Quantum fields on curved momentum space

Michele Arzano

Spinoza Institute and Institute for Theoretical Physics Utrecht University

September 12, 2011

Michele Arzano - Quantum fields on curved momentum space

Free quantum fields are boring...

...true only for inertial observers!

Free quantum fields are boring...

...true only for inertial observers!

• Inertial observers same notion of time evolution \longrightarrow same vacuum state

Free quantum fields are boring...

...true only for inertial observers!

- Inertial observers same notion of time evolution \longrightarrow same vacuum state
- Observers with *different time evolutions* \longrightarrow **different vacuum states...**

Free quantum fields are boring...

...true only for inertial observers!

- Inertial observers same notion of time evolution \longrightarrow same vacuum state
- Observers with *different time evolutions* → different vacuum states...
 Inertial vs. accelerated observers: *Unruh effect*

Free falling vs. fiducial observer in Schwarzschild background: Hawking effect

Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Free quantum fields are boring...

...true only for inertial observers!

- Inertial observers same notion of time evolution \longrightarrow same vacuum state
- Observers with *different time evolutions* → different vacuum states...
 Inertial vs. accelerated observers: *Unruh effect*

Free falling vs. fiducial observer in Schwarzschild background: Hawking effect

Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Less known context in which *free* QFT manifests non-trivial features: **field quantization on** *group manifold* **momentum space**

• Gravitational field in 2+1 dimensions admits no local d.o.f.!

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiw, 't Hooft, 1984)

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiw, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle 8πGm

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiw, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle 8πGm

• Particle's phase space = space of solutions of e.o.m.

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiw, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle 8πGm

- Particle's phase space = space of solutions of e.o.m.
- Geodesics in 3d Minkowski described by *positions* and *momenta* = $\mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiw, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle 8πGm

- Particle's phase space = space of solutions of e.o.m.
- Geodesics in 3d Minkowski described by *positions* and *momenta* = $\mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: positions and generalized momenta = $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

- Gravitational field in 2+1 dimensions admits no local d.o.f.!
- Point particles "puncture" space-like slices \rightarrow conical space (Deser, Jackiw, 't Hooft, 1984)
- Euclidean plane with a wedge "cut-out" deficit angle 8πGm

- Particle's phase space = space of solutions of e.o.m.
- Geodesics in 3d Minkowski described by *positions* and *momenta* = $\mathbb{R}^{2,1} \times \mathbb{R}^{2,1}$
- Switch on gravity: positions and generalized momenta $= \mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

Momenta become coordinate functions on a non-abelian group!

Outline

- Warm up: free field quantization and observables
- "Bending" phase space in 3d: running spectral dimension
- κ -quantum fields: two-point function and a new quantization ambiguity

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	$state = ray$ in complex Hilbert space ${\cal H}$
observable = function on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

• complexify the space of real solutions $\mathcal{S}^{\mathbb{C}}\simeq\mathcal{S}\otimes\mathbb{C}$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = <i>function</i> on S	${f observable}={\it self-adjoint\ operator\ on\ }{\cal H}$
joint system $= \mathcal{S}^{A} \oplus \mathcal{S}^{B}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an inner product $(\phi_1, \phi_2) \equiv -i\omega(\bar{\phi_1}, \phi_2)$ from Wronskian of the e.o.m.

Classical fields	Quantum fields
$state = point \ in \ phase \ space \ \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = <i>function</i> on S	$\mathbf{observable} = \mathit{self-adjoint operator}$ on $\mathcal H$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an inner product $(\phi_1, \phi_2) \equiv -i\omega(\bar{\phi_1}, \phi_2)$ from Wronskian of the e.o.m.
- restrict to "positive" energy subspace $S^{\mathbb{C}+}$ on which (\cdot, \cdot) is *positive definite* i.e.

Classical fields	Quantum fields
$state = point \ in \ phase \ space \ \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = <i>function</i> on S	$\mathbf{observable} = \mathit{self-adjoint operator}$ on $\mathcal H$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an inner product $(\phi_1, \phi_2) \equiv -i\omega(\bar{\phi_1}, \phi_2)$ from Wronskian of the e.o.m.
- restrict to "positive" energy subspace $S^{\mathbb{C}+}$ on which (\cdot, \cdot) is *positive definite* i.e.

introduce a "complex structure" on S ($J : S \to S$ with $J^2 = -1$); $S^{\mathbb{C}\pm}$ spanned by $\phi^{\pm} : J(\phi^{\pm}) = \pm i(\phi^{\pm})$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{A} \oplus \mathcal{S}^{B}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an inner product $(\phi_1, \phi_2) \equiv -i\omega(\bar{\phi_1}, \phi_2)$ from Wronskian of the e.o.m.
- restrict to "positive" energy subspace $S^{\mathbb{C}+}$ on which (\cdot, \cdot) is *positive definite* i.e.

introduce a "complex structure" on S ($J : S \to S$ with J^2 =-1); $S^{\mathbb{C}\pm}$ spanned by ϕ^{\pm} : $J(\phi^{\pm}) = \pm i(\phi^{\pm})$

• "One-particle" Hilbert space $\mathcal{H}\equiv(\mathcal{S}^{\mathbb{C}+},(\cdot,\cdot))$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{A} \oplus \mathcal{S}^{B}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an inner product $(\phi_1, \phi_2) \equiv -i\omega(\bar{\phi_1}, \phi_2)$ from Wronskian of the e.o.m.
- restrict to "positive" energy subspace $S^{\mathbb{C}+}$ on which (\cdot, \cdot) is *positive definite* i.e.

introduce a "complex structure" on S ($J : S \to S$ with J^2 =-1); $S^{\mathbb{C}\pm}$ spanned by ϕ^{\pm} : $J(\phi^{\pm}) = \pm i(\phi^{\pm})$

- "One-particle" Hilbert space $\mathcal{H}\equiv(\mathcal{S}^{\mathbb{C}+},(\cdot,\cdot))$
- "n-particle" Hilbert space $\mathcal{H}^{\otimes n} = \underbrace{\mathcal{H} \otimes \mathcal{H}_{\cdots} \otimes \mathcal{H}}_{::};$

for *n*-identical particles $S_n \mathcal{H}^{\otimes n}$ with $S_n = \frac{1}{n!} \sum_{\sigma \in P_n} \sigma$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{A} \oplus \mathcal{S}^{B}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an inner product $(\phi_1, \phi_2) \equiv -i\omega(\bar{\phi_1}, \phi_2)$ from Wronskian of the e.o.m.
- restrict to "positive" energy subspace $S^{\mathbb{C}+}$ on which (\cdot, \cdot) is *positive definite* i.e.

introduce a "complex structure" on S ($J : S \to S$ with J^2 =-1); $S^{\mathbb{C}\pm}$ spanned by ϕ^{\pm} : $J(\phi^{\pm}) = \pm i(\phi^{\pm})$

n-times

- "One-particle" Hilbert space $\mathcal{H}\equiv(\mathcal{S}^{\mathbb{C}+},(\cdot,\cdot))$
- "n-particle" Hilbert space $\mathcal{H}^{\otimes n} = \underbrace{\mathcal{H} \otimes \mathcal{H}_{\cdots} \otimes \mathcal{H}}_{::};$

for *n*-identical particles $S_n \mathcal{H}^{\otimes n}$ with $S_n = \frac{1}{n!} \sum_{\sigma \in P_n} \sigma$

• Fock space
$$\mathcal{F}_s(\mathcal{H}) = \bigoplus_{n=0}^{\infty} S_n \mathcal{H}^{\otimes n}$$

classical observables = functions on phase space

classical observables = functions on phase space

Quantization:

• to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator \mathcal{O} (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator \mathcal{O} (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + ... + \Delta_n \mathcal{O} + ...$

with $\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$, $\Delta_1 \equiv \Delta$ and $n \geq 2$

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator O (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + ... + \Delta_n \mathcal{O} + ...$

with $\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$, $\Delta_1 \equiv \Delta$ and $n \geq 2$

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator $\mathcal O$ (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

$$d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + \dots + \Delta_n \mathcal{O} + \dots$$

with
$$\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$$
, $\Delta_1 \equiv \Delta$ and $n \geq 2$

Space-time symmetry generators are special observables

• \mathcal{H} constructed from S (solutions of K-G equation) $\longrightarrow \mathcal{H}$ is a unitary irreps of the Poincaré algebra \mathcal{P}

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator $\mathcal O$ (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

$$d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + ... + \Delta_n \mathcal{O} + ...$$

with
$$\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$$
, $\Delta_1 \equiv \Delta$ and $n \geq 2$

- \mathcal{H} constructed from S (solutions of K-G equation) $\longrightarrow \mathcal{H}$ is a unitary irreps of the Poincaré algebra \mathcal{P}
- We have a natural action of the generators of $\mathcal P$ as one-particle operators

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator $\mathcal O$ (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

$$d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + ... + \Delta_n \mathcal{O} + ...$$

with
$$\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$$
, $\Delta_1 \equiv \Delta$ and $n \geq 2$

- \mathcal{H} constructed from S (solutions of K-G equation) $\longrightarrow \mathcal{H}$ is a unitary irreps of the Poincaré algebra \mathcal{P}
- We have a natural action of the generators of ${\mathcal P}$ as one-particle operators
- A commuting set such operators used to label one-particle states (e.g. ${f P}
 ightarrow |{f p}
 angle$)

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator O (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

$$d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + \dots + \Delta_n \mathcal{O} + \dots$$

with
$$\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$$
, $\Delta_1 \equiv \Delta$ and $n \geq 2$

- \mathcal{H} constructed from S (solutions of K-G equation) $\longrightarrow \mathcal{H}$ is a unitary irreps of the Poincaré algebra \mathcal{P}
- We have a natural action of the generators of $\mathcal P$ as one-particle operators
- A commuting set such operators used to label one-particle states (e.g. ${f P}
 ightarrow |{f p}
 angle$)
- The coproduct Δ extends the action of elements of $\mathcal P$ to multiparticle states

"Bending" phase space in 3d

"Bending" phase space in 3d

Back to *phase space* of point particles in 2 + 1 gravity
Back to *phase space* of point particles in 2 + 1 gravity

a) Phase space = (copies of) $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

$$p_g^i = rac{1}{2G} \mathrm{Tr}(g\gamma_i)$$
 with $g = p^0 1 + G p^i \gamma_i \in SL(2), \ p^0 = \sqrt{1 - rac{G^2 \mathbf{p}^2}{4}}$

Back to *phase space* of point particles in 2 + 1 gravity

a) Phase space = (copies of) $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

$$p_g^i = rac{1}{2G} \mathrm{Tr}(g\gamma_i)$$
 with $g = p^0 1 + G p^i \gamma_i \in SL(2), \ p^0 = \sqrt{1 - rac{G^2 \mathbf{p}^2}{4}}$

b) Deformed Poisson structure for coordinates:

$$\{q_i, q_j\} = 0 \xrightarrow[G
eq 0]{} \{q_i, q_j\} = \epsilon_{ijk} G q_k$$

Back to *phase space* of point particles in 2 + 1 gravity

a) Phase space = (copies of) $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

$$p_g^i = rac{1}{2G} \mathrm{Tr}(g\gamma_i)$$
 with $g = p^0 1 + G p^i \gamma_i \in SL(2)$, $p^0 = \sqrt{1 - rac{G^2 \mathbf{p}^2}{4}}$

b) Deformed Poisson structure for coordinates:

$$\{q_i,q_j\}=0 \underset{G\neq 0}{\longrightarrow} \{q_i,q_j\}=\epsilon_{ijk}\,G\,q_k$$

What consequences for the corresponding field theory?

Back to *phase space* of point particles in 2 + 1 gravity

a) Phase space = (copies of) $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

$$p_g^i = rac{1}{2G} \mathrm{Tr}(g\gamma_i)$$
 with $g = p^0 1 + G p^i \gamma_i \in SL(2), \ p^0 = \sqrt{1 - rac{G^2 \mathbf{p}^2}{4}}$

b) Deformed Poisson structure for coordinates:

$$\{q_i,q_j\}=0 \underset{G\neq 0}{\longrightarrow} \{q_i,q_j\}=\epsilon_{ijk} G q_k$$

What consequences for the corresponding field theory?

look at plane waves...

$$e_g(x) = e^{i p_g \cdot x} \equiv e^{rac{i}{2G}\operatorname{Tr}(X_g)}, \quad X = x^i \gamma_i \in \mathfrak{sl}(2)$$

Back to *phase space* of point particles in 2 + 1 gravity

a) Phase space = (copies of) $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

$$p_g^i = rac{1}{2G} \mathrm{Tr}(g\gamma_i)$$
 with $g = p^0 1 + G p^i \gamma_i \in SL(2), \ p^0 = \sqrt{1 - rac{G^2 \mathbf{p}^2}{4}}$

b) Deformed Poisson structure for coordinates:

$$\{q_i,q_j\}=0 \underset{G\neq 0}{\longrightarrow} \{q_i,q_j\}=\epsilon_{ijk}\,G\,q_k$$

What consequences for the corresponding field theory?

look at plane waves...

$$e_g(x) = e^{ip_g \cdot x} \equiv e^{rac{i}{2G}\operatorname{Tr}(Xg)}, \quad X = x^i \gamma_i \in \mathfrak{sl}(2)$$

define group Fourier transform (Freidel and Majid, hep-th/0601004)

$$\mathcal{F}(f)(x) = \int d\mu_H(g) f(g) e_g(x),$$

maps fields on the group manifold to fields on a dual "spacetime" ...

...the group structure induces a non-commutative ***-product** for plane waves

$$e^{ip_{g_1}\cdot x} \star e^{ip_{g_2}\cdot x} = e^{ip_{g_1}g_2\cdot x}$$

...the group structure induces a non-commutative ***-product** for plane waves

$$e^{ip_{g_1}\cdot x} \star e^{ip_{g_2}\cdot x} = e^{ip_{g_1}g_2\cdot x}$$

i) differentiating both sides w.r.t. p_{g_i} and setting momenta to zero

$$[x_i, x_j]_{\star} = 2i\epsilon_{ijk} G x_k$$

functions of the dual spacetime variables form a non-commutative algebra!

...the group structure induces a non-commutative ***-product** for plane waves

$$e^{ip_{g_1}\cdot x} \star e^{ip_{g_2}\cdot x} = e^{ip_{g_1g_2}\cdot x}$$

i) differentiating both sides w.r.t. p_{g_i} and setting momenta to zero

$$[x_i, x_j]_{\star} = 2i\epsilon_{ijk} G x_k$$

functions of the dual spacetime variables form a non-commutative algebra!ii) momenta obey a non abelian composition rule indeed

$$p_{g_1g_2} = p_{g_1} \oplus p_{g_2} \neq p_{g_2} \oplus p_{g_1} = p_{g_2g_1}$$

...the group structure induces a non-commutative ***-product** for plane waves

$$e^{ip_{g_1}\cdot x} \star e^{ip_{g_2}\cdot x} = e^{ip_{g_1}g_2\cdot x}$$

i) differentiating both sides w.r.t. p_{g_i} and setting momenta to zero

$$[x_i, x_j]_{\star} = 2i\epsilon_{ijk} G x_k$$

functions of the dual spacetime variables form a non-commutative algebra!ii) momenta obey a non abelian composition rule indeed

...the group structure induces a non-commutative ***-product** for plane waves

$$e^{ip_{g_1}\cdot x} \star e^{ip_{g_2}\cdot x} = e^{ip_{g_1}g_2\cdot x}$$

i) differentiating both sides w.r.t. p_{g_i} and setting momenta to zero

$$[x_i, x_j]_{\star} = 2i\epsilon_{ijk} G x_k$$

functions of the dual spacetime variables form a non-commutative algebra!ii) momenta obey a non abelian composition rule indeed

$$\Delta P_{a} = P_{a} \otimes \mathbf{1} + \mathbf{1} \otimes P_{a} + G \epsilon_{abc} P_{b} \otimes P_{c} + \mathcal{O}(G^{2})$$

the smoking gun of symmetry deformation... P_a belong to a non-trivial Hopf algebra with G as a deformation parameter!

n

Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507)

Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507)

• go Euclidean...the "spin" NC space possesses Laplacian Δ_G (Majid and Batista, hep-th/0205128)

Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507)

- go Euclidean...the "spin" NC space possesses Laplacian Δ_G (Majid and Batista, hep-th/0205128)
- related to Casimir $C_G(P)$ via group Fourier transform...plane waves eigenfunctions

$$\Delta_G e_g(x) \Longrightarrow \mathcal{C}_G(P) e_g = \mathbf{p}^2(g) e_g$$

Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507)

- go Euclidean...the "spin" NC space possesses Laplacian Δ_G (Majid and Batista, hep-th/0205128)
- related to Casimir $C_G(P)$ via group Fourier transform...plane waves eigenfunctions

$$\Delta_G e_g(x) \Longrightarrow \mathcal{C}_G(P) e_g = \mathbf{p}^2(g) e_g$$

• using these ingredients construct the NC heat kernel

$$K(x, x'; s) = \int d\mu_H(g) e^{-s(\mathbf{p}^2(g) + m^2)} e_g(x) e_g(x')$$

Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507)

- go Euclidean...the "spin" NC space possesses Laplacian Δ_G (Majid and Batista, hep-th/0205128)
- related to Casimir $C_G(P)$ via group Fourier transform...plane waves eigenfunctions

$$\Delta_G e_g(x) \Longrightarrow \mathcal{C}_G(P) e_g = \mathbf{p}^2(g) e_g$$

using these ingredients construct the NC heat kernel

$$\mathcal{K}(x,x';s) = \int d\mu_{\mathcal{H}}(g) \, e^{-s(\mathfrak{p}^2(g)+m^2)} e_g(x) e_g(x')$$

and calculate the spectral dimension $d_s = -2 \frac{\partial \log \tilde{T}rK}{\partial \log s}$... (plot for G = 1, m = 0)

• The momentum sector of κ -Poincaré \Rightarrow analogous structures to 3d case!

• The momentum sector of κ -Poincaré \Rightarrow analogous structures to 3d case!

▶ momenta: coordinates on a Lie group $B \subset SO(4, 1)$ (sub-manifold of dS_4) $-n_0^2 + n_1^2 + n_2^2 + n_3^2 + n_4^2 = \kappa^2; \quad \eta_0 + \eta_4 > 0$

with $\kappa \sim E_{Planck}$

dual Lie algebra "space-time" coordinates

$$[x_{\mu}, x_{\nu}] = -\frac{i}{\kappa} (x_{\mu} \delta_{\nu}^{0} - x_{\nu} \delta_{\mu}^{0}).$$

• The momentum sector of κ -Poincaré \Rightarrow analogous structures to 3d case!

▶ momenta: coordinates on a Lie group $B \subset SO(4, 1)$ (sub-manifold of dS_4) $-\eta_0^2 + \eta_1^2 + \eta_2^2 + \eta_3^2 + \eta_4^2 = \kappa^2; \quad \eta_0 + \eta_4 > 0$

with $\kappa \sim E_{Planck}$

dual Lie algebra "space-time" coordinates

$$[x_{\mu}, x_{\nu}] = -\frac{i}{\kappa} (x_{\mu} \delta_{\nu}^{0} - x_{\nu} \delta_{\mu}^{0}).$$

• consider a one-parameter group splitting of $\mathrm B$, $\mathsf{0} \leq |eta| \leq 1$

$$e_p \equiv e^{-irac{1-eta}{2}p^0x_0}e^{ip^jx_j}e^{-irac{1+eta}{2}p^0x_0}$$

with momentum composition rules and "antipodes"

$$p \oplus_{\beta} q = (p^{0} + q^{0}; p^{j} e^{\frac{1-\beta}{2\kappa}q^{0}} + q^{j} e^{-\frac{1+\beta}{2\kappa}p^{0}}), \qquad \ominus_{\beta} p = (-p^{0}; -e^{\frac{-\beta}{\kappa}p^{0}}p^{j}).$$

each choice of β corresponds to a *choice of coordinates* on the group manifold.

for $\beta=1$ we have "flat slicing" coordinates

$$\begin{split} \eta_0(p_0,\mathbf{p}) &= \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}, \\ \eta_i(p_0,\mathbf{p}) &= p_i e^{p_0/\kappa}, \\ \eta_4(p_0,\mathbf{p}) &= \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}. \end{split}$$

("bicrossproduct basis" introduced in Majid-Ruegg ('94) to prove that $\mathcal{P}_{\kappa} = U(\mathfrak{so}(3,1)) \triangleright \blacktriangleleft \mathbb{C}(B)$)

for $\beta=1$ we have "flat slicing" coordinates

$$\begin{aligned} \eta_0(p_0,\mathbf{p}) &= \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}, \\ \eta_i(p_0,\mathbf{p}) &= p_i e^{p_0/\kappa}, \\ \eta_4(p_0,\mathbf{p}) &= \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}. \end{aligned}$$

("bicrossproduct basis" introduced in Majid-Ruegg ('94) to prove that $\mathcal{P}_{\kappa} = U(\mathfrak{so}(3,1)) \Join \mathbb{C}(B)$

• deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}}\right) + \frac{1}{2\kappa}\vec{P}^2\right) + \frac{i}{\kappa}P_lP_j$$

for $\beta=1$ we have "flat slicing" coordinates

$$\begin{split} \eta_0(p_0,\mathbf{p}) &= \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}, \\ \eta_i(p_0,\mathbf{p}) &= p_i e^{p_0/\kappa}, \\ \eta_4(p_0,\mathbf{p}) &= \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}. \end{split}$$

("bicrossproduct basis" introduced in Majid-Ruegg ('94) to prove that $\mathcal{P}_{\kappa} = U(\mathfrak{so}(3,1)) \triangleright \blacktriangleleft \mathbb{C}(B)$)

deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}} \right) + \frac{1}{2\kappa} \vec{P}^2 \right) + \frac{i}{\kappa} P_l P_j$$

and co-products

$$\begin{array}{lll} \Delta(N_j) &=& N_j \otimes 1 + e^{-P_0/\kappa} \otimes N_j + \frac{\epsilon_{jkl}}{\kappa} P_k \otimes M_l \\ \Delta(P_0) &=& P_0 \otimes 1 + 1 \otimes P_0 \,, \qquad \Delta(P_i) = P_i \otimes 1 + \exp(-P_0/\kappa) \otimes P_k \\ \Delta(M_i) &=& M_i \otimes 1 + 1 \otimes M_i \end{array}$$

• deformed mass Casimir \Rightarrow Lorentz invariant hyperboloid on B: $\eta_4 = \text{const.}$

$$\mathcal{C}_{1}^{\kappa}(P) = \left(2\kappa \sinh\left(\frac{P_{0}}{2\kappa}\right)\right)^{2} - \mathbf{P}^{2}e^{P_{0}/\kappa}$$

for $\beta=1$ we have "flat slicing" coordinates

$$\begin{aligned} \eta_0(p_0,\mathbf{p}) &= \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}, \\ \eta_i(p_0,\mathbf{p}) &= p_i e^{p_0/\kappa}, \\ \eta_4(p_0,\mathbf{p}) &= \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}. \end{aligned}$$

("bicrossproduct basis" introduced in Majid-Ruegg ('94) to prove that $\mathcal{P}_{\kappa} = U(\mathfrak{so}(3,1)) \triangleright \blacktriangleleft \mathbb{C}(B)$)

deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}} \right) + \frac{1}{2\kappa} \vec{P}^2 \right) + \frac{i}{\kappa} P_l P_j$$

and co-products

$$\begin{array}{lll} \Delta(N_j) &=& N_j \otimes 1 + e^{-P_0/\kappa} \otimes N_j + \frac{\epsilon_{jkl}}{\kappa} P_k \otimes M_l \\ \Delta(P_0) &=& P_0 \otimes 1 + 1 \otimes P_0 \,, \qquad \Delta(P_i) = P_i \otimes 1 + \exp(-P_0/\kappa) \otimes P_k \\ \Delta(M_i) &=& M_i \otimes 1 + 1 \otimes M_i \end{array}$$

• deformed mass Casimir \Rightarrow Lorentz invariant hyperboloid on B: $\eta_4 = \text{const.}$

$$\mathcal{C}_1^{\kappa}(P) = \left(2\kappa \sinh\left(\frac{P_0}{2\kappa}\right)\right)^2 - \mathbf{P}^2 e^{P_0/\kappa}$$

in the limit $\kappa \longrightarrow \infty$ recover ordinary Poincaré algebra

Functions on the deformed mass-shell $\phi \in C^{\infty}(M_m^{\kappa})$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

Functions on the deformed mass-shell $\phi \in C^\infty(M^\kappa_m)$ defined by the "wave equation"

$$C_1^\kappa(P)\,\phi=m^2\phi$$

• On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product

Functions on the deformed mass-shell $\phi \in C^\infty(M_m^\kappa)$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split $C^{\infty}(M_m^{\kappa})$ in positive and negative energy subspaces!

Functions on the deformed mass-shell $\phi \in C^{\infty}(M_m^{\kappa})$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split $C^{\infty}(M_m^{\kappa})$ in positive and negative energy subspaces!
- in ordinary QFT in Minkowski space define a *complex structure* $J = \frac{-\partial_t}{(-\partial_t \partial_t)^{1/2}}$ from killing vector ∂_t . In terms of $P_0 = i\partial_t$ we have a *positive energy projector*

$$P^+ = rac{1}{2} \left(1 + rac{P_0}{|P_0|}
ight)$$

Functions on the deformed mass-shell $\phi \in C^{\infty}(M_m^{\kappa})$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split $C^{\infty}(M_m^{\kappa})$ in positive and negative energy subspaces!
- in ordinary QFT in Minkowski space define a *complex structure* $J = \frac{-\partial_t}{(-\partial_t \partial_t)^{1/2}}$ from killing vector ∂_t . In terms of $P_0 = i\partial_t$ we have a *positive energy projector*

$$P^+ = \frac{1}{2} \left(1 + \frac{P_0}{|P_0|} \right)$$

preferred choice of (local) "primitive" generators P_0 , P_i for which $C_1(P) = P_0^2 - \mathbf{P}_i^2$ and

$$\Delta P_{\mu} = P_{\mu} \otimes 1 + 1 \otimes P_{\mu}$$

Functions on the deformed mass-shell $\phi \in C^\infty(M_m^\kappa)$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split $C^{\infty}(M_m^{\kappa})$ in positive and negative energy subspaces!
- in ordinary QFT in Minkowski space define a *complex structure* $J = \frac{-\partial_t}{(-\partial_t \partial_t)^{1/2}}$ from killing vector ∂_t . In terms of $P_0 = i\partial_t$ we have a *positive energy projector*

$$P^+ = \frac{1}{2} \left(1 + \frac{P_0}{|P_0|} \right)$$

preferred choice of (local) "primitive" generators P_0 , P_i for which $C_1(P) = P_0^2 - \mathbf{P}_i^2$ and

$$\Delta P_{\mu} = P_{\mu} \otimes 1 + 1 \otimes P_{\mu}$$

 For translation generators in κ-Poincaré there is no choice of primitive elements to decompose the Casimir...their action will be non-Leibniz and non-symmetric for ANY choice of basis!.

Functions on the deformed mass-shell $\phi \in C^{\infty}(M_m^{\kappa})$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split $C^{\infty}(M_m^{\kappa})$ in positive and negative energy subspaces!
- in ordinary QFT in Minkowski space define a *complex structure* $J = \frac{-\partial_t}{(-\partial_t \partial_t)^{1/2}}$ from killing vector ∂_t . In terms of $P_0 = i\partial_t$ we have a *positive energy projector*

$$P^+ = \frac{1}{2} \left(1 + \frac{P_0}{|P_0|} \right)$$

preferred choice of (local) "primitive" generators P_0 , P_i for which $C_1(P) = P_0^2 - \mathbf{P}_i^2$ and

$$\Delta P_{\mu} = P_{\mu} \otimes 1 + 1 \otimes P_{\mu}$$

 For translation generators in κ-Poincaré there is no choice of primitive elements to decompose the Casimir...their action will be non-Leibniz and non-symmetric for ANY choice of basis!.

No preferred choice of translation generators from which we can define an energy coordinate on M_m^{κ} and thus no preferred choice of J and P^+ to define one-particle Hilbert space.

• Hilbert space = $C^{\infty}(M^{\kappa})$ functions on deformed mass shell $\omega_{\kappa}^{\pm}(\mathbf{p}) = -\kappa \log \left(1 \mp \frac{|\mathbf{p}|}{\kappa}\right)$ equipped with inner product

$$(\phi_1,\phi_2)_\kappa = \int_{M_m^{\kappa+}} \frac{d\tilde{\mu}(\mathbf{p})}{2|\mathbf{p}|} \ \bar{\phi}_1(\mathbf{p}) \phi_2(\mathbf{p})$$

with $d ilde{\mu}(\mathbf{p})=rac{e^{3\omega_\kappa(\mathbf{p})/\kappa}}{(2\pi)^4}\,d^3\mathbf{p}$

• Hilbert space = $C^{\infty}(M^{\kappa})$ functions on deformed mass shell $\omega_{\kappa}^{\pm}(\mathbf{p}) = -\kappa \log \left(1 \mp \frac{|\mathbf{p}|}{\kappa}\right)$ equipped with inner product

$$(\phi_1,\phi_2)_{\kappa} = \int_{\mathcal{M}_m^{\kappa+}} \frac{d\tilde{\mu}(\mathbf{p})}{2|\mathbf{p}|} \, \bar{\phi}_1(\mathbf{p}) \, \phi_2(\mathbf{p})$$

with $d ilde{\mu}(\mathbf{p})=rac{e^{3\omega_\kappa(\mathbf{p})/\kappa}}{(2\pi)^4}\,d^3\mathbf{p}$

• "one-particle" states $|\mathbf{p}
angle = a^{\dagger}(\mathbf{p})|0
angle$ and $\langle \mathbf{k}|\mathbf{p}
angle = \widetilde{e}_{\mathbf{p}}(\mathbf{k}) \equiv 2|\mathbf{p}| \ \delta^{3}(\mathbf{p}\oplus(\ominus\mathbf{k}))$

• Hilbert space = $C^{\infty}(M^{\kappa})$ functions on deformed mass shell $\omega_{\kappa}^{\pm}(\mathbf{p}) = -\kappa \log \left(1 \mp \frac{|\mathbf{p}|}{\kappa}\right)$ equipped with inner product

$$(\phi_1,\phi_2)_{\kappa} = \int_{\mathcal{M}_m^{\kappa+}} \frac{d\tilde{\mu}(\mathbf{p})}{2|\mathbf{p}|} \, \bar{\phi}_1(\mathbf{p}) \, \phi_2(\mathbf{p})$$

with $d ilde{\mu}(\mathbf{p})=rac{e^{3\omega_\kappa(\mathbf{p})/\kappa}}{(2\pi)^4}\,d^3\mathbf{p}$

"one-particle" states $|\mathbf{p}
angle = a^{\dagger}(\mathbf{p})|0
angle$ and $\langle \mathbf{k}|\mathbf{p}
angle = \tilde{e}_{\mathbf{p}}(\mathbf{k}) \equiv 2|\mathbf{p}| \ \delta^{3}(\mathbf{p}\oplus(\ominus\mathbf{k}))$

group Fourier transform \Rightarrow *NC space-time* counterparts of functions on the mass-shell

$$\hat{\phi}(x) = \int_{B} d\mu(p) \, \delta(\mathcal{C}_{1}^{\kappa}(p)) \, \tilde{\phi}(p) \, e_{p}(x)$$

field mode operators (MA, Phys. Rev. D83, 025025 (2011)): $\hat{\phi}_{\kappa}(\mathbf{p}) \equiv \frac{1}{2|\mathbf{p}|}(a(\mathbf{p}) + \mathcal{J}_{\ominus}(\mathbf{p}) a^{\dagger}(\ominus \mathbf{p}))$

• Hilbert space = $C^{\infty}(M^{\kappa})$ functions on deformed mass shell $\omega_{\kappa}^{\pm}(\mathbf{p}) = -\kappa \log \left(1 \mp \frac{|\mathbf{p}|}{\kappa}\right)$ equipped with inner product

$$(\phi_1,\phi_2)_{\kappa} = \int_{\mathcal{M}_m^{\kappa+}} \frac{d\tilde{\mu}(\mathbf{p})}{2|\mathbf{p}|} \, \bar{\phi}_1(\mathbf{p}) \, \phi_2(\mathbf{p})$$

with $d ilde{\mu}(\mathbf{p})=rac{e^{3\omega_\kappa(\mathbf{p})/\kappa}}{(2\pi)^4}\,d^3\mathbf{p}$

• "one-particle" states $|\mathbf{p}\rangle = a^{\dagger}(\mathbf{p})|0\rangle$ and $\langle \mathbf{k}|\mathbf{p}\rangle = \tilde{e}_{\mathbf{p}}(\mathbf{k}) \equiv 2|\mathbf{p}| \ \delta^{3}(\mathbf{p} \oplus (\ominus \mathbf{k}))$

group Fourier transform \Rightarrow *NC space-time* counterparts of functions on the mass-shell

$$\hat{\phi}(x) = \int_{B} d\mu(p) \, \delta(\mathcal{C}_{1}^{\kappa}(p)) \, \tilde{\phi}(p) \, e_{p}(x)$$

field mode operators (MA, Phys. Rev. D83, 025025 (2011)): $\hat{\phi}_{\kappa}(\mathbf{p}) \equiv \frac{1}{2|\mathbf{p}|}(a(\mathbf{p}) + \mathcal{J}_{\ominus}(\mathbf{p}) a^{\dagger}(\ominus \mathbf{p}))$

Fundamental building block of κ -QFT: the two-point function

$$G_{+}(\mathbf{p}_{1},t;\mathbf{p}_{2},s) \equiv \langle 0|\hat{\phi}_{\kappa}(\mathbf{p}_{1},t)\hat{\phi}_{\kappa}(\mathbf{p}_{2},s)|0\rangle = \frac{\delta^{3}(\mathbf{p}_{1}\oplus\mathbf{p}_{2})}{2|\mathbf{p}_{1}|}\mathcal{J}_{\ominus}(\mathbf{p}_{1})\exp(-i\omega_{\kappa}(\mathbf{p}_{1})(t-s))$$

work in progress (with J. Kowalski-Glikman and T. Trzesniewski) with Feynman propagator and "zoology" of Green functions...

connection with field theories on multifractal spacetimes see M. Scalisi's talk this Friday

$\kappa\text{-}\mathsf{Fock}$ space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of ${\cal H}$
$\kappa\text{-}\mathsf{Fock}$ space

In ordinary QFT the full (bosonic) **Fock space** is obtained from symmetrized tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of ${\cal H}$

In the κ -deformed case try to proceed in an analogous way BUT... the symmetrized state

$$1/\sqrt{2} \left(|\mathbf{k_1}\rangle \otimes |\mathbf{k_2}\rangle + |\mathbf{k_2}\rangle \otimes |\mathbf{k_1}\rangle \right)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of ${\cal H}$

In the κ -deformed case try to proceed in an analogous way BUT... the symmetrized state

$$1/\sqrt{2}(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

In ordinary QFT the full (bosonic) Fock space is obtained from $\underline{symmetrized}$ tensor prods of $\mathcal H$

In the κ -deformed case try to proceed in an analogous way BUT... the symmetrized state

$$1/\sqrt{2}(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

• "modulated flip"
$$\sigma^{\kappa} = \mathcal{F}_{\kappa} \sigma \mathcal{F}_{\kappa}^{-1}$$
, $\mathcal{F}_{\kappa} = \exp\left(\frac{1}{\kappa} P_0 \otimes P_j \frac{\partial}{\partial P_j}\right)$ such that
 $\sigma^{\kappa}(|\mathbf{k}_1\rangle \otimes |\mathbf{k}_2\rangle) = |(1 - \epsilon_1) \mathbf{k}_2\rangle \otimes |(1 - \epsilon_2)^{-1} \mathbf{k}_1\rangle$, $\epsilon_i = \frac{|\mathbf{k}_i|}{\kappa}$

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H}

In the κ -deformed case try to proceed in an analogous way BUT... the symmetrized state

$$1/\sqrt{2}(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

• "modulated flip"
$$\sigma^{\kappa} = \mathcal{F}_{\kappa} \sigma \mathcal{F}_{\kappa}^{-1}$$
, $\mathcal{F}_{\kappa} = \exp\left(\frac{1}{\kappa} P_0 \otimes P_j \frac{\partial}{\partial P_j}\right)$ such that
 $\sigma^{\kappa}(|\mathbf{k}_1\rangle \otimes |\mathbf{k}_2\rangle) = |(1 - \epsilon_1) \mathbf{k}_2\rangle \otimes |(1 - \epsilon_2)^{-1} \mathbf{k}_1\rangle$, $\epsilon_j = \frac{|\mathbf{k}_j|}{\kappa}$

• E.g. there will be two 2-particle states

$$\begin{split} |\mathbf{k}_{1}\mathbf{k}_{2}\rangle_{\kappa} &= \quad \frac{1}{\sqrt{2}}\left[|\mathbf{k}_{1}\rangle\otimes|\mathbf{k}_{2}\rangle+|(1-\epsilon_{1})\mathbf{k}_{2}\rangle\otimes|(1-\epsilon_{2})^{-1}\mathbf{k}_{1}\rangle\right] \\ |\mathbf{k}_{2}\mathbf{k}_{1}\rangle_{\kappa} &= \quad \frac{1}{\sqrt{2}}\left[|\mathbf{k}_{2}\rangle\otimes|\mathbf{k}_{1}\rangle+|(1-\epsilon_{2})\mathbf{k}_{1}\rangle\otimes|(1-\epsilon_{1})^{-1}\mathbf{k}_{2}\rangle\right] \end{split}$$

with same energy and different linear momentum

$$\begin{aligned} \mathsf{K}_{12} &= \mathsf{k}_1 \oplus \mathsf{k}_2 = \quad \mathsf{k}_1 + (1 - \epsilon_1)\mathsf{k}_2 \\ \mathsf{K}_{21} &= \mathsf{k}_2 \oplus \mathsf{k}_1 = \quad \mathsf{k}_2 + (1 - \epsilon_2)\mathsf{k}_1 \end{aligned}$$

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of $\mathcal H$

In the κ -deformed case try to proceed in an analogous way BUT... the symmetrized state

$$1/\sqrt{2}\left(|\mathbf{k_1}
angle\otimes|\mathbf{k_2}
angle+|\mathbf{k_2}
angle\otimes|\mathbf{k_1}
angle$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

• "modulated flip"
$$\sigma^{\kappa} = \mathcal{F}_{\kappa} \sigma \mathcal{F}_{\kappa}^{-1}$$
, $\mathcal{F}_{\kappa} = \exp\left(\frac{1}{\kappa} P_0 \otimes P_j \frac{\partial}{\partial P_j}\right)$ such that
 $\sigma^{\kappa}(|\mathbf{k}_1\rangle \otimes |\mathbf{k}_2\rangle) = |(1 - \epsilon_1) \mathbf{k}_2\rangle \otimes |(1 - \epsilon_2)^{-1} \mathbf{k}_1\rangle$, $\epsilon_j = \frac{|\mathbf{k}_j|}{\kappa}$

• E.g. there will be two 2-particle states

$$\begin{aligned} |\mathbf{k}_{1}\mathbf{k}_{2}\rangle_{\kappa} &= \quad \frac{1}{\sqrt{2}}\left[|\mathbf{k}_{1}\rangle\otimes|\mathbf{k}_{2}\rangle + |(1-\epsilon_{1})\mathbf{k}_{2}\rangle\otimes|(1-\epsilon_{2})^{-1}\mathbf{k}_{1}\rangle\right] \\ |\mathbf{k}_{2}\mathbf{k}_{1}\rangle_{\kappa} &= \quad \frac{1}{\sqrt{2}}\left[|\mathbf{k}_{2}\rangle\otimes|\mathbf{k}_{1}\rangle + |(1-\epsilon_{2})\mathbf{k}_{1}\rangle\otimes|(1-\epsilon_{1})^{-1}\mathbf{k}_{2}\rangle\right] \end{aligned}$$

with same energy and different linear momentum

$$\begin{split} \mathsf{K}_{12} &= \mathsf{k}_1 \oplus \mathsf{k}_2 = \quad \mathsf{k}_1 + (1 - \epsilon_1) \mathsf{k}_2 \\ \mathsf{K}_{21} &= \mathsf{k}_2 \oplus \mathsf{k}_1 = \quad \mathsf{k}_2 + (1 - \epsilon_2) \mathsf{k}_1 \end{split}$$

given *n*-different modes one has *n*! different *n*-particle states, one for each permutation of the *n* modes k_1 , k_2 ... k_n

The non-trivial algebraic structure of $\kappa\text{-translations}$ endows the Fock space with a "fine structure"

The non-trivial algebraic structure of $\kappa\text{-translations}$ endows the Fock space with a "fine structure"

• the different states can be distinguished measuring their momentum splitting e.g. $|\Delta K_{12}| \equiv |K_{12} - K_{21}| = \frac{1}{\kappa} |k_1|k_2| - k_2|k_1|| \leq \frac{2}{\kappa} |k_1||k_2|$ of order $|k_i|^2/\kappa$

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta K_{12}| \equiv |K_{12} K_{21}| = \frac{1}{\kappa} |\mathbf{k}_1| \mathbf{k}_2| \mathbf{k}_2 |\mathbf{k}_1|| \leq \frac{2}{\kappa} |\mathbf{k}_1| |\mathbf{k}_2|$ of order $|\mathbf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_{\kappa} \cong S_2 \mathcal{H}^2 \otimes \mathbb{C}^2$, where $S_2 \mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$\begin{array}{lll} |\epsilon\rangle\otimes|\uparrow\rangle &=& |{\bf k}_1{\bf k}_2\rangle_\kappa\\ |\epsilon\rangle\otimes|\downarrow\rangle &=& |{\bf k}_2{\bf k}_1\rangle_\kappa \end{array}$$

with $\epsilon = \epsilon(\mathbf{k_1}) + \epsilon(\mathbf{k_2})$

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta K_{12}| \equiv |K_{12} K_{21}| = \frac{1}{\kappa} |\mathbf{k}_1| \mathbf{k}_2| \mathbf{k}_2 |\mathbf{k}_1|| \leq \frac{2}{\kappa} |\mathbf{k}_1| |\mathbf{k}_2|$ of order $|\mathbf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_{\kappa} \cong S_2 \mathcal{H}^2 \otimes \mathbb{C}^2$, where $S_2 \mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$\begin{array}{lll} |\epsilon\rangle \otimes |\uparrow\rangle & = & |\mathbf{k}_1\mathbf{k}_2\rangle_{\kappa} \\ |\epsilon\rangle \otimes |\downarrow\rangle & = & |\mathbf{k}_2\mathbf{k}_1\rangle_{\kappa} \end{array}$$

with $\epsilon = \epsilon(\mathbf{k_1}) + \epsilon(\mathbf{k_2})$

Planckian mode entanglement becomes possible!

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta K_{12}| \equiv |K_{12} K_{21}| = \frac{1}{\kappa} |\mathbf{k}_1|\mathbf{k}_2| \mathbf{k}_2 |\mathbf{k}_1|| \leq \frac{2}{\kappa} |\mathbf{k}_1||\mathbf{k}_2|$ of order $|\mathbf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_\kappa \cong S_2\mathcal{H}^2 \otimes \mathbb{C}^2$, where $S_2\mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$\begin{array}{lll} |\epsilon\rangle \otimes |\uparrow\rangle & = & |\mathbf{k}_1\mathbf{k}_2\rangle_{\kappa} \\ |\epsilon\rangle \otimes |\downarrow\rangle & = & |\mathbf{k}_2\mathbf{k}_1\rangle_{\kappa} \end{array}$$

with $\epsilon = \epsilon(\mathbf{k_1}) + \epsilon(\mathbf{k_2})$

Planckian mode entanglement becomes possible!

• e.g. the state superposition of two total "classical" energies $\epsilon_A = \epsilon(\mathbf{k}_{1A}) + \epsilon(\mathbf{k}_{2A})$ and $\epsilon_B = \epsilon(\mathbf{k}_{1B}) + \epsilon(\mathbf{k}_{2B})$ can be entangled with the additional hidden modes e.g.

$$|\Psi
angle = 1/\sqrt{2}(|\epsilon_A
angle \otimes |\uparrow
angle + |\epsilon_B
angle \otimes |\downarrow
angle)$$

- ...possible consequences for phenomenology?
- (MA., D. Benedetti, [arXiv:0809.0889 [hep-th]]. MA., A. Marciano, [arXiv:0707.1329 [hep-th]]. MA, A. Hamma,
- S. Severini, [arXiv:0806.2145 [hep-th]].)

Conclusions

- Relativistic symmetries can be deformed to allow "curvature" for momentum space
- Strong motivations to look at such deformations from 2+1 gravity coupled to relativistic particles...application: appearance of *running spectral dimension*
- Quantization of (free) field theories with group valued momenta leads to ambiguities related to the different choices of translation generators...physical interpretation of such ambiguities?
- What role of **deformed 2-point functions** for "trans-planckian" issues in semiclassical gravity (BH evaporation, Inflation)??
- At the multiparticle level the non-trivial behaviour of field modes leads to a fine structure of Fock space: interesting entanglement phenomena can take place