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Introduction

I The notion of holography emerged from black hole physics as an answer to

the question: [’t Hooft 1993]

Why is the entropy of a black hole proportional to the area of its horizon

rather than the volume it occupies?

Definition: Holography states that any theory which includes gravity can be

described by a theory without gravity in one dimension less.

I Holography became a prominent research direction when precise

holographic dualities were found in string theory (i.e. AdS/CFT).

[Maldacena 1997, Gubser, Klebanov & Polyakov 1998, Witten 1998]



Holography for Cosmology

I The holographic dualities found in string theory involve spacetimes with a

negative cosmological constant, but the general argument for holography

is applicable to any theory of gravity.

I In particular, it should apply to our own universe.

Here we describe how to set up

a holographic framework for inflationary cosmology.

This framework will let us describe 4d inflationary cosmology in terms of a 3d

quantum field theory (QFT) without gravity.



Motivations

Why set up a holographic description of inflation?

Ê New perspective on problems of standard inflation, e.g. fine-tuning, initial

conditions.

Ë New methods and intuition for computing structure of cosmological

perturbations, especially for higher order cosmological correlators

(non-Gaussianity).

Ì New models for the early universe based on a 3d perturbative QFT

⇒ today’s lecture.



Necessary ingredients

Any proposed holographic framework for cosmology should specify:

Ê The precise nature of the dual QFT.

Ë How to compute cosmological observables from the correlation functions

of the dual QFT.

ß Today, we’ll focus on the primordial power spectrum, since we have

observational data for this from the WMAP satellite and other CMB

experiments.



COBE (1989)



WMAP (2001)



Planck (2009)



Plan

Ê The primordial power spectrum

Ë Holography: a primer

Ì Holography for cosmology

Í New holographic models for inflation

Î Testing the holographic power spectrum against WMAP data
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Ê The primordial power spectrum



From quantum fluctuations to galaxies



Primordial perturbations

The primordial perturbations offer some of our best clues as to the

fundamental physics underlying the big bang. Their form is surprisingly simple:

• Small amplitude: δT/T ∼ 10−5

• Adiabatic

• Nearly Gaussian

• Nearly scale-invariant

I Any proposed cosmological model must be able to account for these basic

features.

I Any predicted deviations (e.g., from Gaussianity) are likely to prove critical

in distinguishing different models.



The primordial power spectrum

A Gaussian distribution is fully characterised by its 2-point function or power

spectrum. Current observational data is consistent with a simple power-law

form for the primordial power spectrum:

∆2
R(q) = ∆2

R(q0) (q/q0)nS−1

For a pivot point of q0 = 0.002Mpc−1, the WMAP data yield

∆2
R(q0) = (2.445± 0.096)× 10−9, nS−1 = −0.040± 0.013,

i.e., the scalar perturbations have small amplitude and are nearly scale invariant.

I These two small numbers should appear naturally in any theory that

explains the data.



Ë Holography: a short primer



Holography

Holographic dualities relate gravitational theories to non-gravitational QFTs

(typically large-N gauge theories) in one dimension less.

F To date, there is no holographic construction that works in general.

Instead, we have explicit examples depending on the asymptotic form of

the bulk metric.

F The properties of the dual theory depend on these asymptotics.



Holography

The best-understood examples originate from string theory via the decoupling

limits of branes:

F D3, M5, etc. ⇒ asymptotically AdS spacetimes ⇒ dual to QFTs that

become conformal in the UV.

F D2, D4, etc. ⇒ asymptotically power-law spacetimes ⇒ dual to QFTs

with ‘generalised conformal symmetry’.

[Kanitscheider, Skenderis & Taylor ’08]

Today, we’ll focus on this second class of examples. Although probably less

familiar, they can be used to construct very simple holographic models of

inflation.



The bulk spacetime

Poincaré invariance of the dual QFT dictates the bulk spacetime has the

so-called ‘domain-wall’ form:

ds2 = dr2 + a2(r)dxidxi, Φ = φ(r)

F This is often referred to as a holographic RG flow:

Radial evolution in bulk ⇔ RG flow in QFT

F The relevant part of the bulk gravitational action is

S =
1

2κ2

∫
d4x
√
g [R− (∂Φ)2 − 2κ2V (Φ)].

F For asymptotically power-law spacetimes, we have

a→ rn where n > 1, φ→
√

2n ln r as r →∞



The dual QFT

For aymptotically power-law spacetimes, the dual QFT takes the form

S =
1

g2
YM

∫
d3x tr

[1

2
F IijF

Iij+
1

2
(DφJ)2+

1

2
(DχK)2+ψ̄L /DψL+interactions

]

i.e. 3d SU(N) Yang-Mills theory with matter (minimal scalars φ, conformal

scalars χ, fermions ψ) in the adjoint representation.

F The parameters of the dual QFT are the number of colours N , the

Yang-Mills coupling g2
YM, and the field content.

F In 3d, g2
YM has mass dimensions so the theory is super-renormalisable.

F Perturbation theory may be organised in terms of the dimensionless

effective ’t Hooft coupling:

g2
eff = g2

YMN/q.



The holographic dictionary

F The QFT simplifies in the large-N limit:

N � 1, g2
eff fixed.

In this limit only planar Feynman diagrams contribute. From the

perspective of the gravitational theory, this limit suppresses gravitational

loop corrections since

κ2 ∝ 1/N2.

F When g2
eff � 1, stringy effects in the bulk are suppressed and ordinary

Einstein gravity is a good approximation. If instead g2
eff � 1, the

gravitational description is strongly coupled, and one has to resort to the

full string theory.

⇒ Holographic dualities are strong/weak coupling dualities.



Holographic correlation functions

F Bulk gravitational fields are in 1-1 correspondence with local

gauge-invariant operators in the boundary QFT:

â The bulk metric corresponds to the stress-energy tensor Tij of the

boundary theory.

â Bulk scalar fields correspond to boundary scalar operators, e.g. trFijF
ij .

F From the asymptotic behaviour of the bulk fields, one can read off the

correlation functions of the boundary QFT.

F And vice versa: from the correlators of the boundary QFT one can

reconstruct the bulk asymptotics.



Ì Holography for cosmology



The domain-wall/cosmology correspondence

The ‘domain-wall’ spacetimes describing holographic RG flows are closely

related to cosmologies:

ds2 = σ dz2 + a2(z)d~x2, Φ = ϕ(z),

where σ = +1 for a (Euclidean) DW and σ = −1 for cosmology.

(We’re assuming flat spatial slices for simplicity).

Recall in both cases the action is just that of a scalar field with potential V (Φ)

minimally coupled to gravity.

â Examining the equations of motion for both the background solution and

perturbations, one can show that any domain-wall solution can be mapped to a

corresponding cosmological solution by the following analytic continuation:



Bulk analytic continuation

(κ2V )DW = −(κ2V )C , qDW = −iqC

Here q =
√
~q 2 is the magnitude of the perturbation 3-momentum.

F The sign in the continuation of q is fixed by mapping the cosmological

Bunch-Davies vacuum to the holographic RG flow solution that is regular

in the interior.

F Continuation also works at nonlinear order in perturbation theory, cf.

cosmological non-Gaussianities.

F Asymptotically power-law domain-walls become asymptotically power-law

inflating cosmologies:

ds2 → −dt2 + t2nd~x2, ϕ→
√

2n ln t as t→∞



In QFT language

Via the holographic dictionary, this bulk analytic continuation may also be

expressed as a continuation acting on the dual QFT:

NDW = −iNC , qDW = −iqC ,

F The sign in the continuation of N is fixed so that g2
eff = g2

YMN/q is

invariant. (This is necessary because QFT amplitudes are non-analytic

functions of g2
eff .)

F To compute tree-level cosmological correlators, we only need to continue

the large-N correlators of the QFT dual to the DW spacetime:

〈T (q)T (−q)〉 = N2
DW q

3
DW f(g2

eff)→ −iN2
Cq

3
Cf(g2

eff).



Framework



Holographic power spectrum

Using the standard prescription to compute holographic correlation functions,

along with the domain-wall/cosmology correspondence, we arrive at the

following holographic formula for the cosmological power spectrum:

∆2
R(q) =

−q3

4π2Im〈T (−iq)T (iq)〉 ,

where T ≡ T ii is the trace of the stress-energy tensor of the dual QFT. (Note

one takes the analytic continuation before taking the imaginary part.)

Similar formulae can be worked out for other cosmological observables.

(e.g. tensor power spectrum, 3-point functions)



Í New holographic models of inflation



New holographic models

F Ordinary inflationary models are described by Einstein gravity hence the

dual QFT is strongly coupled.

F New models arise when we consider the dual QFT at weak coupling, but

still at large N .

F In these models, the very early universe is in a non-geometric phase. This

phase should have a string theory description in terms of a strongly

coupled sigma model. Here we use holography to reconstruct the late-time

asymptotic geometry that emerges.

F The end of this phase is the beginning of conventional hot big bang

cosmology.

â To make predictions, we do perturbative QFT calculations and use our

holographic formulae.



QFT calculations

To compute the holographic power spectrum, we need to compute the 2-pt

function of Tij . The leading order contribution is at 1-loop:

〈T (q)T (−q)〉 ∼ N2q3

The answer follows from general considerations:

I The stress tensor has dimension 3 in three dimensions.

I 1-loop amplitudes are independent of g2
YM.

I There is a factor of N2 from the trace over gauge indices.



QFT calculations

Including higher-loop corrections now, the answer takes the form

〈T (q)T (−q)〉 = N2q3f(g2
eff),

where

f(g2
eff) = f0(1− f1g

2
eff ln g2

eff + f2g
2
eff +O(g4

eff)).

Here

I f0 is fixed by our 1-loop calculation.

I f1 requires a 2-loop calculation.

I f2 is related to a physical scale generated by infrared effects qIR ∼ g2
YM.

[Jackiw, Templeton (1981); Appelquist, Pisarski (1981)].

(Provided one probes the theory at scales large compared to the IR scale

we can neglect this term however.)



Holographic power spectrum

Plugging this result into our holographic formula,

〈T (q)T (−q)〉 = N2q3f(g2
eff) ⇒ ∆2

R(q) =
1

4π2N2

1

f(g2
eff)

.

The holographic power spectrum is therefore

∆2
R(q) = ∆2

R
1

1 + (gq∗/q) ln |q/gq∗|
.

I ∆2
R = 1/(4π2N2f0) so small amplitude ∆2

R ∼ 10−9 implies N ∼ 104,

consistent with ’t Hooft large-N limit.

I The parameter g is defined by f1g
2
eff = gq∗/q, where q∗ is the

cosmological pivot scale. For gravity to be strongly coupled over CMB

wavelengths, we require g2
eff � 1. This means (gq∗/q)� 1 hence

spectrum is automatically near scale invariant.



Holographic power spectrum

Red curve g < 0, blue curve g > 0. Perturbative calculation only reliable for

large momenta q/gq∗ � 1 far from peak/trough. At very high momenta

spectrum rapidly becomes scale invariant (asymptotic freedom).



Î Testing the holographic power spectrum



Holographic model vs ΛCDM

We undertook a custom fit of the holographic model to the current cosmological

data, using the empirical power-law ΛCDM model to provide a comparison.

[Dias (2011); Easther, Flauger, PM, Skenderis (2011)]

F ΛCDM power spectrum: ∆2
R(q) = ∆2

R(q0) (q/q0)nS−1.

F Both models have six parameters: five of these (Ωbh
2, Ωch

2, h, ∆2
R) are

common to both and were found to lie within one standard deviation of

each other.

F The sixth parameter is the tilt ns (ΛCDM) or the coupling g (holographic

model). The WMAP7 data favour a slightly red spectrum with a best-fit:

g = (−1.27± 0.93)× 10−3, q∗ = 0.05 Mpc−1.



Best-fit angular power spectra
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Holographic model vs ΛCDM

The difference in best-fit log likelihoods are:

Holographic Model ΛCDM ∆ lnLbest

WMAP7 3735.5 3734.3 1.2

WMAP+BAO+H0 3737.3 3735.7 1.6

WMAP+CMB 3815.0 3812.5 2.5

ΛCDM therefore provides a somewhat better fit, i.e. a higher probability of

obtaining the data given the optimal choice of model parameters.

To perform model comparison one should compute the Bayesian evidence, i.e.

the probability of the model given the data and the prior probability distribution

for the model’s parameters.

E =

∫
dαMP (αM )L(αM )



Bayesian Evidence

The specification of priors is important:

I For the holographic model there is a natural choice of prior (require

perturbation theory valid for all CMB scales).

I Difficult to fairly assign prior for tilt ns in ΛCDM: we tried two choices

(i) 0.92 < ns < 1.0, (ii) 0.9 < ns < 1.1.

The first is near optimal for ΛCDM; the second is symmetric about ns = 1

(since we don’t tell the holographic model the sign of the tilt).

For choice (i) we find weak evidence in favour of ΛCDM (∆ lnE ∼ 1.2 to 1.8).

For choice (ii) the evidence is inconclusive (∆ lnE . 1).

We conclude that more data is required (Planck satellite), as well as a better

theoretical understanding of 2-loop and IR effects, to permit more scale depen-

dence.



Conclusions

Ê Standard inflation is holographic: all cosmological observables such as

power spectra can be expressed in terms of analytic continuations of

correlation functions of a strongly coupled dual QFT.

Ë There are new holographic models based on weakly coupled QFT. These

describe a universe that started in a non-geometric strongly coupled phase.

The dual QFT describing this phase is well-behaved in both the UV and

the IR → a complete description?

Ì These models are compatible with the WMAP7 data. Some hints that

further theoretical work needed to understand higher-order effects.

Í Planck might allow a definitive test of the holographic power spectrum

within 2 years!



Outlook



Tensor-to-scalar ratio

I Holographic model predicts

r =
∆2
T

∆2
S

= 32

(
NA +Nφ

NA +Nφ +Nχ +Nψ

)

where NA = # gauge fields, Nφ = # minimally coupled scalars, Nχ = #

conformally coupled scalars, Nψ = # fermions.

I An upper bound on r translates into a constraint on the field content of

the dual QFT.

I r is not parametrically suppressed as in slow-roll inflation, nor does it

satisfy the slow-roll consistency condition r = −8nT .



Non-Gaussianity

Evaluating the QFT 3-pt function, our

holographic formula predicts a scalar

bispectrum of exactly the equilateral form with

fequilNL = 5/36.

[1011.0452]

I This result is independent of all details of the theory, such as QFT field

content.

I Too small for direct detection by Planck, but observation of larger fNL
would exclude model.

I For tensor bispectra see [1104.3894] and work to appear with Bzowski,

Skenderis.


