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Fun with linear quantum fields

Free quantum fields are boring...

...true only for inertial observers!
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Fun with linear quantum fields

Free quantum fields are boring...

...true only for inertial observers!

o Inertial observers same notion of time evolution —> same vacuum state

o Observers with different time evolutions — different vacuum states...

Inertial vs. accelerated observers: Unruh effect
Free falling vs. fiducial observer in Schwarzschild background: Hawking effect

Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!
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Fun with linear quantum fields

Free quantum fields are boring...

...true only for inertial observers!

o Inertial observers same notion of time evolution —> same vacuum state

o Observers with different time evolutions — different vacuum states...

Inertial vs. accelerated observers: Unruh effect
Free falling vs. fiducial observer in Schwarzschild background: Hawking effect

Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Less known context in which free QFT manifests non-trivial features:
field quantization on group manifold momentum space
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Curved momentum space from gravity

[ Curved momentum space in flatland ]
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Curved momentum space from gravity

[ Curved momentum space in flatland ]

e Gravitational field in 2+1 dimensions admits no local d.o.f.!
e Point particles “puncture” space-like slices — conical space (Deser, Jackiw, 't Hooft, 1984)

e Euclidean plane with a wedge “cut-out” deficit angle 8w Gm

\

> identify
[

i
identify (’
:

world lines

e Particle's phase space = space of solutions of e.o.m.
o Geodesics in 3d Minkowski described by positions and momenta = R>! x R*!

e Switch on gravity: positions and generalized momenta = R*! x SL(2,R)

[ Momenta become coordinate functions on a non-abelian group! J
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Outline

Warm up: free field quantization and observables

“Bending” phase space in 3d: running spectral dimension

r-quantum fields: two-point function and a new quantization ambiguity
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Field quantization

Classical fields ‘ Quantum fields

state = point in phase space ¢ € S | state = ray in complex Hilbert space H
observable = function on S observable = self-adjoint operator on H
joint system = S* @ S joint system = H* ® H°
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introduce a “complex structure” on S (J: S — S with J>°=-1); S“* spanned by

o J(o*F) = +i(¢F)

o “One-particle” Hilbert space # = (S, (-,-))
e ‘“n-particle” Hilbert space H®" = H @ H... @ H,;
—_————

n—times

for n-identical particles S,H®" with S, = % 3, o
e Fock space Fs(H) = P2, SaH®"
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classical observables = functions on phase space

Quantization:
® to each classical observable 1) associate an operator Oy on H

® '“2nd quantization” of a 1-particle operator O (Cook 1953)

df(0)=1+0+(0®1+10)+(01®1+1R081+ 1Q1R0)+ ...

such construction naturally leads to the notion of coproduct AO =0®1+1 O
dlr(0) =14+ 0+ A0 + A0 + ...+ A, O + ...
with A,O =(A®1)oA,_1, Ay =Aand n>2
Space-time symmetry generators are special observables
® #H constructed from S (solutions of K-G equation) — H is a unitary irreps of the
Poincaré algebra P
® We have a natural action of the generators of P as one-particle operators

® A commuting set such operators used to label one-particle states (e.g. P — |p) )

® The coproduct A extends the action of elements of P to multiparticle states
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“Bending” phase space in 3d

[ Back to phase space of point particles in 2 + 1 gravity }

a) Phase space = (copies of) R*! x SL(2,R)

Py = £Tr(gv) with g=p’l+ Gpiyi € SL(2), p° = /1~ &

b) Deformed Poisson structure for coordinates:

{ai,9} =0 — {qi,qi} = €k G g«
G40

{ What consequences for the corresponding field theory? ]

look at plane waves...

es(x) = ePex — eiTr(Xg) . X = Xi%_ € sl(2)

define group Fourier transform (Freidel and Majid, hep-th/0601004)

F(F(x) = / dun(g)F(g) eg(x),

maps fields on the group manifold to fields on a dual “spacetime”...
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Group-valued plane waves and deformed symmetries

...the group structure induces a non-commutative x-product for plane waves

ePer X 4 o/Pe2 X — oiPergy X

i) differentiating both sides w.r.t. pg and setting momenta to zero
[xi, xi]« = 2i€jk G xx
functions of the dual spacetime variables form a non-commutative algebra!
il) momenta obey a non abelian composition rule indeed
Pergx = Pei D Pey 7 Pex D Per = Peve

Plane waves = eigenfunctions of translation generators

I

non-abelian composition of momenta = non-trivial coproduct

[ AP, =P, ®1+16® P, + G eancPy ® Pe + O(G2) ]

the smoking gun of symmetry deformation...P, belong to a non-trivial Hopf algebra with
G as a deformation parameter!
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An application: heath kernel and spectral dimension

[ Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507) ]
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An application: heath kernel and spectral dimension

[ Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507) ]

go Euclidean...the “spin” NC space possesses Laplacian A¢ (Majid and Batista,
hep-th/0205128)

related to Casimir Cg(P) via group Fourier transform...plane waves eigenfunctions
Ag gg(x) = C6(P) &g = pz(g) €g

e using these ingredients construct the NC heat kernel

2 2
K(X,X/; s) = /d,uH(g) e s (&)tm )eg(x)eg(xl)

Michele Arzano — Quantum fields on curved momentum space 9/16



An application: heath kernel and spectral dimension

[ Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507) ]

e go Euclidean...the “spin” NC space possesses Laplacian Ag (Majid and Batista,
hep-th/0205128)

e related to Casimir C¢(P) via group Fourier transform...plane waves eigenfunctions
Ag gg(x) = C6(P) &g = pz(g) €g
e using these ingredients construct the NC heat kernel

2 2
K(X,X/; s) = /d,uH(g) e s (&)tm )eg(x)eg(xl)

and calculate the spectral dimension ds = 72%%... (plot for G =1, m = 0)

[

g 0 2 30 W
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4d: k-Poincaré algebra

e The momentum sector of k-Poincaré = analogous structures to 3d case!
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4d: k-Poincaré algebra
e The momentum sector of k-Poincaré = analogous structures to 3d case!
> momenta: coordinates on a Lie group B C SO(4,1) (sub-manifold of dSs)
Mo+ M+ AN =K Mo+m >0
with % ~ Epianck

> dual Lie algebra “space-time” coordinates

i
[Xu, %] = —;(XM(SS — x,,csz).
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4d: k-Poincaré algebra
e The momentum sector of k-Poincaré = analogous structures to 3d case!
> momenta: coordinates on a Lie group B C SO(4,1) (sub-manifold of dSs)
Mo+ M+ AN =K Mo+m >0
with % ~ Epianck

> dual Lie algebra “space-time” coordinates

i
[Xu, %] = —;(xu52 - x,,csz).

e consider a one-parameter group splitting of B, 0 < || <1

1 ‘148 0

—l—p X0

€ =¢€
with momentum composition rules and “antipodes”
0 0 i 1=8_0 ;o _1+B8 0 0 =8 7
p®sqg=(p +q,p ex=? +q e "), Opp=(—p; —e="p).

each choice of [ corresponds to a choice of coordinates on the group manifold.
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k-Poincaré |

for B =1 we have “flat slicing” coordinates

2
no(po,p) = nsinhm/n+%epo/~7
K
ni(po,p) = pjeP’",
p2
na(po,p) = KZCOShpO/m_?ePO/N_
K

(“bicrossproduct basis” introduced in Majid-Ruegg ('94) to prove that P, = U(s0(3,1)) >« C(B))
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k-Poincaré |

for B =1 we have “flat slicing” coordinates

2
no(po,p) = nsinhm/n+%epo/~7
K
ni(po,p) = pjeP’",
p2
na(po,p) = mcoshpo/n_?epo/ﬁ_
K

(“bicrossproduct basis” introduced in Majid-Ruegg ('94) to prove that P, = U(s0(3,1)) >« C(B))

e deformed boost action
2P,

[N, Pi] = "5U(§ (1 - e_T> + i'&) + PP

® and co-products

A(N) = Nj®1+e*Po/~®Nj+i:Pk®M,
A(Py)) = Po®1+1®P), A(P)=P ®1+exp(=Po/k)® P
A(M,) = M®1+1 M;

® deformed mass Casimir = Lorentz invariant hyperboloid on B: 14 = const.

K . PO 2 2 _Py/k
Cr(P) = | 2ksinh [ — — Pet0/"
2K
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k-Poincaré |

for B =1 we have “flat slicing” coordinates

2
no(po,p) = nsinhm/n+%epo/~7
K
ni(po,p) = pjeP’",
p2
na(po,p) = mcoshpo/n_?epo/ﬁ_
K

(“bicrossproduct basis” introduced in Majid-Ruegg ('94) to prove that P, = U(s0(3,1)) >« C(B))

e deformed boost action

2Py .
[N, P = o (5 (1 —e T) +£P?) + Lrp;
® and co-products

€ Jkl

AN) = Nlte P/FeN + —Pi® M,
A(Po) = P®R14+1® Py, A(P,-)—P;®1+exp(fPo/n)®P,-
A(M,) = M®1+1 M;

® deformed mass Casimir = Lorentz invariant hyperboloid on B: 14 = const.

K . PO 2 2 _Py/k
Cr(P) = | 2ksinh [ — — Pet0/"
2K

in the limit kK — oo recover ordinary Poincaré algebra
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A new quantization ambiguity
Functions on the deformed mass-shell ¢ € C>°(ME) defined by the “wave equation”

CF(P) ¢ = m*p
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CF(P) ¢ = m*p

® On ¢ € C=°(My;) measure du(p) 6(Cy(p)) which we can use to define an inner product
® to define x-Hilbert space need to split C°° (M) in positive and negative energy subspaces!

® in ordinary QFT in Minkowski space define a complex structure J = from

7at
(—0:0:)1/2
killing vector 9. In terms of Py = i0; we have a positive energy projector
+ _ 1 Po_
Pr=3 (14 )
preferred choice of (local) “primitive” generators Py, P; for which Ci(P) = P2 — P2 and

AP, =P, ®1+1QP,
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A new quantization ambiguity
Functions on the deformed mass-shell ¢ € C>°(ME) defined by the “wave equation”

CF(P) ¢ = m*p

® On ¢ € C=°(My;) measure du(p) 6(Cy(p)) which we can use to define an inner product
® to define x-Hilbert space need to split C°° (M) in positive and negative energy subspaces!

® in ordinary QFT in Minkowski space define a complex structure J = from

7at
(—0:0:)1/2
killing vector 9. In terms of Py = i0; we have a positive energy projector
+ _ 1 Po_
Pr=3 (14 )
preferred choice of (local) “primitive” generators Py, P; for which Ci(P) = P2 — P2 and
AP, =P, ®1+1Q P,

® For translation generators in k-Poincaré there is no choice of primitive elements to
decompose the Casimir...their action will be non-Leibniz and non-symmetric for ANY
choice of basis!.
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A new quantization ambiguity
Functions on the deformed mass-shell ¢ € C>°(ME) defined by the “wave equation”

CF(P) ¢ = m*p

® On ¢ € C=°(My;) measure du(p) 6(Cy(p)) which we can use to define an inner product
® to define x-Hilbert space need to split C°° (M) in positive and negative energy subspaces!

® in ordinary QFT in Minkowski space define a complex structure J = from

7at
(—0:0:)1/2
killing vector 9. In terms of Py = i0; we have a positive energy projector
+ _ 1 Po_
Pr=3 (14 )
preferred choice of (local) “primitive” generators Py, P; for which Ci(P) = P2 — P2 and
AP, =P, ®1+1Q P,

® For translation generators in k-Poincaré there is no choice of primitive elements to
decompose the Casimir...their action will be non-Leibniz and non-symmetric for ANY
choice of basis!.

No preferred choice of translation generators from which we can define an energy coordinate
on M% and thus no preferred choice of J and P to define one-particle Hilbert space.
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k-particle Hilbert space and two-point function

e Hilbert space = C>°(M*) functions on deformed mass shell wi (p) = —~ log (1 = ‘—Zl)
equipped with inner product

(61, 92)x = fug+ HEL 31(p) 62(p)

3wr(p)/ K

with dji(p) = e(zT d®p
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k-particle Hilbert space and two-point function

e Hilbert space = C>°(M*) functions on deformed mass shell wi (p) = —~ log (1 = ‘—2')
equipped with inner product

(61, 02)x = fyr &L 31.(p) 42(p)

with dji(p) = £220/" gip
(2m)
e ‘one-particle” states |p) = af(p)|0) and (k|p) = &(k) = 2|p| 63(p @ (Sk))

group Fourier transform = NC space-time counterparts of functions on the mass-shell
d(x) = /B du(p) 8(C1(p)) #(p) ep(x)

field mode operators (MA, Phys. Rev. D83, 025025 (2011)): ¢, (p) = ﬁ(a(p) + Jo(p) af (op))
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k-particle Hilbert space and two-point function

e Hilbert space = C>°(M*) functions on deformed mass shell wi (p) = —~ log (1 = ‘p|>
equipped with inner product

(¢1,92)r = fM~+ W $1(p) $2(p)

3wr(P)/r

with dfi(p) = &5 5

d®p
e ‘one-particle” states |p) = af(p)|0) and (k|p) = &(k) = 2|p| 63(p @ (Sk))

group Fourier transform = NC space-time counterparts of functions on the mass-shell
d(x) = /B du(p) 8(C1(p)) #(p) ep(x)

field mode operators (MA, Phys. Rev. D83, 025025 (2011)): ¢, (p) = ﬁ(a(p) + Jo(p) af (op))

Fundamental building block of x-QFT: the two-point function

. — 02 2 _ S(p1®p2) —f _
G+(p1, £ P2, 5) = (0|¢n(P1, )P (P2, 5)[0) = —575 77 To (P1) exp(—iwn(p1)(t — 5))

work in progress (with J. Kowalski-Glikman and T. Trzesniewski) with Feynman propagator and “zoology”
of Green functions...

connection with field theories on multifractal spacetimes see M. Scalisi’s talk this Friday
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k-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H
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In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H
In the k-deformed case try to proceed in an analogous way BUT...
the symmetrized state

1/V2(Jk1) ® |k2) + [k2) ® k1))
is NOT an eigenstate of P, due to the role of non-trivial coproduct
Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization

® “modulated flip" o = ]-'HU]:,ZI, Fi = exp (%Po ® Pj%) such that
J
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i
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In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H
In the k-deformed case try to proceed in an analogous way BUT...
the symmetrized state

1/V2(Jk1) ® |k2) + [k2) ® k1))
is NOT an eigenstate of P, due to the role of non-trivial coproduct
Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization

® “modulated flip" o = ]-'HU]:,ZI, Fi = exp (%Po ® Pj%) such that
J

o (k1) ®[k2)) = (1 —e1) ko) ® (1 —€2) " ki), &= “%'
e E.g. there will be two 2-particle states
kika)x = 5 [[k1) ® k) + | (1 —e1)ka) ® | (1= e2) k1))
keki)x = 75 [[k2) ® |k1) + (1 = e2)k1) ® | (1 — e1)"Tka)]
with same energy and different linear momentum
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k-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the k-deformed case try to proceed in an analogous way BUT...

the symmetrized state
1/V2(Jk1) ® |k2) + [k2) ® k1))
is NOT an eigenstate of P, due to the role of non-trivial coproduct

Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization

® “modulated flip" o = ]-'HU]:,ZI, Fi = exp (%Po ® Pj%) such that
J

o (k1) ®[k2)) = (1 —e1) ko) ® (1 —€2) " ki), &= “%'
e E.g. there will be two 2-particle states
kika)x = 5 [[k1) ® k) + | (1 —e1)ka) ® | (1= e2) k1))
keki)x = 75 [[k2) ® |k1) + (1 = e2)k1) ® | (1 — e1)"Tka)]
with same energy and different linear momentum
Kiz =ki ©ky = k1 +(1— ek
Ka=kx @ ki = ka2 +(1—e)k

given n-different modes one has n! different n-particle states, one for each
permutation of the n modes kj , ks ... kn
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”
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|AKy2| = [Ki2 — Ka1| = 2 [kg|ka| — ka|kq|| < 2[kq][ke|

of order |k;|?/x

Michele Arzano — Quantum fields on curved momentum space 15/16
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® the different states can be distinguished measuring their momentum splitting e.g.
|AKy2| = [Ki2 — Ka1| = 2 [kg|ka| — ka|kq|| < 2[kq][ke|
of order |k;|?/x
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”
® the different states can be distinguished measuring their momentum splitting e.g.
|AKy2| = [Ki2 — Ka1| = 2 [kg|ka| — ka|kq|| < 2[kq][ke|
of order |k;|?/x

® the 2-mode Hilbert space becomes Hi =~ S)H? ® C2, where SpH? is the ordinary
symmetrized 2-mode Hilbert space and our states can be written as

@1 = |kika)s
@4 = |kaki)w
with € = e(kq) + e(ka)
( Planckian mode entanglement becomes possible! J

® e.g. the state superposition of two total “classical” energies e4 = e(ki,) + €(ka4) and
eg = e(ki1g) + €(kag) can be entangled with the additional hidden modes e.g.

W) = 1/v2(lea) @ | 1) + leg) ® | 1))

...possible consequences for phenomenology?
( MA., D. Benedetti, [arXiv:0809.0889 [hep-th]]. MA., A. Marciano, [arXiv:0707.1329 [hep-th]]. MA, A. Hamma,
S. Severini, [arXiv:0806.2145 [hep-th]].)
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Conclusions

Relativistic symmetries can be deformed to allow “curvature” for momentum
space

e Strong motivations to look at such deformations from 241 gravity coupled to
relativistic particles...application: appearance of running spectral dimension

e Quantization of (free) field theories with group valued momenta leads to
ambiguities related to the different choices of translation generators...physical
interpretation of such ambiguities?

e What role of deformed 2-point functions for “trans-planckian” issues in
semiclassical gravity (BH evaporation, Inflation)??

o At the multiparticle level the non-trivial behaviour of field modes leads to a fine
structure of Fock space: interesting entanglement phenomena can take place
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