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GFT: Basic ideas

Group Field Theories: models for quantum spacetime 
(connected to spinfoams), designed to define a path integral 
for quantum gravity

Generalization of matrix models (2D QG) to higher 
dimensions

Quantum/statistical field theories on group manifolds (SU(2) 
etc.): purely pregeometrical framework

Partition function defined by the specification of a certain 
action

Perturbative expansion: the Feynman graphs are “just” 
simplicial complexes (with geometric data)
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Some formulae

The field for d-dimensional models

The action

The partition function for GFT

And the partition function for QG
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The continuum limit

Feynman expansion: discrete geometries

The continuum limit: phase transitions

Subtlety: the pure gravity models do possess only a large 
volume limit (discretization scale is purely combinatoric, no 
dimensions)

Matter is required: ratio between correlation length and 
combinatorial length goes to infinity (or not)

Key issue: the continuum and/vs semiclassical limit
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Scaling assumption

Obviously the critical behavior has to be computed from the 
specification of the microscopic action (ongoing work)

Working hypothesis: there is a singular behavior of the 
partition function and it has a specific scaling form.

Key point: all the macroscopic coupling constants will be 
computable functions of the critical exponents (role of 
universality)
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γ
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Boundary states

Evaluation of transition amplitudes: specification of boundary 
states (necessary to extract the dynamics)

Correlation functions in GFT

Important point: Schwinger-Dyson equations (and Ward 
identities) will relate all the correlation functions among 
themselves
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Generating function

Macroscopic boundary geometries are “superpositions” of 
different microscopic configurations

Design a boundary state (how? Coherent states?). Ambiguity 
of the effective dynamics (see BECs!) 

Idea: use auxiliary GFTs in one dimension less to generate a 
sum over all the possible random boundary geometries
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Hartle-Hawking

One can thus compute something like the Hartle-Hawking 
wavefunction

Problem: reconstruct the Wheeler-DeWitt equation

Idea/2: assume a double critical behavior (continuum limit in 
the boundary AND in the bulk)
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Towards effective Hamiltonian constraint

With this profile one can argue that the wavefunction has to 
have a behavior like

Go backwards: from the solution to the problem 

Approximate method: Hamilton-Jacobi reversed

Ambiguity: one free function
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Future directions

Work out explicitly the Schwinger-Dyson/Ward equations in 
the critical limit with the boundary state included

Add matter

Work in Lorentzian signature (help from horizon 
thermodynamics)

Compare with other approaches (e.g. coherent states 
methods)
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The end
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