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-

® Motivation

Introduccion

-

» The standard model and the general relativity

represents the two great theories in fundamental
physics. The success of general relativity is beyond
any doubt, however due to its inconsistency with
guantum mechanics, it is not possible to ensure that
this theory keeps its original structure at high
energies.

One of the goals of the current study is to see what
features of theories beyond Einstein could lead to an
answer to any of the open problems in astrophysics
(dark matter) or cosmology (dark energy)

In this talk: Astrophysics in the brane world

Some preliminary results about extra dimensional
consequences on compact stellar strugtures, .

s inRandall-Sundrum gravity — p. 2



Black holes, neutron stars,
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Einstein field equations on the brane

The Einstein field equations on the brane may be written as a modification of the standard
field equations [Shiromizu et al 2002]
5D Einstein equations:

Gap + A59ap = K%Tab; ky =8mGs a=0,..4 (Bulk)

Guy = _87TT;LFI/ — Aguv, p=0,..3 (Brane)

where the energy-momentum tensor has new terms carrying bulk effects onto the brane:
6 1
Tuw = Ty) =Tpw + —Suw + —Euw
o 8

Here o is the brane tension
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-

fThe new terms and are the high-energy corrections S, and
the projection of the bulk Weyl tensor on the brane &,

1 1 1
S = —T.0Ty — ~TpaT% + —
HY H V+24

12 « 4 g,LLV BTOéﬁTaﬁ o (Taa)2i|

6 1

3

U — Dark radiation
P — Anisotropic stress

Q, — FEnergy flux
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An open problem
-

The nonclosure of the braneworld equations represents an T
open problem in braneworld stars (a better understanding
of the bulk geometry and proper boundary conditions is

required). The source of this problem: the projection of the
bulk Weyl tensor on the brane &,

6 1
— 87T8,LW = —; U(UMUV + gh,uy) + P,LW T Q(Muy)]
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An open problem
-

The nonclosure of the braneworld equations represents an T
open problem in braneworld stars (a better understanding
of the bulk geometry and proper boundary conditions is

required). The source of this problem: the projection of the
bulk Weyl tensor on the brane &,

6 1
— 87T8,LW = —; U(UMUV + gh,uy) + P,LW T Q(Muy)]

Many ways have been taken:

Ew=0  INCORRECT!
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An open problem
-

The nonclosure of the braneworld equations represents an
open problem in braneworld stars (a better understanding
of the bulk geometry and proper boundary conditions is
required). The source of this problem: the projection of the
bulk Weyl tensor on the brane &,

-

6 1
— 87T8,LW = —; U(UMUV + gh,uy) + P,LW T Q(Muy)]

Many ways have been taken:

Ew=0  INCORRECT!

\_ Puw =0 Too Strong!

|
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Compact stars
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The simplest solution: “vaccum”

- N

. . ds? = eVdt? — eMNdr? — r? (d92 + sin29d¢2)

® Dadhich,Maartens,Papadopoulos and Rezania (DMPR Solution):

+ it
eV —e N =1

_2M

Tr

9
r2’ 2
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The simplest solution: “vaccum

- N

. ds? = eVdt? — eMNdr? — r? (d02 — sin29d¢2)

® Dadhich,Maartens,Papadopoulos and Rezania (DMPR Solution):

n
e”+:e_>‘+:1—¥—l—7%, Z/l'i':—%zgﬁqarill,
® Casadio, Fabbri and Mazzacurati (CFM Solution)
2M ?
ot 77+\/1_T(1+77) | €>\+:[1_%(1+n)]17
147 T

167P+ M(1+n)n 1

L4 - 3 Z/[+:O,
L 7 n+y/1— 24 (14" J
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The Interior: the simplest distribution

- N

ds® = e’ dt? — e dr? — r? (d92 + Sin29d¢2)

Perfect fluid
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The Interior: the simplest distribution

- N

ds® = eVdt? — erdr? — r? (d92 - Sin29dgb2)

Perfect fluid+high energy terms

Too complicated!

o |
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The Interior: the simplest distribution

- N

ds® = eVdt? — erdr? — r? (d92 - Sin29dgb2)

Perfect fluid+high energy terms+dark radiation/pressure

Too complicated!
THERE IS NOT SOLUTION! (Indefinity system)

o |
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The Interior: the simplest distribution

- N

ds® = eVdt? — erdr? — r? (d92 - Sinzedgbz)

Perfect fluid+high energy terms+dark radiation/pressure

Too complicated!
THERE IS NOT SOLUTION! (Indefinity system)
However....we found a general effective 4D solution!

o |
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Spherically symmetric static distribution

. N

Schwarzschild-like coordinates
ds® = eVdt* — erdr? — r? (d92 + sin 29dgb2)

A perfect fluid (General Relativity)+ high energy corrections

1 [ p? 1 A(1 A’)
_8 e _ = — ),
7T<p+a<2 )) r2+e r2 r
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Spherically symmetric static distribution

. N

Schwarzschild-like coordinates
ds® = eVdt* — erdr? — r? (d92 + sin 29dgb2)

A perfect fluid (General Relativity)+ high energy corrections+Weyl functions

1 2 1 1 N
—87 <p+ - (p—+6u>> = —— fe (— - —> ,
o \ 2 r2 r2 r
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Spherically symmetric static distribution
Erom the field equations we have —‘

8w [T 1 (p? 6
- 2 P
- 1-= (2w d
e Pl s (T )]
8m P 1, 4 5
Mo = §ldimG)
6 U 3 [ p? 1 5 1
—— = —— | = — (2G5 4+ G1) — 3p.
k% o 0<2+pp>+87r( 2+ 1) b
: 1 1 ! P\
With G = —— +e (—2 + V—) . Gi= e {21/’ +% N —|—2(V A)
r r r r
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Spherically symmetric static distribution
Erom the field equations we have —‘

_ 8w [T 1 /p?> 6
A 2
= 1—-— — | =+ =U)|dr
’ r or{p+0<2+k4 HT
8m P 1, 4 5
Mo g9
6 U 3 [ p? 1 5 1
—— = —— | = — (2G5 4+ G1) — 3p.
kt o 0(2 +pp>+87r( 2+ 1) b
: 1 1 ! 1 F— N
With G%:——Q—i—e_)‘ (—2—|—V—>; G%:Ze_A {21/’4—1/2—)\’1/4—2(” ) .
r r r r

Hence we have three unknow functions {v (), p(r), p(r)} satisfying one equation:
/ V'

p=-3 (p+p)

Indefinity system .
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Spherically symmetric static distribution
Erom the field equations we have —‘

_ 8w [T 1 [ p? 6
A 2
= 1—-— — | =+ =U)|dr
’ r or{p+0<2+/€4 HT
8m P 1, 4 5
Mo g9
6 U 3 [ p? 1 5 1
—— = —— | = — (2G5 4+ G1) — 3p.
kt o 0(2 +pp>+87r( 2+ 1) b
: 1 1 ! 1 F— N
With G%:——2—|—e_>‘ (—2—|—V—>; G%:Ze_A {21/’4—1/2—)\’1/4—2(” )
r r r r

Hence we have three unknow functions {v (), p(r), p(r)} satisfying one equation:
/
/

1%
p = —E(P"‘P)

Indefinity system = It is necessary to prescribe additional information
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Generating a constraint

Let us see the "solution" for the geometric function

& r 1 02 §)

—A 2

=1—- — p—i—— ——|——U d,
© T OT |: O<2 k4 ):| "
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Generating a constraint

Let us see the "solution" for the geometric function

& r 1 02 §)

—A 2

=1—- — p—i—— ——|——U d,
© T OT |: O<2 k4 ):| "

It can be written as

8 ‘s
e>=1-"2 [ +2pdr + "DEFORMATIONS"
r 0

\ 7

General Relativity

o |
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Generating a constraint

Let us see the "solution" for the geometric function

& r 1 02 §)

—A 2

=1—- — p—i—— ——|——U d,
© T OT |: O<2 k4 ):| "

It can be written as

8 ‘s
e>=1-"2 [ +2pdr + "DEFORMATIONS"
r 0

\ 7

General Relativity

The deformation undergone by the geometric function A produces anisotropic
consequences, as can be seen through

8P _

1
e g (C1mGR)

o |
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Generating a constraint

The "DEFORMATIONS" must vanish when ¢—! — 0 (Low energy limit). However it does
not happen: the low energy limit problem

8T
{H (p,p,v) + — (p* + 3pp)} dr,

0 (%/—I—i)

. v v
with  H(p,p,v) = 8m3p — [u’(—+ ) +ul 5+ —+35) -3

/12 /
v+ 4 2v_ + 2 8 r
where I= / ( 2,/, 3 2 dr, pw=1-— °r r2 pdr.
(7 +2) rJo

The function H(p, p, v) measure the anisotropic consequence due to bulk effects on p, p, v.

o |
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Generating a constraint

The "DEFORMATIONS" must vanish when ¢—! — 0 (Low energy limit). However it does
not happen: the low energy limit problem

8T
{H (p,p,v) + — (p* + 3pp)} dr,

0 (%/—I—i)

. v v
with  H(p,p,v) = 8m3p — [u’(—+ A+t —+5) -

/12 /
v+ 4 2v_ + 2 8 r
where I= / ( 2,/, 3 2 dr, pw=1-— °r r2 pdr.
(7 +2) rJo

The function H(p, p, v) measure the anisotropic consequence due to bulk effects on p, p, v.

To ensure General Relativity H(p, P, V) — ()

o |
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Minimal geometric deformation

-

When we impose H (p, p,v) = 0, the geometric function v
does not produce any anisotropic consequence, hence the
only source for anisotropy in the brane is the minimal
deformation undergone by A:

-

8t [
er=1-—— r?pdr +H — deformations + — — de formation:
T 0 N ~~ - o)

\ .

- anisotropic consequence due NV
General Relativity 10 bulk effects on p, p and v High Energy Terms

o |
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Minimal geometric deformation

-

When we impose H (p, p,v) = 0, the geometric function v
does not produce any anisotropic consequence, hence the
only source for anisotropy in the brane is the minimal
deformation undergone by A:

-

8t [
er=1-—— r?pdr +H — deformations + — — de formation:
T 0 ™~ ~~ - o)

A\

-~ anisotropic consequence due Vs
General Relativity 10 bulk effects on p, p and v High Energy Terms

8t [ 1
eh=1—— ripdr + — — de formations
" Jo Y _

General Relativity High FEnergy Terms

= Anisotropy minimally projected onto the brane

|
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Minimal geometric deformation

- N

# For non-uniform distributions (p(r)) the constraint
H(p, p,v) = 01s not enough and the system remains
iIndefinite.

o |
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Minimal geometric deformation

- N

# For non-uniform distributions (p(r)) the constraint
H(p, p,v) = 01s not enough and the system remains
iIndefinite.

# For uniform distributions (p # p(r)), the constraint
H(p, p,v) = 0 solves the nonclosure problem in the
brane.

o |
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The Schwarzschild’s solution

Let us construct the braneworld version of Schwarzschild’s solution, which is given by

2
( 1_R_2_ 1_) e—As —1_
\ C? \/ C? C?’

2 2
1— L5 —4/1— 22}

S5 pr)
— T) =

where B and C are constants to be determined by matching conditions.

o |
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The Schwarzschild’s solution

Let us construct the braneworld version of Schwarzschild’s solution, which is given by

2
( 1_R_2_ 1_) o—As —1_
\ C? \/ C? C2’

2 2
3 152\/122}

p = , plr)=p
r('2 2 2
T L 1- 25 —\/1- %5

where B and C are constants to be determined by matching conditions.

When H(p, p,v) = 0 is imposed

2
_ _ r .
e = e =1 -—De formations
o

(2
o |
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The Schwarzschild’s solution

-

From the field equations we have the Weyl functions

1
P = 672 (C2 —7r2)(C2 — 12 —3C2%a) [3r2 + C2? (6a — 2)]?
{or?(1- 2—22)2 [—4 (-5+3a) C?
+C? ((—25+21a) r* — 18 R?) +6 (r* +37° R?)]
—g(r) [24 (=7 +9a) C® —2C% ((—320+282a) 7* + 81 (=1 + ) R?)
—6C%r* (5 (=13 +6a) r* +3 (—41+9a) R?) +C*r? (7 (-118 + 75a) r?
+9 (—67+36a) R*) —9 (47° +337° R*)]},
1
U = G (Cr— ) (21 6a) C2 1 322 (C2
{9 (C?*—72) [32 (=1+3a) C®—37% + 727* R?
+C?7? ((=61 +3a) r* +108 (-1 +a) R?)
~12C* (8 (=14 a) r* +3 (=1 +3a) R?)]

+2C* (5C% —=37r%) [4 (=5+3a) C?
L +C2 (23 -15a) r? 418 RQ) -3 (’r4 + 672 R2)] g(r)} J
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The Schwarzschild’s solution
i)sing the Reissner-Nordstrom-like solution —‘

+ + 2M
eV =e :1———|—%,
r r
Pt 4 1
Ut = —— = —mgo—,
2 3" 47

and considering the matching condition [ds?]s; = 0 at the stellar surface X, we have

R? 2M q
aB2(1- 2 )=1-224+ 2
(1-a) = F

2M  2M 199(0)_'_ q
R R o8t CY R2

q 1 —3R?(—1+6472) (8C* —15C2? R? + 7T R*)

R2 o 1024 C4 3 (4C4 —7C2 R2 + 3 RY)

n 1 Q(C) [_768 C4 12 + 2 (_5 s 8967‘(‘2) R2 +3 (1 . 647‘(‘2) R4]

o 153673 (4C* — 7C?2 R2 + 3 R%)
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The Schwarzschild’s solution
o -

0.0005 —
0.0004 —
0.0003 |
0.0002

0.0001

It can be seen that the anisotropic stress is proportional to
the density.

—> the most compact distribution undergoes a higher
anisotropic effect.

o |
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The Schwarzschild’s solution

o N

\\\\\\\\\\\\\\\\\\\\\\\\\

-0.008

~0.012 |-




The Schwarzschild’s solution
. -

\\\\\\\\\\\\\\\\\\\\\\\\\

~0.012 |

0014 L

;rhe Weyl function ¢/ is (almost) always negative.

6 U 3 [ p? 1 5
—— =— | = — (2G5 + G7) — 3p.

k4 o 0<2+pp>+87r( 27" 1) b
Two sources for U4 high energy terms (always negative)
and an anisotropic term.

o |
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Non-uniform distributions
U

sing the conservation equation
T _
VT, =0
we obtain

/ / 4
, U , Vv P K
—AY — 2P — —2P — 66— = — —
U + 5 U—2P ; P . (p+p)p 5
This equation is a lineal combination of the field equations,
so there is not new information from it. However we can
learn that the density gradients are a source for Weyl
stresses in the interior!

p=pr)—U and/or P #0

o |
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Non-uniform distributions

- N

# In the case of non-uniform distributions, the constraint
H(p, p,v) = 0 s not enough to close the system of
equations. However...

o |
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Non-uniform distributions

-

f.’ In the case of non-uniform distributions, the constraint
H(p, p,v) = 0 s not enough to close the system of
equations. However...

# Any general relativistic solution satisfy the condition
H(p,p,v) =0.

o |
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Non-uniform distributions

-

f.’ In the case of non-uniform distributions, the constraint
H(p, p,v) = 0 s not enough to close the system of
equations. However...

# Any general relativistic solution satisfy the condition
H(p,p,v) =0.

# This constraint represents a "natural” way to obtain the
braneworld version of any general relativistic solution.

o |
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Non-uniform distributions

Let us pick a general relativistic solution:

C(94+2Cr2+C2p4 20(2 —7Cr2 — O?%r4
o(ry = L . ). pry = 2C0 : 23”; e’ = A(1 + Cr?)*
Tm(1+Cr?) Tm(1+ Cr?)

The braneworld solution is found through

A _ g _ 2m(r)
T
where the interior mass function is given by
- 1 /2\2 Cr [240 + 589Cr2 — 25C2r4 — 410316 — 3C4r8
m(r) = m(r)——|=
7) 2w 3(1+ Cr2)4(1 + 3Cr2)

80 arctg(v/Cr)
(14 Cr?)2 (14 3Cr2)V/Cr |’

r 4 3+ Cr?
Lm(r) :/ Arr? pdr = ?C’rg B+Cr) GR mass function. Durgapal—Fuloria (198ﬁ‘J
0

(1+Cr2)2’
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the interior Weyl functions are

32
D _ Cr (180 + 2040CT2 + 8696C2% 4
(r) A1 T Crayo(i 5 acrayz 07 180+ mr '

+16533C>7° + 12660C*r® + 146C°r1° — 120C°%r'? + 9C7r!1)

—60vVC(1+ Cr?)3(3 +26Cr? + 6302r4)arctg(\/5r)} :

32
441r(1 4+ Cr2)6(1 + 3Cr?)2 [

+6186C3r0 — 373043 — 21905710 — 18C%r12)

Uur) = C?r (795 + 4865CT? + 10044C2r?

—240C3/2(1 4+ Cr2)3(5 + 90r2)arctg(\/5r)} .

o |
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the interior Weyl functions are

32
D _ Cr (180 + 2040CT2 + 8696C2% 4
(r) A1 T Crayo(i 5 acrayz 07 180+ mr '

+16533C>7° + 12660C*r® + 146C°r1° — 120C°%r'? + 9C7r!1)

—60vVC(1+ Cr?)3(3 +26Cr? + 6302r4)arctg(\/5r)} :

32
U — C?r (795 + 4865CT2 4 10044C2r*
() 441r(1 + Cr2)6(1 + 3Cr2)2 [ (195 + T "

+6186C3r0 — 373043 — 21905710 — 18C%r12)

—240C3/2(1 4+ Cr2)3(5 + 90r2)arctg(\/5r)} .

EXACT SOLUTION!!

o |
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Bulk Effects ?

The general relativistic solution for p and p is given by

(9+2Cr2 —|—C’27°4)
77 (14 Cr2)?

20(2 — 7Cr? — C?r%) .
7n(1 4+ Cr2)3 ’

o(r) = & ; p(r) =

Where is the bulk effect on p(r) and p(r)?

o |
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Bulk Effects ?

The general relativistic solution for p and p is given by

(9—|—20r2 —|—C’27°4)
77 (14 Cr2)?

20(2 — 7Cr? — C?r%) .
7n(1 4+ Cr2)3 ’

o(r) = & ; p(r) =

Where is the bulk effect on p(r) and p(r)?

Using the matching conditions we will have C — C(U)

o |
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Bulk Effects C' — C'(0)

Matching our solution with the Reissner-No6rdstrom—like solution
L+ 2M q I Pt 4 1 Dadhich, Maartens,
e’ =e€ =1-—4+=; U"=—— = —mqo—; :
r r2 2 3 r*  Papadopoulos, Rezania (2000).
2M q
A1+ CR»* =1 - :
(1+ ) = T 52
2M oM 1 (2)2 C {240 + 589CR? — 25C%R* — 41C3 RS — 3C*RS8
R R o\7) =« 3(1 + CR2)4(1 + 3CR?)
B 80 arctg(v/CR) q
(14+CR?)2 (1 +3CR2)vV/CR| R?
—4R
q [CR ((—2 + CR? 4+ 22C?*R* + 3C°R%)

o

147(1 + CR2)5(1 + 3CR2)

1
847 R?(1 4+ CR?)? + —(—240 — 2749CR? — 5276C% R* + 266C3 R®
o

1
+372C*R® + 27C°R'?)) + =240V C (1 + CR*)?*(1 + 9CR*)arctg(v/C )} .
o
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Role of dark radiation and dark pressure
o -

DMPR: U™ #£ 0, PT # 0

DMPF

CFM: UT =0, PT # 0
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Role of dark radiation and dark pressure

=

0.0010

0.0008
0.0006
0.0004

0.0002

. DMPR: Ut # 0, PT # 0
| DMPF

CFM: UT =0,PT #£ 0

® The exterior dark radiation &/t always increases both the pressure and the

o

compactness of the stellar structures.

-

|
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Role of dark radiation and dark pressure
-, -

0.0010 - DMPR: U™ #£ 0, PT # 0
I DMPF

* CFM: UT =0, Pt # 0
0.0008

0.0006
0.0004

0.0002

® The exterior dark radiation &/t always increases both the pressure and the
compactness of the stellar structures.

® The exterior dark pressure P* always reduces them.

o |
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Conclusions

-

The minimal geometrical deformation approach
represents a natural way to see the five dimensional
consequences on compact distributions.

Both exterior Weyl functions &/™ and P* have well
defined consequences on stellar structure.

The exterior dark radiation &/* always increases both
the pressure and the compactness of the stellar
structures, and that the exterior dark pressure P+
always reduces them.

An exterior solution with 4™ = 0 and P # 0

surrounding a stellar distribution might be seen as an
environment whose physical effects on the stellar

structure are such that it can be considered as a region
with negative effective pressure. J
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