Now consider a Dp-brane with p > 3 and with gauge fields defined
only on the d = p+ 1 dimensional D-brane worldvolume. Of the p
spatial D-brane dimensions, p− 3 are compactified and the remaining
3 coincide with the spatial directions of the reduced D = 4 spacetime.
The starting action is now `−8

s

∫
d10x e−2φR+ `3−ps

∫
dp+1ξ e−φF 2 . As

before, one has MPl = V
1
2

6 `
−4
s e−φ0 but now gYM = e

1
2φ0`

1
2 (p−3)
s V

− 1
2

p−3 .

• Limiting again the string coupling to perturbative values eφ0 ≤ 1,
find Vp−3`

3−p
s ≤ g−2

YM ∼ 30. Now, however, for V6 = Vp−3V9−p one can

have independent `p = V
1
p−3

p−3 and L = V
1

9−p
9−p .

• One may write M2
Pl = `−2

s (Vp−3`
3−p
s )(V9−p`

p−9
s )e−2φ0 . Then from

Vp−3`
3−p
s ≤ 30,one learns `s ∼ `p(30)−

1
p−3 , while if L� `p (giving a

highly asymmetric V6), one has V9−p`
p−9
s � 1. Thus `2s �M−2

pl is
now possible, i.e. one can have a string mass scale significantly below
the Planck scale. Arkani-Hamed, Dimopoulos & Dvali 1998
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Boundaries of moduli space

The infinities of perturbative field theory are tamed by string theory.
But the story of infinities does not end there. In string theory, the
most important singularities occur at the boundaries of moduli space,
e.g. in amplitudes where moduli are about to pinch off so that
topology change can take place in a Riemann surface.
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• These boundary configurations are the places where one really has
to check whether string theory is free of infinities. And often, when
divergences seem apparent, one realizes that the singularities should
be “blown up”, with new modes particular to the singularity structure
of the Riemann surface appearing. These can contribute to blown-up
singularity sectors with new gauge fields and other massless modes in
the effective field theory.

• For a long time, only amplitude diagrams up to two string loops
could be handled. d’Hoker Up to this level, proofs of the finiteness of
string theory have been given. Mandelstam; Berkovits

• The higher-loop formulation of superstring theory has remained
problematic in superstring theories, but recent progress using the
notion of pure spinors has permitted a fresh approach to these
problems, which remains an active area of research. Berkovits
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String and Gravity Thermodynamics
One of the most famous results of string theory has been the
derivation of the Bekenstein-Hawking formula S = A

4G for the entropy
of a black hole in terms of the area of the horizon. This derivation
employed nearly supersymmetric (i.e. nearly BPS) configurations in
order to enable a detailed microstate counting agreeing with the
Bekenstein-Hawking entropy formula. Strominger & Vafa Current work
includes study of the deviation from a blackbody to a “greybody”
spectrum in the emitted Hawking radiation.

• Related work to understand whether string theory evades Hawking’s
prediction that black holes lead to a loss of quantum information has
led to “fuzzball” formulations of macroscopic blackholes in terms of
an average over BPS coherent states describing individual nonsingular
geometries in order to obtain an understanding of the
thermodynamics of non-supersymmetric black holes.
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