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A Pedagogical perspective on the challenges, ideas and results in non-perturbative of

Quantum Gravity. Should also serve as an introduction to other related lectures,

particularly by Bojowald, Mena and Rovelli.

Organization:

I. Gravity & the Quantum: Four Views of Reality

2. Overview of Approaches, Quantum Geometry and Black Holes

3. Implications of Quantum Geometry for Cosmology: Some Highlights.
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Gravity & the Quantum: 4 Views of Physical Reality

• Goal: To illustrate through an exactly soluble midi-superspace how the
new scales provided by ~ and G can change physics in rather dramatic
ways. Focus: Conceptual Issues; opening of new potentials with the
introduction of new fundamental constants.

• Idea: Shine laser light and describe what various theories claim
happens in 2+1 dimensions. Rather dramatic differences.
Exactly soluble model; Also symmetry reduction on 4-d Einstein-Rosen
Waves. Thus, a midi-superspace in 4-d Gravity. But will emphasize the
2+1 dimensional picture.
Qualitatively similar surprises in 4-d quantum gravity (Lectures II and III.)

Based on a decade old work by AA+ Varadarajan, AA, AA+Pierri,
Gambini & Pullin, Barbero, Mena, et al (Madrid Group).

Organization:
1. Classical Physics View (~ = 0, G = 0)

2. Quantum Field Theory View (~ 6= 0, G = 0)

3. General Relativity View (~ = 0, G 6= 0)

4. Quantum gravity View (~ = 0, G = 0)

5. Summary.
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1. Reality a la Classical Physics

• Useful duality in 2+1 dimensions: Maxwell ↔ Klein-Gordon
d ⋆F = 0 ⇔ Fab = ǫab

c∂cφ dF = 0 ⇔ ∇a∇aφ = 0.
Will work with the KG field for simplicity.

• Model: Shining a laser light ⇒ Axi-symmetric Fields.
Classical Physics ⇔ 3-d Minkowski space (M, η) with Field Eq.
�ηφ = 0. Propagation causal but not sharp along null characteristics.

• Solutions:
C̃(R, T ) =

∫ ∞

o
dk[f+

k
(R, T ) C(k) + f−

k
(R, T ) C̄(k)], where f+(k) ≈ Jo(kR) eikT

Energy: Ho(C̃) =
∫ ∞

o
dk k |C(k)|2 dimensions: [C2] ∼ ML2

Laser beam ⇒ Profile C(k) Sharply peaked at some frequency ko. .
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2. Reality a la QFT/Quantum Optics

• G = 0, [~] ∼ ML 6= 0.

Again Minkowski space (M, η) now with �η φ̂ = 0.

• Operators:
φ̂(R, T ) =

∫ ∞

0
dk [f+

k (R, T ) â(k) + f−
k (R, T ) â†(k)]

[â(k), â†(k′)] = ~ δ(k, k′) ⇔ CCR
Ĥo =

∫ ∞

o
dk [k â†(k) â(k)] (normal ordering.)

• States:
|0〉: Poincaré invariant, Cyclic.
Each classical solution C̃(R, T ) or equivalently, profile C(k) defines a
1-particle state: |C(k)〉 = [ 1

~

∫
dk C(k) â†(k) ] |0〉

Norm: ||C(k)||2 = 1
~

∫
dk |C(k)|2.

Note: ~ essential for dimensional reasons; Recall: C2(k) ∼ ML2.

Interested in states that best approximate the classical field C̃(R, T )
obtained by shining laser light: Coherent states |C(k)〉 associated with the
profile C(k).
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Quantum Optics

• Coherent states well suited to compare and contrast the classical

description of part 1. |ΨC〉 := e
1

2
||C||2 e

1

~

∫
dkC(k)â†(k) |0〉

Peaked at the classical solution C̃(R, T ) for all times. Relation to Part 1?

• Properties:
⋆ 〈ΨC | Φ̂(R, T ) |ΨC〉 = C̃(R, T ); 〈ΨC | Ĥo |ΨC〉Ho(C̃)
⋆ Product of Uncertainty, (∆ϕ̂)(∆π̂) saturated and furthermore
distributed "equally", for all C̃(R, T )
⋆ No frequency scale; ([~] ∼ ML) |ΨC〉 exists if ||C(k)|| < ∞.
⋆ Expected number of photons: N := 〈ΨC | N̂ |ΨC〉 = ||C(k)||2 ≡ 1

~

∫
dk|C(k)|2

• Uncertainties: (∆φ̂(f))2/〈φ̂(f)〉2 & 1/4N ; (∆Ĥo)
2/〈Ĥo〉

2 ∼ 1/N

Although conceptually very different from part 1, classical Physicist’s view
of reality becomes an excellent approximation if (and only if) N ≫ 1. So,
fainter the laser beam, the classical description becomes less and less
reliable.
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3. Reality a la General Relativity

• Now ~ = 0, [G] ∼ M−1 6= 0 Space-time M = R3 as before
but gab curved & dynamical.
�g φ = 0; Gab = 8πG Tab; (and, Fab = ǫab

c∂cφ ⇒ Tab(F ) = Tab(φ)!)

Axi-symmetry renders the problem exactly soluble.

• One can gauge fix using preferred coordinates θ, R, T . Killing vector
∂/∂θ; Its norm is given by R2 and T uniquely determined up to additive
constant by the form of the metric:

ds2 = eGΓ(R,T ) (−dT 2 + dR2) + R2dθ2 (⋆)

�g φ = 0 ⇔ �η φ = 0, where η is obtained from g by setting Γ(R, T ) = 0.

Einstein’s Eqs ⇒ Γ(Ro, T ) = 1
2

∫ Ro

0 dR R [ (∂T φ)2 + (∂Rφ)2 ](T )

= Energy of φ in a box of radius Ro at time T in Minkowski space (M, η).

• Decoupling!. Solve �η φ = 0 in Minkowski space; calculate Γ(R, T ).
Define gab given by (⋆). Then (φ, g) satisfies the Einstein-KG equation and
is furthermore the general solution.

Note: (1) No gravitational collapse in 2+1 gravity because there is no
length scale: [GM] ∼ L0! (2) This is precisely the KK reduction of the
Einstein-Rosen cylindrical waves with respect to z-directional translation.
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Notable features of the GR description

• Physical geometry quite different from Minkowskian:
ds2 = eGΓ(R,T ) (−dT 2 + dR2) + R2dθ2 (⋆)

Light cones open up. If GΓ ≫ 1, large deviations from the classical
physicist’s description based on η!

• Deviations extend also outside the support of φ. There; metric is flat
because in 3-d, Tab = 0, ⇔ Rab = 0 ⇔ Rabcd = 0. But because in this
region ds2 = eGHo (−dT 2 + dR2) + R2dθ2 (⋆)
(Recall Γ(R.T ) = energy contained in a box of radius R w.r.t. Minkowskian metric),

There is a deficit angle at infinity. g does not approach η even at infinity!

• The total (ADM-type) Hamiltonian is bounded above!
H = 1

4G
(1 − e−4GHo) ≈ Ho − 2(GHo)Ho + . . .

even though each term in the“perturbative’ expansion in powers of G is
unbounded. A genuinely non-perturbative effect.

• Exterior geometry determined by Ho =
∫ ∞

o
dk k|C(k)|2; Again no

frequency scale. But there is a mass scale which makes the view of reality
very different from the last two!
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4. Reality a la Quantum Gravity

• G 6= 0, ~ 6= 0 ⇒ a new length scale: Planck length ℓPl = G~.
Recall: True degree of freedom in the scalar field; Metric a derived
quantity. Systematic canonical quantization leads to the same scenario.

• Operators φ̂(x) defined on the Minkowskian Fock space as in quantum
optics. ĝ(x): ‘derived’/secondary construct. Outside the laser beam,

ĝabdxadxb = eGĤo (−dT 2 + dR2) + R2dθ2.
Framework almost the same as in the Quantum Optics of part 2 but
physics now lies in operators not normally considered in quantum optics:

ĝRR = ĝTT = e−GĤo and Ĥ := (1/4G) (1 − e−4GĤo).

• In General Relativity state determined by C̃(R, T ) ∼ C(k)
The corresponding Quantum Gravity State: |ΨC〉

〈ΨC | φ̂(x) | ΨC〉 = C̃(R, T ) and sharply peaked.

• Expectation values and fluctuations can be calculated exactly since
|ΨC〉 is a coherent state.
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Contrasting Classical & Quantum Geometries

• For simplicity let us focus on geometry outside the laser beam.

Classically, gRR = gTT = eG
∫

∞

0
dk k |C(k)|2 ≡ eGHo(C).

What happens in quantum gravity?

• Quantum Theory:

〈ΨC | ĝRR | ΨC〉 = e
1

~

∫
dk |C(k)|2 (eG~k−1).

Note: ~ appears unlike in GR or even flat space quantum theory where
there is no ~ in the expectation values of φ̂(x) or of Ĥo.
Situation similar for the non-perturbative Hamiltonian:

〈ΨC | Ĥ | ΨC〉 = 1
4G

[1 − e
1

~

∫
dk |C(k)|2 (e−4G~k−1) ].

Thus, the expectation values of the asymptotic metric and total (ADM-like)
Hamiltonian very different from the classical theory.

• Low Energy limit: G~ko ≪ 1,

〈ĝRR〉 ≅ eG
∫

dk |C(k)|2 (k+ G~k
2

2
+...)

≈ gcl
RR (1 + N (G~ko)2

2 + . . .), if N (G~ko)
2 ≪ 1

Recovery of classical limit subtle. Requires: N ≫ 1 to recover φcl from
〈φ̂(x)〉, and G~ko ≪ 1 & N (G~ko)

2 ≪ 1 to recover gcl from 〈ĝ〉.
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High Frequency Limit & Fluctuations

• High frequency ⇔ G~ko ≫ 1

〈ĝRR〉 ≅ e
1

~

∫
dk |C(k)|2 eG~k

≈ eNeG~ko

≫ eNG~ ko = gcl
RR

⋆ ~ remains in the leading term!
⋆ Deviation worse if N ≫ 1; striking contrast with quantum optics view;

Gross departures from the classical theory.

• Fluctuations: (∆ĝRR)2 = 〈ĝ2
RR〉 − 〈ĝRR〉

2.

Exact Result: (∆ĝRR/〈ĝRR〉)2 = e
1

~

∫
dk |C(k)|2 (1−eG~k)2 − 1.

Low frequency limit: G~ko ≪ 1.
(∆ĝRR/〈ĝRR〉)2 ≈ eN (G~ko)2 − 1. So, fluctuations are small only if N (G~ko)2 ≪ 1. Same
condition on ko as was required to recover gcl

RR from the expectation value.

High frequency limit: G~ko ≫ 1:

(∆ĝRR/〈ĝRR〉)2 ≈ eN e2G~ko . HUGE! N ≈ 1 and G~ko ≈ 1 ⇒ Relative fluctuation

∼ 103! So, even a ‘blip’ at (trans-)Planckian frequency photon in the profile would give large

fluctuations in quantum geometry well away from the laser beam.

• Similar results also for the total, non-perturbative Hamiltonian.
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Highlights of Quantum Gravity Findings

• Minkowski space an exact solution: C(k) = 0, |ΨC〉 = |0〉; Eigenstate of
ĝRR and Ĥ ; No fluctuations. Furthermore, there is an infinite dimensional
sector of “good” classical solutions, i.e., solutions recovered from the full
quantum gravity description. But the sector is subtle. One has to have
N = (1/~)

∫
dk|C(k)|2 ≫ 1 (for small fluctuations in the Maxwell field) and

N (G~ko)
2 ≪ 1 for geometry fluctuations to be small .

• If |C(k)| significant in the trans-Plackian regime (e.g. ∼ 1 photon of
Planck frequency) classical solution (φ = C̃(R, T ); gab(R, T )) is “spurious”
because of large fluctuations in the metric and full Hamiltonian operators.
Unforeseen limitation of both classical GR and quantum optics.

• Mechanism: Non-linearities of Einstein’s equations magnify small
fluctuations in matter to huge metric fluctuations. Specific non-linearities
important. For example, the QED analog does not exhibit such large
quantum fluctuations.

• Start with ‘semi-classical states associated with geometry’ ? Large
fluctuations transferred to matter (Gambini & Pullin).
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4. Summary

• Used an exactly soluble model in 2+1 dimensions (also ∼ 4-d
Einstein-Rosen waves). Three strikingly different notions of physical reality
for what happens in a simple thought experiment. ~, G and (~, G) bring in
new scales. Intuition based on QFT and GR was often quite wrong!

• QFT/Quantum Optics (~ 6= 0, G = 0): New operator N̂ . Classical intuition OK if
N = (1/hbar)

∫
dk|C(k)|2 ≫ 1.

• GR (~ = 0, G 6= 0): New effects significant if GHo ≫ 1.
⋆ Light cones open up. Geometry flat but non-Minkowskian near infinity.
⋆ Total Hamiltonian H = (1/4G)(1 − e−4GHo ) is bounded from above although
Minkowskian energy Ho is not.

• Quantum Gravity (~ 6= 0, G 6= 0): New length scale [G~] ∼ L. Unforeseen effects even far
from the laser beam:
⋆ N ≫ 1 no longer sufficient for fluctuations to be small.
Exponentially large (∆ĝRR/〈ĝRR〉) if N (G~ko)2 > 1.

⋆ If C(K) has a blip at k ≥ (G~)−1 (even ∼ 1 photon at (trans-) Planck frequency), 〈ĝRR〉

very different from gcl
RR and huge fluctuations.

• Non-perturbative effects can lead to unforeseen limitations both of QFT
and GR. But the situation in full 4-d is much more subtle.
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