Introduction to Quantum Gravity

Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State

A Pedagogical perspective on the challenges, ideas and results in non-perturbative of Quantum Gravity. Should also serve as an introduction to other related lectures, particularly by Bojowald, Mena and Rovelli.

Organization:

I. Gravity & the Quantum: Four Views of Reality

2. Overview of Approaches, Quantum Geometry and Black Holes

3. Implications of Quantum Geometry for Cosmology: Some Highlights.

Gravity & the Quantum: 4 Views of Physical Reality

• Goal: To illustrate through an exactly soluble midi-superspace how the new scales provided by \hbar and G can change physics in rather dramatic ways. Focus: Conceptual Issues; opening of new potentials with the introduction of new fundamental constants.

 Idea: Shine laser light and describe what various theories claim happens in 2+1 dimensions. Rather dramatic differences.
Exactly soluble model; Also symmetry reduction on 4-d Einstein-Rosen Waves. Thus, a midi-superspace in 4-d Gravity. But will emphasize the 2+1 dimensional picture.

Qualitatively similar surprises in 4-d quantum gravity (Lectures II and III.)

Based on a decade old work by AA+ Varadarajan, AA, AA+Pierri, Gambini & Pullin, Barbero, Mena, et al (Madrid Group).

Organization:

- 1. Classical Physics View $(\hbar = 0, G = 0)$
- **2.** Quantum Field Theory View $(\hbar \neq 0, G = 0)$
- **3. General Relativity View** $(\hbar = 0, G \neq 0)$
- 4. Quantum gravity View $(\hbar = 0, G = 0)$
- 5. Summary.

1. Reality a la Classical Physics

• Useful duality in 2+1 dimensions: Maxwell \leftrightarrow Klein-Gordon $d^*F = 0 \Leftrightarrow F_{ab} = \epsilon_{ab}{}^c \partial_c \phi$ $dF = 0 \Leftrightarrow \nabla^a \nabla_a \phi = 0$. Will work with the KG field for simplicity.

• Model: Shining a laser light \Rightarrow Axi-symmetric Fields. Classical Physics \Leftrightarrow 3-d Minkowski space (M, η) with Field Eq. $\Box_{\eta}\phi = 0$. Propagation causal but not sharp along null characteristics.

• Solutions:

$$\begin{split} \tilde{C}(R,T) &= \int_{o}^{\infty} \mathrm{d}k [f_{k}^{+}(R,T) \, C(k) + f_{k}^{-}(R,T) \, \bar{C}(k)], \text{ where } f^{+}(k) \approx J_{o}(kR) \, e^{ikT} \\ \text{Energy:} \quad H_{o}(\tilde{C}) &= \int_{o}^{\infty} \mathrm{d}k \, k \, |C(k)|^{2} \qquad \text{dimensions: } [C^{2}] \sim ML^{2} \\ \text{Laser beam} \quad \Rightarrow \text{Profile } C(k) \text{ Sharply peaked at some frequency } k_{o}. \end{split}$$

2. Reality a la QFT/Quantum Optics

• $G = 0, [\hbar] \sim ML \neq 0.$

Again Minkowski space (M, η) now with $\Box_{\eta} \hat{\phi} = 0$.

• Operators:

 $\hat{\phi}(R,T) = \int_0^\infty dk \, [f_k^+(R,T) \, \hat{a}(k) + f_k^-(R,T) \, \hat{a}^{\dagger}(k)] \\ [\hat{a}(k), \, \hat{a}^{\dagger}(k')] = \hbar \, \delta(k,k') \quad \Leftrightarrow \quad \mathsf{CCR} \\ \hat{H}_o = \int_o^\infty dk \, [k \, \hat{a}^{\dagger}(k) \, \hat{a}(k)] \quad \text{(normal ordering.)}$

• States:

 $|0\rangle$: Poincaré invariant, Cyclic.

Each classical solution $\tilde{C}(R,T)$ or equivalently, profile C(k) defines a 1-particle state: $|C(k)\rangle = \left[\frac{1}{\hbar}\int dk \ C(k) \ \hat{a}^{\dagger}(k)\right]|0\rangle$

Norm: $||C(k)||^2 = \frac{1}{\hbar} \int dk |C(k)|^2$.

Note: \hbar essential for dimensional reasons; Recall: $C^{2}(k) \sim ML^{2}$.

Interested in states that best approximate the classical field $\tilde{C}(R,T)$ obtained by shining laser light: Coherent states $|C(k)\rangle$ associated with the profile C(k).

Quantum Optics

• Coherent states well suited to compare and contrast the classical description of part 1. $|\Psi_C\rangle := e^{\frac{1}{2}||C||^2} e^{\frac{1}{\hbar}\int dk C(k)\hat{a}^{\dagger}(k)} |0\rangle$ Peaked at the classical solution $\tilde{C}(R,T)$ for all times. Relation to Part 1?

• Properties:

 $\star \langle \Psi_C | \hat{\Phi}(R,T) | \Psi_C \rangle = \tilde{C}(R,T); \qquad \langle \Psi_C | \hat{H}_o | \Psi_C \rangle H_o(\tilde{C})$

- * Product of Uncertainty, $(\Delta \hat{\varphi})(\Delta \hat{\pi})$ saturated and furthermore distributed "equally", for all $\tilde{C}(R,T)$
- * No frequency scale; ([\hbar] ~ ML) $|\Psi_C\rangle$ exists if $||C(k)|| < \infty$.

* Expected number of photons: $\mathcal{N} := \langle \Psi_C | \hat{\mathcal{N}} | \Psi_C \rangle = ||C(k)||^2 \equiv \frac{1}{\hbar} \int dk |C(k)|^2$

• Uncertainties: $(\Delta \hat{\phi}(f))^2 / \langle \hat{\phi}(f) \rangle^2 \gtrsim 1/4\mathcal{N}; \qquad (\Delta \hat{H}_o)^2 / \langle \hat{H}_o \rangle^2 \sim 1/\mathcal{N}$

Although conceptually very different from part 1, classical Physicist's view of reality becomes an excellent approximation if (and only if) $\mathcal{N} \gg 1$. So, fainter the laser beam, the classical description becomes less and less reliable.

3. Reality a la General Relativity

• Now $\hbar = 0$, $[G] \sim M^{-1} \neq 0$ Space-time $M = \mathbb{R}^3$ as before but g_{ab} curved & dynamical.

 $\Box_g \phi = 0; \quad G_{ab} = 8\pi G \ T_{ab}; \quad \text{(and, } F_{ab} = \epsilon_{ab}{}^c \partial_c \phi \Rightarrow T_{ab}(F) = T_{ab}(\phi)!\text{)}$ Axi-symmetry renders the problem exactly soluble.

• One can gauge fix using preferred coordinates θ, R, T . Killing vector $\partial/\partial\theta$; Its norm is given by R^2 and T uniquely determined up to additive constant by the form of the metric:

 $ds^{2} = e^{G\Gamma(R,T)} \ (-\mathrm{d}T^{2} + \mathrm{d}R^{2}) + R^{2}\mathrm{d}\theta^{2} \ (\star)$

 $\Box_g \phi = 0 \quad \Leftrightarrow \quad \Box_\eta \phi = 0, \text{ where } \eta \text{ is obtained from } g \text{ by setting } \Gamma(R, T) = 0.$ Einstein's Eqs $\Rightarrow \Gamma(R_o, T) = \frac{1}{2} \int_0^{R_o} \mathrm{d}R R \left[(\partial_T \phi)^2 + (\partial_R \phi)^2 \right] (T)$

= Energy of ϕ in a box of radius R_o at time T in Minkowski space (M, η) .

• Decoupling!. Solve $\Box_{\eta} \phi = 0$ in Minkowski space; calculate $\Gamma(R, T)$. Define g_{ab} given by (\star). Then (ϕ , g) satisfies the Einstein-KG equation and is furthermore the general solution.

Note: (1) No gravitational collapse in 2+1 gravity because there is no length scale: [GM] $\sim L^0$! (2) This is precisely the KK reduction of the Einstein-Rosen cylindrical waves with respect to *z*-directional translation.

Notable features of the GR description

• Physical geometry quite different from Minkowskian:

 $ds^2 = e^{G\Gamma(R,T)} (-dT^2 + dR^2) + R^2 d\theta^2 (\star)$ Light cones open up. If $G\Gamma \gg 1$, large deviations from the classical physicist's description based on η !

• Deviations extend also outside the support of ϕ . There; metric is flat because in 3-d, $T_{ab} = 0$, $\Leftrightarrow R_{ab} = 0 \Leftrightarrow R_{abcd} = 0$. But because in this region $ds^2 = e^{GH_o} (-dT^2 + dR^2) + R^2 d\theta^2 (\star)$ (Recall $\Gamma(R.T)$ = energy contained in a box of radius R w.r.t. Minkowskian metric),

There is a deficit angle at infinity. g does not approach η even at infinity!

• The total (ADM-type) Hamiltonian is bounded above!

$$H = \frac{1}{4G} \left(1 - e^{-4GH_o} \right) \approx H_o - 2(GH_o)H_o + \dots$$

even though each term in the "perturbative" expansion in powers of G is unbounded. A genuinely non-perturbative effect.

• Exterior geometry determined by $H_o = \int_o^\infty dk \, k |C(k)|^2$; Again no frequency scale. But there is a mass scale which makes the view of reality very different from the last two!

4. Reality a la Quantum Gravity

• $G \neq 0, \ \hbar \neq 0 \Rightarrow$ a new length scale: Planck length $\ell_{Pl} = G\hbar$. Recall: True degree of freedom in the scalar field; Metric a derived quantity. Systematic canonical quantization leads to the same scenario.

• Operators $\hat{\phi}(x)$ defined on the Minkowskian Fock space as in quantum optics. $\hat{g}(\mathbf{x})$: 'derived'/secondary construct. Outside the laser beam, $\hat{g}_{ab} dx^a dx^b = e^{G\hat{H}_o} (-dT^2 + dR^2) + R^2 d\theta^2$. Framework almost the same as in the Quantum Optics of part 2 but physics now lies in operators not normally considered in quantum optics: $\hat{g}_{RR} = \hat{g}_{TT} = e^{-G\hat{H}_o}$ and $\hat{H} := (1/4G) (1 - e^{-4G\hat{H}_o})$.

• In General Relativity state determined by $\tilde{C}(R,T) \sim C(k)$ The corresponding Quantum Gravity State: $|\Psi_C\rangle$

 $\langle \Psi_C \mid \hat{\phi}(x) \mid \Psi_C \rangle = \tilde{C}(R,T)$ and sharply peaked.

• Expectation values and fluctuations can be calculated exactly since $|\Psi_C\rangle$ is a coherent state.

Contrasting Classical & Quantum Geometries

- For simplicity let us focus on geometry outside the laser beam. Classically, $g_{RR} = g_{TT} = e^{G \int_0^\infty dk \ k \ |C(k)|^2} \equiv e^{GH_o(C)}$. What happens in quantum gravity?
- Quantum Theory:

 $\left\langle \Psi_C \mid \hat{g}_{RR} \mid \Psi_C \right\rangle \,=\, e^{\frac{1}{\hbar} \int \mathrm{d}k \, |C(k)|^2 \, (e^{G\hbar k} - 1)}.$

Note: \hbar appears unlike in GR or even flat space quantum theory where there is no \hbar in the expectation values of $\hat{\phi}(x)$ or of \hat{H}_o . Situation similar for the non-perturbative Hamiltonian:

 $\langle \Psi_C \mid \hat{H} \mid \Psi_C \rangle = \frac{1}{4G} \left[1 - e^{\frac{1}{\hbar} \int \mathrm{d}k \; |C(k)|^2 \left(e^{-4G\hbar k} - 1 \right)} \right].$

Thus, the expectation values of the asymptotic metric and total (ADM-like) Hamiltonian very different from the classical theory.

• Low Energy limit: $G\hbar k_o \ll 1$,

$$\begin{split} \langle \hat{g}_{RR} \rangle &\simeq e^{G \int \mathrm{d}k \, |C(k)|^2 \, (k + \frac{G\hbar k^2}{2} + \ldots)} \\ &\approx g_{RR}^{\mathrm{cl}} \, (1 + \mathcal{N} \frac{(G\hbar k_o)^2}{2} + \ldots), \qquad \text{if } \mathcal{N} (G\hbar k_o)^2 \ll 1 \end{split}$$

Recovery of classical limit subtle. Requires: $\mathcal{N} \gg 1$ to recover ϕ^{cl} from $\langle \hat{\phi}(x) \rangle$, and $G\hbar k_o \ll 1$ & $\mathcal{N}(G\hbar k_o)^2 \ll 1$ to recover g^{cl} from $\langle \hat{g} \rangle$.

High Frequency Limit & Fluctuations

- High frequency $\Leftrightarrow G\hbar k_o \gg 1$ $\langle \hat{g}_{RR} \rangle \cong e^{\frac{1}{\hbar} \int \mathrm{d}k \, |C(k)|^2 \, e^{G\hbar k}} \approx e^{\mathcal{N}e^{G\hbar k_o}} \gg e^{\mathcal{N}G\hbar k_o} = g_{RR}^{\mathrm{cl}}$
- $\star \hbar$ remains in the leading term!
- * Deviation worse if $\mathcal{N} \gg 1$; striking contrast with quantum optics view; Gross departures from the classical theory.
- Fluctuations: $(\Delta \hat{g}_{RR})^2 = \langle \hat{g}_{RR}^2 \rangle \langle \hat{g}_{RR} \rangle^2$. Exact Result: $(\Delta \hat{g}_{RR} / \langle \hat{g}_{RR} \rangle)^2 = e^{\frac{1}{\hbar} \int dk |C(k)|^2 (1 - e^{G\hbar k})^2} - 1$.

Low frequency limit: $G\hbar k_o \ll 1$. $(\Delta \hat{g}_{RR}/\langle \hat{g}_{RR} \rangle)^2 \approx e^{\mathcal{N} (G\hbar k_o)^2} - 1$. So, fluctuations are small only if $\mathcal{N}(G\hbar k_o)^2 \ll 1$. Same condition on k_o as was required to recover g_{RR}^{cl} from the expectation value.

High frequency limit: $G\hbar k_o \gg 1$: $(\Delta \hat{g}_{RR}/\langle \hat{g}_{RR} \rangle)^2 \approx e^{\mathcal{N} e^{2G\hbar k_o}}$. HUGE! $\mathcal{N} \approx 1$ and $G\hbar k_o \approx 1 \Rightarrow$ Relative fluctuation $\sim 10^3$! So, even a 'blip' at (trans-)Planckian frequency photon in the profile would give large fluctuations in quantum geometry well away from the laser beam.

• Similar results also for the total, non-perturbative Hamiltonian.

Highlights of Quantum Gravity Findings

• Minkowski space an exact solution: C(k) = 0, $|\Psi_C\rangle = |0\rangle$; Eigenstate of \hat{g}_{RR} and \hat{H} ; No fluctuations. Furthermore, there is an infinite dimensional sector of "good" classical solutions, i.e., solutions recovered from the full quantum gravity description. But the sector is subtle. One has to have $\mathcal{N} = (1/\hbar) \int \mathrm{d}k |C(k)|^2 \gg 1$ (for small fluctuations in the Maxwell field) and $\mathcal{N} (G\hbar k_o)^2 \ll 1$ for geometry fluctuations to be small .

• If |C(k)| significant in the trans-Plackian regime (e.g. ~ 1 photon of Planck frequency) classical solution ($\phi = \tilde{C}(R,T); g_{ab}(R,T)$) is "spurious" because of large fluctuations in the metric and full Hamiltonian operators. Unforeseen limitation of both classical GR and quantum optics.

• Mechanism: Non-linearities of Einstein's equations magnify small fluctuations in matter to huge metric fluctuations. Specific non-linearities important. For example, the QED analog does not exhibit such large quantum fluctuations.

• Start with 'semi-classical states associated with geometry' ? Large fluctuations transferred to matter (Gambini & Pullin).

4. Summary

• Used an exactly soluble model in 2+1 dimensions (also ~ 4 -d Einstein-Rosen waves). Three strikingly different notions of physical reality for what happens in a simple thought experiment. \hbar, G and (\hbar, G) bring in new scales. Intuition based on QFT and GR was often quite wrong!

• QFT/Quantum Optics ($\hbar \neq 0, G = 0$): New operator $\hat{\mathcal{N}}$. Classical intuition OK if $\mathcal{N} = (1/hbar) \int dk |C(k)|^2 \gg 1$.

- GR ($\hbar = 0, G \neq 0$): New effects significant if $GH_o \gg 1$.
- * Light cones open up. Geometry flat but non-Minkowskian near infinity.

* Total Hamiltonian $H = (1/4G)(1 - e^{-4GH_o})$ is bounded from above although Minkowskian energy H_o is not.

• Quantum Gravity ($\hbar \neq 0, G \neq 0$): New length scale $[G\hbar] \sim L$. Unforeseen effects even far from the laser beam:

* $\mathcal{N} \gg 1$ no longer sufficient for fluctuations to be small.

Exponentially large $(\Delta \hat{g}_{RR} / \langle \hat{g}_{RR} \rangle)$ if $\mathcal{N}(G\hbar k_o)^2 > 1$.

* If C(K) has a blip at $k \ge (G\hbar)^{-1}$ (even ~ 1 photon at (trans-) Planck frequency), $\langle \hat{g}_{RR} \rangle$ very different from g_{RR}^{cl} and huge fluctuations.

• Non-perturbative effects can lead to unforeseen limitations both of QFT and GR. But the situation in full 4-d is much more subtle.