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A broad perspective on the challenges of Quantum Gravity

Focus: Structure & successes of Loop Quantum Gravity; emphasis on BHs & Cosmology.

Organization:

1. Historical & Conceptual Setting

2. Structure of Loop Quantum Gravity

3. Quantum Geometry & Black Hole Entropy
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1. Historical and Conceptual Setting

Einstein’s resistance to accept quantum mechanics as a fundamental
theory is well known. However, he had a deep respect for quantum
mechanics and was the first to raise the problem of unifying general
relativity with quantum theory.

“Nevertheless, due to the inner-atomic movement of
electrons, atoms would have to radiate not only
electro-magnetic but also gravitational energy, if only in tiny
amounts. As this is hardly true in Nature, it appears that
quantum theory would have to modify not only Maxwellian
electrodynamics, but also the new theory of gravitation.”

(Albert Einstein, Preussische Akademie Sitzungsberichte, 1916)
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• Physics has advanced tremendously since 1916 years but the the
problem of unification of general relativity and quantum physics still open.
Why?
⋆ No experimental data with direct ramifications on the quantum nature of
Gravity.
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• Physics has advanced tremendously in the last nine decades but the
the problem of unification of general relativity and quantum physics is still
open. Why?
⋆ No experimental data with direct ramifications on the quantum nature of
Gravity.
⋆ But then this should be a theorist’s haven! Why isn’t there a plethora of
theories?
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⋆ No experimental data with direct ramifications on quantum Gravity.
⋆ But then this should be a theorist’s haven! Why isn’t there a plethora of
theories?

• In general relativity, gravity is coded in space-time geometry. Most
spectacular predictions —e.g., the Big-Bang, Black Holes & Gravitational
Waves— emerge from this encoding. Suggests: Important to respect the
Gravity ∼ Geometry duality ⇒ A satisfactory quantum gravity theory
should not pre-suppose a smooth geometry; geometry itself should be
treated quantum mechanically. How do you do physics without a
space-time continuum in the background?

• Several approaches: Causal sets, twistors, (Causal) Dynamical
triangulations, the AdS/CFT conjecture of string theory.
Loop Quantum Gravity grew out of the Hamiltonian approach pioneered by
Bergmann, Dirac, and developed by Wheeler, DeWitt, Misner and others.
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Contrasting LQG with String theory

Because there are no direct experimental checks, approaches are driven
by intellectual prejudices about what the core issues are and what will
“take care of itself” once the core issues are resolved.

Particle Physics: ‘Unification’ Central. (Stelle’s lectures)
Extend Perturbative, flat space QFTs; Gravity just another force.
• Higher derivative theories; • Supergravity
• String theory incarnations:
⋆ Perturbative strings; ⋆ Matrix Models
⋆ M Theory; ⋆ AdS/CFT Correspondence.
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Contrasting LQG with String theory

Particle Physics: ‘Unification’ Central. (Stelle’s lectures)
Extend Perturbative, flat space QFTs; Gravity just another force.
• Higher derivative theories; • Supergravity
• String theory incarnations:
⋆ Perturbative strings; ⋆ Matrix Models; ⋆ M Theory; ⋆ AdS/CFT
Correspondence.

• General Relativity: ‘Background independence’ Central: LQG
⋆ Hamiltonian Theory; used for cosmology & BHs),
⋆ Spin-foams; (a bridge to low energy physics via path integrals.)

Issues:
• Unification: Ideas proposed in LQG but strong limitations;
Recall however, QCD versus Grand Unified Theories.
• Background Independence: Progress through AdS/CFT; but a ‘small
corner’ of QG; Physics beyond singularities and S-matrices?

A. Ashtekar: LQG: Four Recent Advances and a dozen FAQs;

arXiv:0705.2222
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2. Structure of Loop Quantum Gravity

• Geometry: Physical entity, as real as tables and chairs.
Riemann 1854: Göttingen Address; Einstein 1915: General Relativity

Central Lesson of GR: Gravity ∼ Geometry. Strongly suggests:
Quantum gravity should somehow bring in quantum geometry.

• Matter has constituents. GEOMETRY??
‘Atoms of Geometry’? Why then does the continuum picture work so well?
Are there physical processes which convert Quanta of Geometry to
Quanta of Matter and vice versa?
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Quantum Geometry?

• A Paradigm shift to address these issues

“The major question for anyone doing research in this field is: Of which mathematical type
are the variables . . . which permit the expression of physical properties of space. . . Only
after that, which equations are satisfied by these variables?” Albert Einstein
(1946); Autobiographical Notes.

• Choice in General Relativity: Metric, gµν . Directly determines
Riemannian geometry; Geometrodynamics.
In all other interactions, by contrast, the basic variable is a Connection,
i.e., a matrix valued vector potential Ai

a;
Gauge theories: Connection-dynamics

• Key new idea: ‘Kinematic unification.’ Cast GR also as a theory of
connections. Import into GR techniques from gauge theories. Naturally
lead to a specific Quantum Theory of Riemannian Geometry.
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Holonomies/Wilson Lines and Electric Fields/Triads

• Connections: Vehicles for parallel transport.
In QED: parallel transport of the state of an electron
Recall: ∂ψ → (∂ − ieA)ψ
In QCD: parallel transport of the state of a quark
In gravity: parallel transport a spinor

p • − −− > −−− • q ψ(q) = [P exp
∫ q

p
A · dS]ψ(p) = ĥe Ψ(p)

ĥe is called the holonomy along the edge e from p to q.

• In Gravity: the (canonically conjugate) non-Abelian electric fields Ea
i

interpreted as orthonormal frames/triads. They determine the physical,
curved geometry. Structure group: Rotations of triads SO(3) or, in
presence of spinors, its double covering SU(2). This is why, unlike in
Yang-Mills theory, in non-perturbative quantum gravity we are led to
quantum Riemannina geometry.

• The ‘elementary,’ abstractly defined operators ĥe and fluxes Ê(S) of
electric fields/triads across 2-surfaces S determine an abstract ⋆-algebra
a. task: Find its representations.
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Uniqueness of Canonical Quantization?

• Quantum Mechanics: von Neumann’s uniqueness theorem:
There is a unique IRR of the Weyl operators Û(λ), V̂ (µ) by 1-parameter
unitary groups on a Hilbert space satisfying:
i) Û(λ) V̂ (µ) = eiλµ V̂ (µ) Û(λ); and ii) Weak continuity in λ, µ.
This is the standard Schrödinger representation: H = L2(R, dx);
x̂Ψ(x) = xΨ(x); p̂Ψ(x) = −idΨ(x)/dx, and U(λ) = eiλx̂,V (µ) = eiµp̂

• Strategy for more general systems: Consider the analog a of the Weyl
algebra. Look for cyclic representations (where the full Hilbert space is
generated by operating on a ‘vacuum’ state by operators in a).

In the algebraic approach a state is just a positive linear functional on the algebra a.

Realized as expectation values in a Hilbert space only after we have a representation.

The ‘VEVs’ i.e. expectation values in the cyclic state determine the
representation through an explicit (GNS) construction. If the VEVs are
invariant under a group, the group is unitarily implemented in the
representation.
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The Issue of Uniqueness

• Uniqueness does not hold for systems with an infinite number of
degrees of freedom even after imposing additional symmetry
requirements such as Poincaré invariance.

• Surprise: Quantum algebra a generated by holonomies and
triad-fluxes. It admits a unique cyclic representation in which the
diffeomorphism group is unitarily implemented. ⇒. Thanks to background
independence, quantum kinematics is unique in LQG!
(Lewandowski, Okolow, Sahlmann, Thiemann; Fleischhack)

Unforeseen power of Diffeomorphism Invariance or, equivalently,
Background Independence! (AA)

The unique representation has a technical feature that distinguishes it
from the Fock-type representations used in perturbative treatment of
gauge theories. Only the holonomy operators ĥ are well defined; not the
connection operators Â themselves. (QM Analogy: U(λ) well defined but not x)

Key technical reason reason why LQG has spin nets and discrete
eigenvalues of geometric operators.
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Polymer Geometry

• This unique kinematics was first constructed explicitly in the early
nineties. High mathematical precision. Provides a Quantum Geometry
which replaces the Riemannian geometry used in classical gravity
theories. (AA, Baez, Lewandowski, Marolf, Mourão, Rovelli, Smolin, Thiemann,...)

Details: Review by AA & Lewandowski; monographs by Rovelli;
Thiemann.

• Quantum States: Ψ ∈ H = L2(Ā, dµo)

µo a diffeomorphism invariant, regular measure on the space Ā of
(generalized) connections.

• Fundamental excitations of geometry 1-dimensional. Polymer geometry
at the Planck scale. Continuum arises only in the coarse rained
approximation.
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• Flux lines of area. Background independence!

• Examples of Novel features:

⋆ All eigenvalues of geometric operators discrete. Area gap.
Eigenvalues not just equally-spaced; crowd in a rather sophisticated way.
Geometry quantized in a very specific manner. (Recall Hydrogen atom.)

⋆ Inherent non-commutativity: Areas of intersecting surfaces don’t
commute. Inequivalent to the Wheeler-DeWitt theory (quantum
geometrodynamics).

Summary: AA & Lewandowski, Encyclopedia of Mathematical Physics
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Applications of this Quantum Geometry

• This unique kinematical arena provides a Quantum Riemannian
Geometry to formulate dynamics, i.e. the quantum version of Einstein’s
equations. Main challenge of LQG.

• Steady progress has been made especially over the last five years by
applying these background independent methods to various “sectors” of
general relativity. Examples:

⋆ Space-times admitting an isolated horizon as an inner boundary. Analysis covers black
holes in equilibrium and cosmological horizons in one go.

⋆ Spatially homogeneous space-times. Covers important cosmological models.

⋆ Gowdy Models two 2 spatial Killing fields (Mena’s talk): Great interest to mathematical
relativists; Admit inhomogeneity and gravitational waves (with certain symmetries).

⋆ Inhomogeneous cosmological perturbations (e.g., using quantum fields on quantum
cosmological space-times).

⋆ Piecewise linear truncations of general relativity: “Regge calculus” but based on quantum

geometries used in spin foam models (Rovelli’s lectures).

• Although starting point is GR, fundamental DOF quite different from
those of classical GR which is based on a continuum. Radical departure
from GR in the Planck regime.

– p. 15



3. Black Holes: Zooming in on Quantum Geometry

• First law of BH Mechanics + Hawking’s discovery that TBH = κ~/2π ⇒

for large BHs, SBH = ahor/4ℓpl
2 (Bekenstein 1973)

• Entropy: Why is the entropy proportional to area? For a M⊙ black hole,
we must have exp 1076 micro-states, a HUGE number even by standards
of statistical mechanics. Where do these micro-states come from?

For gas in box, the microstates come from molecules; for a ferromagnet,
from Heisenberg spins; Black hole ?
Cannot be gravitons: gravitational fields stationary.

• To answer these questions, must go beyond the classical space-time
approximation used in the Hawking effect. Must take into account the
quantum nature of gravity.

• Distinct approaches. In Loop Quantum Gravity, this entropy arises from
the huge number of microstates of the quantum horizon geometry.
‘Atoms’ of geometry itself!
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Quantum Horizon Geometry & Entropy

• Heuristics: Wheeler’s It from Bit
Divide the horizon into elementary cells, each carrying area ℓpl

2.
Assign to each cell a ‘Bit’ i.e. 2 states.
Then, # of cells n ∼ ao/ℓpl

2; No of states N ∼ 2n;
Shor ∼ lnN ∼ n ln 2 ∼ ao/ℓpl

2. Thus, Shor ∝ ao/ℓpl
2.

• Argument made rigorous in quantum geometry. Many inaccuracies of
the heuristic argument have to be overcome: Quanta of area not ℓpl

2 but

4πγ
√

j(j+) ℓpl
2; Calculation has to know that the surface is black hole

horizon; What is a quantum horizon?

• Interesting mathematical structures U(1) Chern-Simons theory;
non-commutative torus, quantum U(1), mapping class group, ...(AA, Baez,

Corichi, Krasnov; Domagala, Lewandowski; Meissner; AA, Engle, Van Den Broeck, ...)
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Quantum Horizon

Polymer excitations of geometry in the bulk puncture the horizon.
Quantum horizon geometry described by the U(1) Chern-Simons theory.
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Quantum Horizon Geometry and Entropy

• Horizon geometry flat everywhere except at punctures. At punctures
the bulk polymer excitations cause a ‘tug’ giving rise to quantized deficit
angles. They add up to 4π providing a 2-sphere quantum geometry.
‘Quantum Gauss-Bonnet Theorem’.

• As in Statistical mechanics,
have to construct a suitable ensemble ρ by specifying
macroscopic parameters (multipoles) characterizing
the classical horizon geometry. Shor = Trρ ln ρ
gives the log of the number of quantum horizon
geometry states compatible with the classical geometry.

• Shor = ahor/4ℓpl
2
− (1/2) ln(ahor/ℓpl

2) + o(ahor/ℓpl
2)

gamma

pi

for a specific value of the parameter γ.
Procedure incorporates all physically interesting
BHs and Cosmological horizons in one swoop.
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4. Summary
• The interplay between geometry and physics is the deepest feature of
general relativity. Loop Quantum Gravity elevates it to the quantum level.
Just as classical GR is based on Riemannian geometry, LQG is based on
a specific quantum theory of Riemannian geometry.

• Thanks to the LOST-F theorems, background independence leads to a
unique quantum kinematics. In it, the basic excitations of Riemannian
geometry are 1-dimensional and eigenvalues of geometrical operators are
discrete. Continuum Riemannian geometry arises as a coarse grained
approximation.

• Quantum geometry has several important physical ramifications. Using
the isolated horizon framework to describe black holes in equilibrium, one
can account for entropy of physically relevant black holes as well as
cosmological horizons in one go.

• In the next lecture (as well as those of Bojowald and Mena) will deal
with a complementary application in the canonical theory: Cosmology.
Rovelli’s lectures: Path integrals by summing over quantum geometries;
Spin Foams.
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