Lorentzian Quantum Einstein Gravity

Stefan Rechenberger

Uni Mainz

12.09.2011

Phys.Rev.Lett. 106 (2011) 251302 with Elisa Manrique and Frank Saueressig

Stefan Rechenberger (Uni Mainz)

12.09.2011 1 / 14

Motivation	CDT, HG, AS	Causal FRGE	Conclusion
Outline			

2 CDT, Horava Gravity and Asymptotic Safety

3 Causal functional RG equation

4 Results

Motivation	CDT, HG, AS	Causal FRGE	Results	Conclusion
Motivation				

Classical GR reaches its limits close to space-time singularities

• Black Holes • Big Bang Solution probably lies within a theory of Quantum Gravity

Wotivation	CDT, HG, AS	Causal FRGE	Results	Conclusion
Motivation				
Classical	GR reaches its lim	its close to space-t	ime singularitie	S

• Black Holes • Big Bang Solution probably lies within a theory of Quantum Gravity

different approaches to a theory of QG

- String Theory
- Loop Quantum Gravity
- Causal Dynamical Triangulations
- Horava Gravity
- Asymptotic Safety
- ...

Motivation	CDT, HG, AS	Causal FRGE		Conclusion	
Motivation					
Classic	al GR reaches its	limits close to sp	ace-time singulari [.] Bang	ties	
Solut	Solution probably lies within a theory of Quantum Gravity				
different appr	oaches to a theo	ry of QG			
 String 	Theory)			
Loop Q	uantum Gravity				
• Causal Dynamical Triangulations					
Horava Gravity					
Asymp	totic Safety				

o ...

Motivation	CDT, HG, AS	Causal FRGE	Results	Conclusion
lack of exper \Rightarrow nobody he	imental data elps us to decide v	which is the best a	pproach	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Motivation	CDT, HG, AS	Causal FRGE	Results	Conclusion
lack of experime \Rightarrow nobody helps	ental data s us to decide whic	h is the best appro	bach	

Best thing to do: compare different approaches

Causal dynamical triangulations (arXiv:1004.0352v1 [hep-th])

- discretization of gravitational path integral $\int {\cal D} g_{\mu
 u} e^{i {\cal S}_{
 m grav}}$
- summing over piecewise flat geometries
- modeling space-time geometries by gluing together simplices (higher dimensional generalizations of triangles)
- important: causal structure

Causal dynamical triangulations (arXiv:1004.0352v1 [hep-th])

- discretization of gravitational path integral $\int {\cal D} g_{\mu
 u} e^{i {\cal S}_{
 m grav}}$
- summing over piecewise flat geometries
- modeling space-time geometries by gluing together simplices (higher dimensional generalizations of triangles)
- important: causal structure

Horava Gravity (arXiv:0901.3775v2 [hep-th])

- different scaling of space and time
- UV: Lorentz invariance is broken
- IR: Lorentz invariance reestablished
- maybe connection to CDT due to global time foliation (arXiv:1002.3298v2 [hep-th])

- non-trivial fixed point (for UV completion)
- finite dimensional critical surface (for predictability)

- non-trivial fixed point (for UV completion)
- finite dimensional critical surface (for predictability)
- already found for
 - pure Einstein Hilbert action
 - f(R) gravity
 - gravity coupled to a scalar field
 - gravity with extra dimensions
 - bimetric truncations

• ...

- non-trivial fixed point (for UV completion)
- finite dimensional critical surface (for predictability)
- already found for
 - pure Einstein Hilbert action
 - f(R) gravity
 - gravity coupled to a scalar field
 - gravity with extra dimensions
 - bimetric truncations
 - ...

strong evidence that nature might be asymptotically safe

- non-trivial fixed point (for UV completion)
- finite dimensional critical surface (for predictability)
- already found for
 - pure Einstein Hilbert action
 - f(R) gravity
 - gravity coupled to a scalar field
 - gravity with extra dimensions
 - bimetric truncations
 - ...

strong evidence that nature might be asymptotically safe

- so far only Euclidean space-time has been studied
- Lorentzian space-times are necessary for comparison with CDT and HG

Motivation CDT, HG, AS Causal FRGE Results Conclusion
Causal functional RG equation

Starting point: Einstein Hilbert action

$$S_{\rm EH} = rac{1}{16\pi G_{
m N}} \int d^D x \sqrt{\gamma} \left(-R + 2\Lambda
ight)$$

- $G_{\rm N}$... Newton constant
- D ... space-time dimension (D = d + 1)
- γ ... metric
- R ... curvature scalar of space-time
- Λ ... cosmological constant

Motivation CDT, HG, AS Causal FRGE Results Conclusion
Causal functional RG equation

Starting point: Einstein Hilbert action

$$S_{\rm EH} = rac{1}{16\pi G_{
m N}} \int d^D x \sqrt{\gamma} \left(-R + 2\Lambda
ight)$$

- $G_{\rm N}$... Newton constant
- D ... space-time dimension (D = d + 1)
- γ ... metric
- R ... curvature scalar of space-time
- Λ ... cosmological constant

Motivation	CDT, HG, AS	Causal FRGE	Conclusion

• geometric cutoff in time direction

 standard cutoff in spatial direction

$$k\partial_k g_k = \beta_g(g,\lambda;m), \qquad k\partial_k \lambda_k = \beta_\lambda(g,\lambda;m)$$

- dim.less Newton constant: g
- dim.less cosmological constant: λ
- dim.less Kaluza-Klein mass: $m = \frac{2\pi}{Tk}$
- circumference of time circle: T

Motivation	CDT, HG, AS	Causal FRGE	Results	Conclusion
Results				

$$m = const.(e.g.2\pi) \Rightarrow T \propto \frac{1}{k}$$

flow eq. provide a fixed point in Euclidean and Lorentzian signature

ϵ	g _*	λ_*	$g_*\lambda_*$	$\theta_{1,2}$
+1	0.19	0.31	0.059	$1.07\pm 3.31i$
-1	0.21	0.30	0.063	$0.94\pm3.10i$

Motivation	CDT, HG, AS	Causal FRGE	Results	Conclusion
Results				

$$m = const.(e.g.2\pi) \Rightarrow T \propto \frac{1}{k}$$

flow eq. provide a fixed point in Euclidean and Lorentzian signature

ϵ	g _*	λ_*	$g_*\lambda_*$	$\theta_{1,2}$
+1	0.19	0.31	0.059	$1.07\pm 3.31i$
-1	0.21	0.30	0.063	$0.94\pm3.10\textit{i}$

Stefan Rechenberger (Uni Mainz)

12.09.2011 10 / 14

m dependence of the fixed point values Lorentzian (red) and Euclidean (blue)

12.09.2011 11 / 14

▲□▶ ▲圖▶ ▲ 圖▶ ▲

dimensionless Newton constant in 3D: $g_3 = \frac{g}{Tk}$

Stefan Rechenberger (Uni Mainz)

크 12.09.2011

э.

dimensionless Newton constant in 3D: $g_3 = \frac{g}{Tk}$

12.09.2011 12 / 14

Motivation	CDT, HG, AS	Causal FRGE	Conclusion
Conclusion			
Conclusion			

- FP for Euclidean and Lorentzian signature
- characteristics are similar
- also similar to covariant formulation
- time circle collapses toward UV
- signature does NOT matter in UV
- formulation prepares ground for comparison to other theories

Thank you for your attention!

Questions?

Stefan Rechenberger (Uni Mainz)

Lorentzian Quantum Einstein Gravity

12.09.2011 14 / 14