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o Problem: If time period of inflation is more than 70H~",

Conclusions then \p(t) < Iy at the beginning of inflation
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e standard coupling of General Relativity to matter obeying
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127 (2008).
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wwisiedsl  If 7 < O then the ghost condensate carrier negative gravit.
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Equation of motion for the ghost condensate field (leading
ok order in 7):

Em_erg:gt
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Bounce McRi = —V. (12)
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berger Numerical results (ctd.):
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Stability towards anisotropic stress:

Matter
Bounce

Emergent V(¢) = VOM_a¢_aa (13)
Universe
Perturbations
194'4

Structure 1 Czat (3371-) — _233 M_4_a_ X (14)
Structure 2 8¢

i~ (15)
Siees If a > 6 then the model is stable against anisotropic stress.

HL fluctuations
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R. Branden-

peroer solutions to tend to de Sitter at high curvatures.
Bounce o Find invariant / which has the property that
Emergent I: O — g‘uV — ggf
Universe
Perturbations Q Result: I: 4RMVR:U‘V — Hz .
S o Lagrange multiplier construction of a higher derivative
Str:ivcgtkL.‘n'eZ graVIty aCtlon E — R R SOI _ V(QD)

o V(¢) constructed such that i) / — 0 at large values of
R, ii) Einsteinian low R limit.

Structure 3

o Phase space analysis of homogeneous solutions — all
e solutions tend to de Sitter at high curvatures.
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Motivation: Find F(R) action which is ghost-free about
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Bounce Minkowski space-time.

Emergent o

Universe Q GhOSt-freeneSS — F(R) must contain a” poweI’S Of
Perturbations Vz R.

Structure 1 ° F(R) — R + Z iRvZFIR

Structure 2 Mz2n
@ Resulting theory is asymptotically free.
o Cosmological bouncing solutions result.
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Matter z i i
ot t—Ft, x' —Ix.

Emergent
Universe

R— Usual metric degrees of freedom:

Structure 1

S‘fr_uctureZ d32 = —detz —|— g,j(dx' + N'dl‘)(dX/ + N/dt) .

Most general action consistent with residual symmetries
and power-counting renormalizability:
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Horava-Lifshitz Gravity I

Sl Kinetic piece of the action:

Cosmology
o s = 2 [ dta®xy/gN (KiKi — AK?

K — ? X \/a If - 5
Matter
Bounce where

Emergent
Universe

Perturbations [{I/ =

1 ..
o9 = ViN; = VN,
Potential piece of the action (special case - detailed
balance):

Structure 1

Structure 2
Overview

Structure 3

/ ot x/GN[ c,,c

HL fluctuations
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Horava-Lifshitz Bounce |
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B In the presence of nonvanishing spatial curvature, the
. ranaen- 0 . . . . . 0
berger higher spatial derivative terms in the geometrical action act

Matter as ghOSt matter

E::;Zm The FRWL equations become:

Universe

Perturbations 6(3)\ _ 1) H2 _ B 3K2M2 l_( A 2

Structure 1 h_z - P 8(3)\ _ 1 ) az 9
Structure 2 _

where k is the spatial curvature constant;

Structure 3 1 1 5 o l_( I_(
S 20 -1, (+wp, 2 (B NE
it K2 2 4BX—1) \ 22 &
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Viatter o k/a* term acts as ghost radiation!
founee o For a general potential there is also ghost anisotropic

Gniverse. stress.

Perturbations @ — in the presence of spatial curvature a cosmological
Sl bounce will occur.

Structure 2 . . ..

: @ The bounce is stable against the presence of radiation.

@ The bounce is marginally stable against the presence
of anisotropic stress.
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Dynamics
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We consider the following background dynamics for the
Matter scale factor a(t):
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o No structure formation problem

o

o
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No trans-Planckian problem for fluctuations
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Principles of String Gas Cosmology

Unconventional
Cosmology

Idea: make use of the new symmetries and new degrees of

R. Branden-

berger freedom which string theory provides to construct a new
e theory of the very early universe.
Eouges Assumption: Matter is a gas of fundamental strings
A Assumption: Space is compact, e.g. a torus.
Perturbations Key p0|ntS:
Sees o New degrees of freedom: string oscillatory modes

Structure 2

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

Structure 3 o New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
SENEE equivalent to physics at small R
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T-Duality
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T-Duality
Matter

Bounce @ Momentum modes: E, = n/R
e Winding modes: E,, = mR
Duality: R — 1/R (n,m) — (m, n)
Mass spectrum of string states unchanged
Symmetry of vertex operators

Symmetry at non-perturbative level — existence of
D-branes
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Dynamics

Unconventional
Cosmology

R. Branden-

Assume some action gives us R(t)
T

Emergent
Universe 1

Perturbations
Structure 1
Structure 2

Hagedom

Structure 3 X
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We will thus consider the following background dynamics for
Matter the scale factor a(t):

Bounce
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Structure 2
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Cosmology o Begin with all 9 spatial dimensions small, initial

R Drangen: temperature close to Ty — winding modes about all
spatial sections are excited.
Matter 0 - g . .
Bounce o Expansion of any one spatial dimension requires the
B annihilation of the winding modes in that dimension.
niverse
Perturbations ! > < ' U
Structure 1
- O

Structure 2

o Decay only possible in three large spatial dimensions.

@ — dynamical explanation of why there are exactly three
large spatial dimensions.

Conclusions

Note: this argument assumes constant dilaton [R. Danos, A.
Frey and A. Mazumdar]
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Sl - Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

Cosmology
7. Brangen @ winding modes prevent expansion
@ momentum modes prevent contraction
—  Ver(R) has a minimum at a finite value of
R, — Rmin
in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which
are massless at Ry,
— Verr(Rmin) = 0
— size moduli stabilized in Einstein gravity background
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Moduli Stabilization in SGC

Sl - Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

Cosmology

R. Branden- @ winding modes prevent expansion
berger .
o momentum modes prevent contraction
dater 0 — Ver(R) has a minimum at a finite value of
Emergent Ra = Hmin

Universe

@ in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which
are massless at Ry,

0 — Verr(Rmin) =0

@ — size moduli stabilized in Einstein gravity background

Siees Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

HL fucuatons o enhanced symmetry states
CelliEters @ — harmonic oscillator potential for 6
@ — shape moduli stabilized

Perturbations
Structure 1

Structure 2
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Dilaton stabilization in SGC
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R. Branden-
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Matter

Bounce o The only remaining modulus is the dilaton

T o Make use of gaugino condensation to give the dilaton a
Perturbations potential with a unique minimum
Structure 1 o — diltaton is stabilized

Structure 2

o Dilaton stabilization is consistent with size stabilization
[R. Danos, A. Frey and R.B., 2008]
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R Branden problems, e.g. singularity problem and trans-Planckian
problem for fluctuations.

. o Alternative scenarios exist which do not suffer from

Emergent these prOblemS.

Universe

@ Matter bounce: non-singular bouncing cosmology with

e 1 a matter-dominated phase of contraction.

Structure 2 @ Emergent cosmology, e.g. string gas cosmology.

o Preview: Both alternative scenarios yield a
scale-invariant spectrum of cosmological perturbations
and are thus compatible with all current observations.

o Preview: Each of these two scenarios makes specific

Conalusions predictions for future observations with which it can be

distinguished from inflationary cosmology.

Perturbations
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Theory of Cosmological Perturbations: Basics

Cosmological fluctuations connect early universe theories
with observations

o Fluctuations of matter — large-scale structure

o Fluctuations of metric — CMB anisotropies

o N.B.: Matter and metric fluctuations are coupled
Key facts:

o 1. Fluctuations are small today on large scales

o — fluctuations were very small in the early universe

@ — can use linear perturbation theory
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Unconventional

S Cosmological fluctuations connect early universe theories
R. Branden- with observations

berger

— o Fluctuations of matter — large-scale structure
Bounce . . 5 -
et o Fluctuations of metric — CMB anisotropies
e o N.B.: Matter and metric fluctuations are coupled
Perturbations
Structure 1 Key faCtS
Structure 2 .

. o 1. Fluctuations are small today on large scales

— fluctuations were very small in the early universe
— can use linear perturbation theory

2. Sub-Hubble scales: matter fluctuations dominate
Super-Hubble scales: metric fluctuations dominate

sotropy

Structure 3
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SlEl  Step 1: Metric including fluctuations

Cosmology

R. Branden-
berger

ds®> = a2[(1+2d)dn? — (1 — 20)dx?] (16)
Bounce 0 = @o+0p (17)
Gniverse Note: ® and d¢ related by Einstein constraint equations
Perturbations Step 2: Expand the action for matter and gravity to second
Structure 1 order about the cosmological background:
ructure 2
: 1 4
s@ = > / d*x((V'y? = viv'+ 7v2) (18)
Structure 3
v = a(dp+20) (19)
Conclusions (106
z = a— 20
- (20)
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where ( is the curvature fluctuation in co-moving
coordinates.
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Quantum vacuum initial conditions:

Vi(ni) = (V2k)™ (22)
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Scale Invariance
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Matter Power spectrum:

Bounce

Em_ergem
Universe Pv(k, t) = k3| Vk(t)|2
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Structure 1 Scale invariance:

Structure 2

Pe(k,t) ~ k"1~ KO,
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Structure 1
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Structure formation in inflationary cosmology

N.B. Perturbations originate as quantum vacuum
fluctuations.

61/109



Origin of Scale-Invariance

Unconventional

Gosmology Heuristic analysis [W. Press, 1980]: time-translation
NP symmetry of de Sitter phase — scale-invariance of
ereer spectrum.

Matter
Bounce

Emergent Mathematical analysis [Mukhanov and Chibisov, 1982]:

Universe
Perturbations

Structure 1

Pe(k,t) o< Pu(k,t)

alt) .2
~ k%m) [Vie(tu(K)) P
~ KK vi(t(K)) 2
KO

Structure 2

Conclusions

using a(n) ~ =" in the de Sitter phase and ny(k) ~ k~1.
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Conclusions

Structure formation in string gas cosmology

N.B. Perturbations originate as thermal string gas
fluctuations.
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Method
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Bounce o Calculate matter correlation functions in the Hagedorn
Emergent phase (neglecting the metric fluctuations)

Universe

Perturbations o For fixed k, convert the matter fluctuations to metric
Structure 1 fluctuations at Hubble radius crossing t = tj(k)

Sluce 2 o Evolve the metric fluctuations for t > t;(k) using the

ol usual theory of cosmological perturbations
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Extracting the Metric Fluctuations
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and gravitational waves:

Matter
Bounce

Emergent j j
oeks ds? = @(n)((1+20)dn? —[(1 — 20)J; + hyldx'dx’) . (23)

Perturbations

SR i Inserting into the perturbed Einstein equations yields

Structure 2

(|o(K)[?) = 167°GPk*(5T% (k)6 T%(k)),  (24)

Structure 3

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) . (25)
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Key ingredient: For thermal fluctuations:
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Bounce

2 T2
cnasen (86%) = FgCv- 1£5)

Key ingredient: For string thermodynamics in a compact
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Structure 2
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Bounce Po(k) = 8G?k~' < |sp(k)P > (28)
L = B8G°K® < (M)* >p (29)
Perturbations e 8G2k_4 < ((Sp)2 >R (30)
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Power spectrum of cosmological fluctuations

Po(k) = 8G?k™' < |dp(k)|? >
= 8G?k? < (0M)? >R
= 8G*k* < (6p)? >R

T 1
_ 2 1
- &G B1-T/Ty

Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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Comments

Unconventional
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o Evolution for t > tj(k): ® ~ const since the equation of

Matter state parameter 1 + w stays the same order of
z"“”ce : magnitude unlike in inflationary cosmology.

m_ergem X X

Jniverse @ Squeezing of the fluctuation modes takes place on

Perturbations

super-Hubble scales like in inflationary cosmology —
acoustic oscillations in the CMB angular power
spectrum

o In a dilaton gravity background the dilaton fluctuations
dominate — different spectrum [R.B. et al, 2006;
Kaloper, Kofman, Linde and Mukhanov, 2006]

Structure 1

Structure 2
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Bounce
167r262€13(1 —T/TH) (34)
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Emergent
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Structure 2
for T

<ITiR)F >~ a1 = T/Th) (35)
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Cosmology

R. Branden-

berger 167T262k_1 < |le(k)|2 >
Matter = 167T262k_4 < |T/](R)|2 > (33)

Bounce

: T
vk ~ 167°G (1= T/Th) (34)
Perturbations s
Siucue Key ingredient for string thermodynamics
Structure 2
T
5 2o (41—
<ITR)F >~ g1 = T/Th) (35)

Structure 3

Key features:

HL fluctuations

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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Requirements
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R. Branden-
berger

S o static Hagedorn phase (including static dilaton) — new
Hounce physics required.

Emergent

Universe o Cy(R) ~ R? obtained from a thermal gas of strings
Perturbations provided there are winding modes which dominate.

z’“:“re; o Cosmological fluctuations in the IR are described by
ructure . . .
Einstein gravity.
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attor o static Hagedorn phase (including static dilaton) — new
Hounce physics required.

Emergent

Universe o Cy(R) ~ R? obtained from a thermal gas of strings
Perturbations provided there are winding modes which dominate.

S o Cosmological fluctuations in the IR are described by
Einstein gravity.

Structure 2

Note: Specific higher derivative toy model: T. Biswas, R.B.,
Structure 3 A. Mazumdar and W. Siegel, 2006
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Network of cosmic superstrings

Unconventional
Cosmology

R. Branden-
berger

Vatier @ Remnant of the Hagedorn phase: network of cosmic

sounee superstrings

Emergent . . . . .
Universe o This string network will be present at all times and will
Ferlubatons achieve a scaling solution like cosmic strings forming
Sl during a phase transition.

Structure 2 . . .

: o Scaling Solution: The network of strings looks
2;?3?:5%2‘3 statistically the same at all times when scaled to the
ete 3 Hubble radius.

B
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Kaiser-Stebbins Effect

Unconventional
Cosmology

Space perpendicular to a string is conical with deficit angle

R. Branden-
berger

a = 8rGu, (36)

— Photons passing by the string undergo a relative Doppler
Universe Shlft

Perturbations

Structure 1 ﬂ = 87-(-7(V) VG'UJ 5 (37)

Structure 2 T

Matter
Bounce

— network of line discontinuities in CMB anisotropy maps

Structure 3

N.B. characteristic scale: comoving Hubble radius at the
time of recombination — need good angular resolution to
Conclusions detect these edges.
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Gaussian temperature map

SRRl 100 x 10° map of the sky at 1.5’ resolution (South Pole
Telescope specifications)

R. Branden-
berger
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Cosmic string temperature map

Ul 100 x 109 map of the sky at 1.5 resolution

Cosmology
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Structure 2
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Unconventional

Cosmology
R. Branden-
berger

Matter
Bounce

Emergent

Tt This signal is superimposed on the Gaussian map. The
B relative power of the string signature depends on Gu and is
Structure 1 bound to contribute less than 10% of the power.

Structure 2

Signatures in CMB
anisotropy maps
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CANNY edge detection algorithm

Unconventional

Cosmology o Challenge: pick out the string signature from the
L EEIE Gaussian "noise" which has a much larger amplitude

berger

@ New technique: use CANNY edge detection algorithm
Matter
Bounce [Canny, 1986]
PR o |dea: find edges across which the gradient is in the
Perturbations correct range to correspond to a Kaiser-Stebbins signal
Structure 1 from a String
See s o Step 1: generate "Gaussian" and "Gaussian plus

strings" CMB anisotropy maps: size and angular
resolution of the maps are free parameters, flat sky
approximation, cosmic string toy model in which a fixed
tmtors number of straight string segments is laid down at
Conclusions random in each Hubble volume in each Hubble time
step between tec and t.
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CANNY algorithm |l

Unconventional
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R. Branden-
berger

Matter
Bounce

s o Step 2: run the CANNY algorithm on the temperature
T maps to produce edge maps.
Ferubatons o Step 3: Generate histogram of edge lengths

Structure
e o Step 4: Use Fisher combined probability test to check
for difference compared to a Gaussian distribution.

Structure 2

Signatures in CMB
anisotropy maps

Structure 3
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Preliminary results
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Mater o For South Pole Telescope (SPT) specification: limit
erent Gu < 2 x 1078 can be set [A. Stewart and R.B., 2008,
Jniverse R. Danos and R.B., 2008]
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et Gu < 2 x 1078 can be set [A. Stewart and R.B., 2008,
Jniverse R. Danos and R.B., 2008]

Perturbations 9o o o - - .
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effects the limits [A. Stewart and R.B., 2008]
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Preliminary results

Unconventional
Cosmology

R. Branden-
berger

vater o For South Pole Telescope (SPT) specification: limit
et Gu < 2 x 1078 can be set [A. Stewart and R.B., 2008,
Univzise R. Danos and R.B., 2008]
S o Anticipated SPT instrumental noise only insignficantly
effects the limits [A. Stewart and R.B., 2008]

o WMAP data: limit Gu < 2 x 10~ can be set [E.
et Thewalt, in prep.]
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Structure 2

Structure 3
Basics

HL fluctuations

Conclusions

83/109



Unconventional
Cosmology

R. Branden-
berger

Matter
Bounce

Emergent
Universe

Perturbations
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Structure 2
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Matter Bounce Scenario
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Origin of Scale-Invariant Spectrum

Unconventional

G o The initial vacuum spectrum is blue:

R. Branden-

berger Pg(k) _ k3’<(k)|2 ~ k2 (38)
Bounce o The curvature fluctuations grow on super-Hubble
T scales in the contracting phase:
Universe
Zi‘r‘:ii‘::\?ns Vk(77) = G 772 + 0277_1 ) (39)

S o For modes which exit the Hubble radius in the matter
phase the resulting spectrum is scale-invariant:

- Pe(k,n) ~  K3|vie(n)Pa2(n) (40)
ot k)2 e
Conclusions ~ ksyvk(nH(k))‘z(nH’lg )) ~ k3 -2

~ const,
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Transfer of the Spectrum through the Bounce

Unconventional
Cosmology

R. Branden- @ In a nonsingular background the fluctuations can be

berger

tracked through the bounce explicitly (both numerically
e in an exact manner and analytically using matching
R conditions at times when the equation of state
Universe ChangeS).

Perturbations

o Explicit computations have been performed in the case
of quintom matter (Y. Cai et al, 2008), mirage
cosmology (R.B. et al, 2007), Horava-Lifshitz bounce
(X. Gao et al, 2010).

Slees o Result: On length scales larger than the duration of the
- bounce the spectrum of v goes through the bounce
unchanged.

Structure 1

Structure 2

HL fluctuations
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88/109



Large tensor to scalar ratio

Unconventional
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o The amplitude of the gravitational waves is squeezed
vater with the same factor as that of the scalar modes.

Bounce

Emergent o Thus, a large tensor to scalar ratio is generated.

Universe
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Large tensor to scalar ratio

Unconventional
Cosmology

R. Branden-
berger

o The amplitude of the gravitational waves is squeezed
vater with the same factor as that of the scalar modes.

Bounce

Emergent o Thus, a large tensor to scalar ratio is generated.

Universe

Perturbations o To render a matter bounce model consistent with
Structure 1 observations which indicate r < 0.2 a mechanism
Structure 2 which enhances the scalar modes around the bounce
point is required.

@ One solution: matter bounce curvaton (Y. Cai, R.B. and
SeEs X. Zhang, 1101.0822).
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b o It acquires a scale-invariant spectrum of entropy
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Matter Bounce Curvaton

Unconventional

Cosmology o Add light scalar field +/ to the model.

b o It acquires a scale-invariant spectrum of entropy
fluctuations in the contracting phase.

Matter

Bounce o If ¢ is coupled to the field which dominates at early

Smerdent times and if the equation of state changes during the

Cerurbations bounce, then the entropy fluctuations seed an adiabatic

Structure 1 mOde Via

Structure 2

H

; Q: ¢2
= —-V20 — 47GH N
¢ r Z

¢,

Structure 3
where

Pri

HL fluctuations

Conclusions Cb/

Q = ¢ +
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Matter

Hounee o The new contribution to ¢ inherits the scale invariance
Gniverse: from that of the entropy mode.

FRALZEEIE o Depending on the model of the bounce, the contribution
S to ¢ induced by the entropy mode may dominate.

Structure 2 . )
: o This leads to a suppression of r.
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berger

e o GR: 10 + 1 degrees of freedom for metric and matter
sounce fluctuations.

Emergent

Universe o 4 + 1 scalar modes, 4 vector modes, 2 tensor modes.
Feriabatons o 4 gauge degrees of freedom: 2 scalar and 2 vector.

Structure 1 . . . .
@ Hamiltonian constraint, no ansotropic stress — 1 scalar
degree of freedom.
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Unconventional
Cosmology

R. Branden- Issue: Extra scalar metric degree of freedom.

berger

e o GR: 10 + 1 degrees of freedom for metric and matter
sounce fluctuations.

Emergent

Universe o 4 + 1 scalar modes, 4 vector modes, 2 tensor modes.
Feriabatons o 4 gauge degrees of freedom: 2 scalar and 2 vector.

Structure 1 . . . .
@ Hamiltonian constraint, no ansotropic stress — 1 scalar
degree of freedom.

ik o HL gravity: less symmetry — only 1 scalar gauge
Structure 3 degree of freedom.

e o — extra scalar metric degree of freedom.

HL fluctuations

Structure 2
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Unconventional
Cosmology

Results of detailed analyses:

R. Branden-
berger

@ In the non-projectable version of HL gravity the extra

Mater scalar metric degree of freedom is non-dynamical at
— linear order [X. Gao, Y. Wang, R.B. and A. Riotto
Universe (201 0)]
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R. Branden-
e @ In the non-projectable version of HL gravity the extra
Mater scalar metric degree of freedom is non-dynamical at
— linear order [X. Gao, Y. Wang, R.B. and A. Riotto

Universe (201 0)]
S o In the projectable version of HL gravity the extra scalar

mode is present and either tachyonic or a ghost [A.
Cerioni and R.B., 2010].
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Fluctuations in Hofava-Lifshitz Gravity |

Unconventional
Cosmology

Results of detailed analyses:

R. Branden-
berger

@ In the non-projectable version of HL gravity the extra
vater scalar metric degree of freedom is non-dynamical at
— linear order [X. Gao, Y. Wang, R.B. and A. Riotto
Universe (201 0)]

Perturbations q - .

o In the projectable version of HL gravity the extra scalar
mode is present and either tachyonic or a ghost [A.
Cerioni and R.B., 2010].

o In the “healthy extension" of HL gravity [D. Blas, O.
Pujolas and S. Sibiryakov, 2009] the extra scalar
degree of freedom decouples in the IR [A. Cerioni and
R.B., 2010].

Structure 1
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Matter o In the non-projectable version of HL gravity, the
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S o In the non-projectable version of HL gravity, the
Hounce fluctuations can be explicitly evolved through the
Gniverse. bounce.

Perturbations @ Since modes of interest are always in the extreme IR,
SEUEIO § the effects of the higher spatial derivative terms are
See s highly suppressed.
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Fluctuations in Hofava-Lifshitz Gravity llI

Unconventional
Cosmology

R. Branden-
berger

S o In the non-projectable version of HL gravity, the
Hounce fluctuations can be explicitly evolved through the
Gniverse. bounce.

Perturbations @ Since modes of interest are always in the extreme IR,
SEUEIO § the effects of the higher spatial derivative terms are
S highly suppressed.

@ — Scale invariance of the spectrum survives the
bounce phase.
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Conclusions

Unconventional
Cosmology

oy Conventional (inflationary) cosmology has conceptual
e problems.

ater @ Some of these problems are solved in un-conventional
Sonee (alternative) scenarios which are in agreement with the
Tk current data on inhomogeneities.

i s o Emergent universe: universe begins in a quasi-static

Structure 1 phase

e o Specific realization: string gas cosmology, predicts a
o slight blue tilt in the spectrum of gravitational radiation.
Structure 3 @ Matter bounce: non-singular bouncing cosmology with

a matter-dominated phase of contraction.

o Specific prediction: special shape of the three point
function.

Conclusions

96/109



Message

Unconventional
Cosmology

R. Branden-
berger

e @ Maybe un-conventional cosmology is more
Hounee conventional than what is now considered as

Emergent

Universe conventional cosmology.

R o Maybe experts on fundamental physics (both string
St theory and canonical quantum gravity) should not force
e inflation into their scenarios if inflation does not emerge
naturally. Maybe one of the alternative scenarios will
emerge much more naturally.

sotropy

Structure 3
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Structure 2
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Conclusions

Dilaton gravity plus string gas matter
1
S=—(Sg+Ss) + Ssa (41)

Ssa =~ [ d"xy/=gY paca, (42)

: number density of strings in the state «
energy of the state a.
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Unconventional

Gosmology Action: Dilaton gravity plus string gas matter

R. Branden-
berger

1
S:;(Sg—i-S(b)—l-SSG, (41)

Matter
Bounce

Emergent SSG = — / d10X\/ _g Z Maea 9 (42)

Universe

Perturbations

Structure 1 Whel’e
e o 1o NUMber density of strings in the state o
o o €, energy of the state .

Introduce comoving number density:

:uO,a(t) (43)

Conclusions Mo =
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Bounce
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ds? = —df? + a(t)?dx? + Y ba(t2dyZ,  (44)
a=1

Emergent

s Contributions to the energy-momentum tensor
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Energy-Momentum Tensor
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berger
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Structure 2 ,Oa
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Structure 3 pa —
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Conclusions

6
ds? = —df? + a(t)?dx? + Y ba(t2dyZ,  (44)
a=1

Contributions to the energy-momentum tensor
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Energy-Momentum Tensor

Unconventional Ansatz for the metric:

Cosmology

R. Branden-
berger

6
ds? = —df? + a(t)?dx? + Y ba(t2dyZ,  (44)
Matter
Bounce a1

Emergent

e Contributions to the energy-momentum tensor
Perturbations
Structure 1 _ /J;()’a 2 (45)
%y;%g%z? Pa = €a/ _‘SJECX’
aps 2
: i Moo Py
Structure 3 pa = —F 1 (46)
Basics €a __SJ :3
;\ujnfw: . /LO N ,73 -
onclusions = "% (2 _ wsp . 47
Po con/—ga ( b2 ala (47)
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Single string energy

Unconventional
Cosmology

R. Branden-

2 €. is the energy of the string state a:

Matter
Bounce

€n = [o/pf, + b2(n, n) + b?(w, w)

A=

Emergent
Universe

Perturbations +2(n, W) ‘|‘ 4(N - 1)]1/2 9 (48)
Structure 1

Structure 2
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Single string energy

Unconventional
Cosmology

R. Branden-

2 €. is the energy of the string state a:

Matter

Bounce . 1 ) 2 _2 o
piscon « = g AT OO W)
Perturbations +2(n’ W) s 4(N _ 1)]1/2 , (48)

Structure 1

Structure 2 Where

o i and w: momentum and winding number vectors in
the internal space

0 Pgy: momentum in the large space
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Background equations of motion

Unconventional Radion equation:

Cosmology

R. Branden-
berger

b 871G

Boonce o b(35 +5B) : M—\/Giaéa (@9
Etgbt . [Z_g — Wb’ + (Dé 1)[b2(W’ w) + (n, w) + 2(N — 1)]}
BN Scale factor equation:

a + a@s 2, by _ 8nGuoa .

: b) [ 2
Stri
Pir:Lf:z?tLlre 3 Gi€a

HL fluctuations

Conclusions X

pd + ﬁ[bz(w, w) + (n, w) + 2(N — 1)]] :
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Special states
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Matter Enhanced symmetry states
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Emergent bz(W, W) + (n’ W) =+ 2(N — 1) = (0. (51)
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Special states
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Enhanced symmetry states

Matter
Bounce

Emergent bz(W, W) + (n’ W) =+ 2(N — 1) = (0. (51)

Universe

Perturbations

Stable radion fixed point:

Structure 1

Structure 2

”g 2,2
b~ Wi =0. (52)
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Gaugino condensation

Unconventional
Cosmology
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Gaugino condensation

Unconventional
Cosmology

Add a single non-perturbative ingredient - gaugino

R. Branden-

berger condensation - in order to fix the remaining modulus, the
S dilaton
sounce Kahler potential: (standard)
Emergent
Universe _
Perturbations IC(S) = = In(S = S) 5 S = e_d) +ia. (53)

N where ® = 2¢ — 6In bis the 4-d dilaton, b is the radion and
; ais the axion.
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Gaugino condensation

Add a single non-perturbative ingredient - gaugino
condensation - in order to fix the remaining modulus, the
dilaton

Kahler potential: (standard)

K(S) = —-In(S+S), S=e®+ia. (53)

where ® = 2¢ — 61In b is the 4-d dilaton, b is the radion and
a is the axion.

Non-perturbative superpotential (from gaugino
condensation):

W = M (C -~ Ae S (54)
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Dilaton potential |
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Dilaton potential |

poisgiel  Yields a potential for the dilaton (and radion)

Cosmology

R. Branden-
berger M4 02
1 —o

Matter V = ZPpBe® |2 e+ ACe® (ay+ —e® ) e %°
Bounce 4 4 2
Em_ergem 1 2 ®

niverse — —

- +A? (ao + —e"’) g 2&e " | (55)
Perturbations 2
Structure 1
Sidues Expand the potential about its minimum:

4 2
vV = %b—ae“""a%A2 <ao = ge“’O) g 2ae "

Conclusi:;ls % (e—¢ _ e—¢o>2 ; (56)
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Dilaton potential Il

Unconventional
Cosmology

S — Lift the potential to 10-d, redefining b to be in the Einstein
S frame.

Matter

Bounce
Emergent M16 \A/ 3 2 S
Universe V(b, d)) — 10 e—¢0a%A2 (ao . _e¢0> e—Zaoe 0
Perturbations 4 2
Structure 1 _3¢ 2 B —¢ 2 _® 2
Structure 2 xe / (b € / —€ 0) * (57)
Dilaton potential in 10d Einstein frame
Structure 3 2
V = e 2 (bPe¢/2 - ny) (58)
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