On the Space of Generalized Fluxes for Loop Quantum Gravity

Carlos Guedes

Albert Einstein Institute, Potsdam, Germany

with B. Dittrich and D. Oriti
[to appear soon]

Sixth Aegean Summer School
Naxos, September 12, 2011
Motivation

Loop Quantum Gravity
Motivation

Loop Quantum Gravity

- (Smeared) variables: holonomies $h_e[A] \in SU(2)$, fluxes $E(S, f) \in \mathfrak{su}^*(2)$
- Configuration space (projective limit): $\mathcal{A} = \varprojlim A_\gamma$
- Hilbert space (inductive limit):
 $$\mathcal{H}_0 = L^2(\mathcal{A}, d\mu_0) = \varprojlim \mathcal{H}_\gamma = (\bigcup_\gamma L^2(A_\gamma, d\mu_H))/\sim$$
Loop Quantum Gravity

- (Smeared) variables: holonomies $h_e[A] \in SU(2)$, fluxes $E(S, f) \in su^*(2)$
- Configuration space (projective limit): $\overline{A} = \lim_{\gamma} A_\gamma$
- Hilbert space (inductive limit):
 $$\mathcal{H}_0 = L^2(\overline{A}, d\mu_0) = \lim_{\leftarrow} \mathcal{H}_\gamma = (\bigcup_{\gamma} L^2(\overline{A}_\gamma, d\mu_H)) / \sim$$
- Group Fourier transform \mathcal{F}_{γ} [hep-th/1004.3450]

$$\mathcal{F}_{\gamma} : \bigcup_{\gamma} \mathcal{H}_\gamma \xrightarrow{\mathcal{F}_{\gamma}} \bigcup_{\gamma} \mathcal{H}_{*\gamma}$$

$$\pi : \bigcup_{\gamma} \mathcal{H}_\gamma / \sim \xrightarrow{\pi} (\bigcup_{\gamma} \mathcal{H}_{*\gamma}) / \sim$$

$$\tilde{\mathcal{F}} : (\bigcup_{\gamma} \mathcal{H}_{*\gamma}) / \sim \xrightarrow{\tilde{\mathcal{F}}} \bigcup_{\gamma} \mathcal{H}_{*\gamma} / \sim$$

$$\bigcup_{\gamma} \mathcal{H}_{*\gamma} / \sim \simeq L^2(\overline{E}, d\mu_{*0}) ? \quad \overline{E} : \text{space of generalized fluxes}$$
Cyl is well-defined: norm and (pointwise)-product cylindrical consistent

$\Delta(\text{Cyl}) = \overline{A}$
Group Fourier transform (one edge):
\[F_e : C(G) \rightarrow C_*(g^*) \]
\[f(g) \mapsto \hat{f}(x) := F_e(f)(x) = \int_G dg \, f(g) \, e_g(x) \]

\[\ast\text{-product: } e_{g_1} \ast e_{g_2} = e_{g_1 g_2} \]

\[\mathcal{F}(f_1) \ast \mathcal{F}(f_2) = \mathcal{F}(f_1 \ast f_2) \rightarrow \text{dual to convolution} \]
Group Fourier transform (one edge):

\[\mathcal{F}_e : C(G) \rightarrow \mathcal{C}_\star(g^*) \]

\[f(g) \mapsto \hat{f}(x) := \mathcal{F}_e(f)(x) = \int_G dg f(g) e_g(x) \]

\(\star\)-product: \(e_{g_1} \star e_{g_2} = e_{g_1 g_2} \)

\[\mathcal{F}(f_1) \star \mathcal{F}(f_2) = \mathcal{F}(f_1 \star f_2) \rightarrow \text{dual to convolution} \]

Convolution product \textit{not} cylindrically consistent unless \(G \) \textit{abelian}!
Group Fourier transform (one edge):

\[\mathcal{F}_e : C(G) \rightarrow C_\star(g^\ast) \]

\[f(g) \mapsto \hat{f}(x) := \mathcal{F}_e(f)(x) = \int_G dg \ f(g) \ e_g(x) \]

\[\ast\text{-product: } e_{g_1} \ast e_{g_2} = e_{g_1 g_2} \]

\[\mathcal{F}(f_1) \ast \mathcal{F}(f_2) = \mathcal{F}(f_1 \ast f_2) \rightarrow \text{dual to convolution} \]

Convolution product not cylindrically consistent unless \(G \) abelian!

\[\text{SU}(2) \rightarrow \text{U}(1)^3 \rightarrow \text{U}(1) \text{ (quantization of linearized gravity)} \]
The space of generalized connections
Group Fourier transform
The space of generalized fluxes
Open Issues and Outlook

The space of generalized fluxes

Suppose $A \gamma$ are abelian groups, and let A be the projective limit with projections $p_\gamma: A \to A \gamma$. Then the dual group \hat{A} equals the inductive limit of the dual groups \hat{A}_γ. Consistency conditions: $5/6$
The space of generalized fluxes

- Push-forward through the Fourier transform: fail!
The space of generalized fluxes

- Push-forward through the Fourier transform: fail!
- Duality

Theorem

Suppose \mathcal{A}_γ are abelian groups, and let $\overline{\mathcal{A}}$ be the projective limit with projections $p_\gamma: \overline{\mathcal{A}} \to \mathcal{A}_\gamma$. Then the dual group $\hat{\mathcal{A}}$ equals the inductive limit of the dual groups $\hat{\mathcal{A}}_\gamma$.
Push-forward through the Fourier transform: fail!

Duality

Theorem

Suppose A_γ are abelian groups, and let \overline{A} be the projective limit with projections $p_\gamma : \overline{A} \rightarrow A_\gamma$. Then the dual group \hat{A} equals the inductive limit of the dual groups \hat{A}_γ.

Consistency conditions:
\[\hat{A} = \text{Hom}(\text{Hom}(\mathcal{P}, U(1))) \] (inductive limit): better characterization?

LQG kinematics treats \(A \) and \(E \) very asymmetrically!

Start from scratch encoding the conditions tailored to the fluxes: possible?

Loop Quantum Cosmology
 - Configuration space: \(\overline{\mathbb{R}}_{\text{Bohr}} \) (projective limit)
 - Flux interpretation for LQC?
 - Embed LQC into \(U(1) \)-LQG?
Open Issues and Outlook

- \(\widehat{A} = \text{Hom}(\text{Hom}(\mathcal{P}, U(1))) \) \text{(inductive limit)}: better characterization?
- LQG kinematics treats \(A \) and \(E \) very asymmetrically!
- Start from scratch encoding the conditions tailored to the fluxes: possible?
- Loop Quantum Cosmology
 - Configuration space: \(\overline{\mathbb{R}}_{\text{Bohr}} \) \text{(projective limit)}
 - Flux interpretation for LQC?
 - Embed LQC into \(U(1) \)-LQG?

Thank you for your attention!