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Fun with linear quantum fields

Free quantum fields are boring...

...true only for inertial observers!

• Inertial observers same notion of time evolution −→ same vacuum state

• Observers with different time evolutions −→ different vacuum states...

Inertial vs. accelerated observers: Unruh effect

Free falling vs. fiducial observer in Schwarzschild background: Hawking effect

Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Less known context in which free QFT manifests non-trivial features:
field quantization on group manifold momentum space
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Curved momentum space from gravity

Curved momentum space in flatland

• Gravitational field in 2+1 dimensions admits no local d.o.f.!

• Point particles “puncture” space-like slices → conical space (Deser, Jackiw, ’t Hooft, 1984)

• Euclidean plane with a wedge “cut-out” deficit angle 8πGm

identify

world lines

identify

Figure 1: The Kepler spacetime can be constructed by cutting out two wedges from a flat
Minkowski space. The faces are identified, such that two conical singularities arise in an
otherwise flat spacetime. In the rest frame of the each particle, the deficit angle of the conical
space is proportional to the mass of the particle.

The more serious problem has to do with the asymptotic structure of the spacetime at infinity.
The region far away from the particles is split into two segments in figure 1. Each segment is a
subset of Minkowski space. But on the wedges we have to apply non-trivial transition functions,
relating the Minkowski coordinates on one side to those on the other side. To find out what the
spacetime looks like at infinity, it would be nicer to have a single coordinate chart covering this
region. There is in fact a particular reason why we are interested in the asymptotic structure
of the Kepler spacetime. In order to quantize it in the end, we first have to set up a proper
classical Hamiltonian formulation. This requires a proper definition of an action principle for the
underlying field theory of Einstein gravity. And this again requires some kind of asymptotical
flatness condition to be imposed on the metric at infinity [14].

The asymptotic structure of the Kepler spacetime depends crucially on the relative motion of
the particles. If they are moving slowly, then far away from the particles the spacetime is also
conical. It looks almost like the gravitational field of a single particle, whose mass is equal to
the sum of the two masses of the real particles. The rest frame of this fictitious particle can be
identified with the centre of mass frame of the universe. If the particles are moving faster, the
apparent mass of the fictitious particle has to be replaced by the total energy of the system. It
also receives a spin, which represents the total angular momentum. But still, the universe looks
like a cone at infinity, and this cone defines the centre of mass frame.

Something strange happens when the relative motion of the particles exceeds a certain thresh-
old [15]. The definition of a centre of mass frame then breaks down, and the asymptotic structure
of the spacetime is no longer conical. Even more peculiar, the spacetime then contains closed
timelike curves [16, 17, 18]. Clearly, these are very interesting features of such a simple two
particle spacetime. But for our purpose we have to exclude them, again because we want to set
up a proper Hamiltonian framework. This requires a well defined causal structure of the space-

2

• Particle’s phase space = space of solutions of e.o.m.

• Geodesics in 3d Minkowski described by positions and momenta = R2,1 × R2,1

• Switch on gravity: positions and generalized momenta = R2,1 × SL(2,R)

Momenta become coordinate functions on a non-abelian group!
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Outline

• Warm up: free field quantization and observables

• “Bending” phase space in 3d: running spectral dimension

• κ-quantum fields: two-point function and a new quantization ambiguity
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Field quantization

Classical fields Quantum fields

state = point in phase space φ ∈ S state = ray in complex Hilbert space H
observable = function on S observable = self-adjoint operator on H
joint system = SA ⊕ SB joint system = HA ⊗HB

Quantization: “Recipe for going from the left to the right”

• complexify the space of real solutions SC ' S ⊗ C
• define an inner product (φ1, φ2) ≡ −iω(φ̄1, φ2) from Wronskian of the e.o.m.

• restrict to “positive” energy subspace SC+ on which (·, ·) is positive definite i.e.

introduce a “complex structure” on S (J : S → S with J2=-1); SC± spanned by
φ±: J(φ±) = ±i(φ±)

• “One-particle” Hilbert space H ≡ (SC+, (·, ·))

• “n-particle” Hilbert space H⊗n = H⊗H...⊗H︸ ︷︷ ︸
n−times

;

for n-identical particles SnH⊗n with Sn = 1
n!

∑
σ∈Pn

σ

• Fock space Fs (H) =
⊕∞

n=0 SnH⊗n
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• complexify the space of real solutions SC ' S ⊗ C

• define an inner product (φ1, φ2) ≡ −iω(φ̄1, φ2) from Wronskian of the e.o.m.

• restrict to “positive” energy subspace SC+ on which (·, ·) is positive definite i.e.

introduce a “complex structure” on S (J : S → S with J2=-1); SC± spanned by
φ±: J(φ±) = ±i(φ±)

• “One-particle” Hilbert space H ≡ (SC+, (·, ·))

• “n-particle” Hilbert space H⊗n = H⊗H...⊗H︸ ︷︷ ︸
n−times

;

for n-identical particles SnH⊗n with Sn = 1
n!

∑
σ∈Pn

σ

• Fock space Fs (H) =
⊕∞

n=0 SnH⊗n
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Observables and symmetries

classical observables = functions on phase space

Quantization:

• to each classical observable ψ associate an operator Oψ on H
• “2nd quantization” of a 1-particle operator O (Cook 1953)

dΓ(O) ≡ 1 +O + (O ⊗ 1 + 1⊗O) + (O ⊗ 1⊗ 1 + 1⊗O ⊗ 1 + 1⊗ 1⊗O) + ...

such construction naturally leads to the notion of coproduct ∆O = O ⊗ 1 + 1⊗O

dΓ(O) ≡ 1 +O + ∆O + ∆2O + ...+ ∆nO + ...

with ∆nO = (∆⊗ 1) ◦∆n−1, ∆1 ≡ ∆ and n ≥ 2

Space-time symmetry generators are special observables

• H constructed from S (solutions of K-G equation) −→ H is a unitary irreps of the
Poincaré algebra P

• We have a natural action of the generators of P as one-particle operators

• A commuting set such operators used to label one-particle states (e.g. P→ |p〉 )

• The coproduct ∆ extends the action of elements of P to multiparticle states
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“Bending” phase space in 3d

Back to phase space of point particles in 2 + 1 gravity

a) Phase space = (copies of) R2,1 × SL(2,R)

pi
g = 1

2G
Tr(gγi ) with g = p01 + Gpiγi ∈ SL(2) , p0 =

√
1− G 2p2

4

b) Deformed Poisson structure for coordinates:

{qi , qj} = 0 −→︸︷︷︸
G 6=0

{qi , qj} = εijk G qk

What consequences for the corresponding field theory?

look at plane waves...

eg (x) = e ipg ·x ≡ e
i

2G
Tr(Xg) , X = x iγi ∈ sl(2)

define group Fourier transform (Freidel and Majid, hep-th/0601004)

F(f )(x) =

∫
dµH (g)f (g) eg (x) ,

maps fields on the group manifold to fields on a dual “spacetime”...
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Group-valued plane waves and deformed symmetries

...the group structure induces a non-commutative ?-product for plane waves

e ipg1
·x ? e ipg2

·x = e ipg1g2
·x

i) differentiating both sides w.r.t. pgi and setting momenta to zero

[xi , xj ]? = 2iεijk G xk

functions of the dual spacetime variables form a non-commutative algebra!

ii) momenta obey a non abelian composition rule indeed

pg1g2 = pg1 ⊕ pg2 6= pg2 ⊕ pg1 = pg2g1

Plane waves = eigenfunctions of translation generators
⇓

non-abelian composition of momenta = non-trivial coproduct

∆Pa = Pa ⊗ 1 + 1⊗ Pa + G εabc Pb ⊗ Pc +O(G 2)

the smoking gun of symmetry deformation...Pa belong to a non-trivial Hopf algebra with
G as a deformation parameter!
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An application: heath kernel and spectral dimension

Anomalous diffusion in semiclassical gravity (MA and E. Alesci 1108.1507)

• go Euclidean...the “spin” NC space possesses Laplacian ∆G (Majid and Batista,

hep-th/0205128)

• related to Casimir CG (P) via group Fourier transform...plane waves eigenfunctions

∆G eg (x) =⇒ CG (P) eg = p2(g) eg

• using these ingredients construct the NC heat kernel

K(x , x ′; s) =

∫
dµH (g) e−s(p2(g)+m2)eg (x)eg (x ′)

and calculate the spectral dimension ds = −2 ∂ log T̃rK
∂ log s

... (plot for G = 1, m = 0)
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4d: κ-Poincaré algebra

• The momentum sector of κ-Poincaré ⇒ analogous structures to 3d case!

I momenta: coordinates on a Lie group B ⊂ SO(4, 1) (sub-manifold of dS4)

−η2
0 + η2

1 + η2
2 + η2

3 + η2
4 = κ2 ; η0 + η4 > 0

with κ ∼ EPlanck

I dual Lie algebra “space-time” coordinates

[xµ, xν ] = − i

κ
(xµδ

0
ν − xνδ

0
µ) .

• consider a one-parameter group splitting of B, 0 ≤ |β| ≤ 1

ep ≡ e−i 1−β
2

p0x0 e ipj xj e−i 1+β
2

p0x0 .

with momentum composition rules and “antipodes”

p ⊕β q = (p0 + q0; pj e
1−β

2κ
q0

+ qj e−
1+β
2κ

p0

) , 	βp = (−p0; −e
−β
κ

p0

pi ) .

each choice of β corresponds to a choice of coordinates on the group manifold.

Michele Arzano — Quantum fields on curved momentum space 10/16



4d: κ-Poincaré algebra
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• The momentum sector of κ-Poincaré ⇒ analogous structures to 3d case!

I momenta: coordinates on a Lie group B ⊂ SO(4, 1) (sub-manifold of dS4)

−η2
0 + η2

1 + η2
2 + η2

3 + η2
4 = κ2 ; η0 + η4 > 0

with κ ∼ EPlanck

I dual Lie algebra “space-time” coordinates

[xµ, xν ] = − i

κ
(xµδ

0
ν − xνδ

0
µ) .

• consider a one-parameter group splitting of B, 0 ≤ |β| ≤ 1

ep ≡ e−i 1−β
2

p0x0 e ipj xj e−i 1+β
2

p0x0 .

with momentum composition rules and “antipodes”

p ⊕β q = (p0 + q0; pj e
1−β

2κ
q0

+ qj e−
1+β
2κ

p0

) , 	βp = (−p0; −e
−β
κ

p0

pi ) .

each choice of β corresponds to a choice of coordinates on the group manifold.

Michele Arzano — Quantum fields on curved momentum space 10/16



4d: κ-Poincaré algebra
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κ-Poincaré II

for β = 1 we have “flat slicing” coordinates

η0(p0, p) = κ sinh p0/κ+
p2

2κ
ep0/κ,

ηi (p0, p) = pi ep0/κ,

η4(p0, p) = κ cosh p0/κ−
p2

2κ
ep0/κ.

(“bicrossproduct basis” introduced in Majid-Ruegg (’94) to prove that Pκ = U(so(3, 1)) BJ C(B))

• deformed boost action

[Nj ,Pl ] = iδlj

(
κ
2

(
1− e−

2P0
κ

)
+ 1

2κ
~P2
)

+ i
κ

Pl Pj

• and co-products

∆(Nj ) = Nj ⊗ 1 + e−P0/κ ⊗ Nj +
εjkl

κ
Pk ⊗Ml

∆(P0) = P0 ⊗ 1 + 1⊗ P0 , ∆(Pi ) = Pi ⊗ 1 + exp(−P0/κ)⊗ Pi

∆(Mi ) = Mi ⊗ 1 + 1⊗Mi

• deformed mass Casimir ⇒ Lorentz invariant hyperboloid on B: η4 = const.

Cκ1 (P) =

(
2κ sinh

(
P0

2κ

))2

− P2eP0/κ

in the limit κ −→∞ recover ordinary Poincaré algebra
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A new quantization ambiguity

Functions on the deformed mass-shell φ ∈ C∞(Mκ
m) defined by the “wave equation”

Cκ1 (P)φ = m2φ

• On φ ∈ C∞(Mκ
m) measure dµ(p) δ(Cκ1 (p)) which we can use to define an inner product

• to define κ-Hilbert space need to split C∞(Mκ
m) in positive and negative energy subspaces!

• in ordinary QFT in Minkowski space define a complex structure J = −∂t

(−∂t∂t )1/2 from

killing vector ∂t . In terms of P0 = i∂t we have a positive energy projector

P+ = 1
2

(
1 + P0

|P0|

)
preferred choice of (local) “primitive” generators P0, Pi for which C1(P) = P2

0 − P2
i and

∆Pµ = Pµ ⊗ 1 + 1⊗ Pµ

• For translation generators in κ-Poincaré there is no choice of primitive elements to
decompose the Casimir...their action will be non-Leibniz and non-symmetric for ANY
choice of basis!.

No preferred choice of translation generators from which we can define an energy coordinate
on Mκ

m and thus no preferred choice of J and P+ to define one-particle Hilbert space.
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κ-particle Hilbert space and two-point function

• Hilbert space = C∞(Mκ) functions on deformed mass shell ω±κ (p) = −κ log
(

1∓ |p|
κ

)
equipped with inner product

(φ1, φ2)κ =
∫

Mκ+
m

dµ̃(p)
2|p| φ̄1(p)φ2(p)

with dµ̃(p) = e3ωκ(p)/κ

(2π)4 d3p

• “one-particle” states |p〉 = a†(p)|0〉 and 〈k|p〉 = ẽp(k) ≡ 2|p| δ3(p⊕ (	k))

group Fourier transform ⇒ NC space-time counterparts of functions on the mass-shell

φ̂(x) =

∫
B

dµ(p) δ(Cκ1 (p)) φ̃(p) ep(x)

field mode operators (MA, Phys. Rev. D83, 025025 (2011)): φ̂κ(p) ≡ 1
2|p| (a(p) + J	(p) a†(	p))

Fundamental building block of κ-QFT: the two-point function

G+(p1, t; p2, s) ≡ 〈0|φ̂κ(p1, t)φ̂κ(p2, s)|0〉 = δ3(p1⊕p2)
2|p1|

J	(p1) exp(−iωκ(p1)(t − s))

work in progress (with J. Kowalski-Glikman and T. Trzesniewski) with Feynman propagator and “zoology”
of Green functions...

connection with field theories on multifractal spacetimes see M. Scalisi’s talk this Friday
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group Fourier transform ⇒ NC space-time counterparts of functions on the mass-shell

φ̂(x) =

∫
B

dµ(p) δ(Cκ1 (p)) φ̃(p) ep(x)

field mode operators (MA, Phys. Rev. D83, 025025 (2011)): φ̂κ(p) ≡ 1
2|p| (a(p) + J	(p) a†(	p))

Fundamental building block of κ-QFT: the two-point function

G+(p1, t; p2, s) ≡ 〈0|φ̂κ(p1, t)φ̂κ(p2, s)|0〉 = δ3(p1⊕p2)
2|p1|

J	(p1) exp(−iωκ(p1)(t − s))

work in progress (with J. Kowalski-Glikman and T. Trzesniewski) with Feynman propagator and “zoology”
of Green functions...

connection with field theories on multifractal spacetimes see M. Scalisi’s talk this Friday

Michele Arzano — Quantum fields on curved momentum space 13/16



κ-particle Hilbert space and two-point function

• Hilbert space = C∞(Mκ) functions on deformed mass shell ω±κ (p) = −κ log
(

1∓ |p|
κ

)
equipped with inner product

(φ1, φ2)κ =
∫

Mκ+
m

dµ̃(p)
2|p| φ̄1(p)φ2(p)

with dµ̃(p) = e3ωκ(p)/κ

(2π)4 d3p

• “one-particle” states |p〉 = a†(p)|0〉 and 〈k|p〉 = ẽp(k) ≡ 2|p| δ3(p⊕ (	k))
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κ-Fock space

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the κ-deformed case try to proceed in an analogous way BUT...
the symmetrized state

1/
√

2 (|k1〉 ⊗ |k2〉+ |k2〉 ⊗ |k1〉)
is NOT an eigenstate of Pµ due to the role of non-trivial coproduct

Multi-particle states of κ-Fock-space are built via a “momentum dependent” symmetrization

• “modulated flip” σκ = FκσF−1
κ , Fκ = exp

(
1
κ

P0 ⊗ Pj
∂
∂Pj

)
such that

σκ(|k1〉 ⊗ |k2〉) = |(1− ε1) k2〉 ⊗ |(1− ε2)−1 k1〉 , εi =
|ki |
κ

• E.g. there will be two 2-particle states

|k1k2〉κ = 1√
2

[
| k1〉 ⊗ | k2〉+ | (1− ε1)k2〉 ⊗ | (1− ε2)−1k1〉

]
|k2k1〉κ = 1√

2

[
| k2〉 ⊗ | k1〉+ | (1− ε2)k1〉 ⊗ | (1− ε1)−1k2〉

]
with same energy and different linear momentum

K12 = k1 ⊕ k2 = k1 + (1− ε1)k2

K21 = k2 ⊕ k1 = k2 + (1− ε2)k1

given n-different modes one has n! different n-particle states, one for each
permutation of the n modes k1 , k2 ... kn
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of κ-translations endows the Fock space with a
“fine structure”

• the different states can be distinguished measuring their momentum splitting e.g.

|∆K12| ≡ |K12 − K21| = 1
κ
|k1|k2| − k2|k1|| ≤ 2

κ
|k1||k2|

of order |ki|2/κ
• the 2-mode Hilbert space becomes H2

κ
∼= S2H2 ⊗ C2, where S2H2 is the ordinary

symmetrized 2-mode Hilbert space and our states can be written as

|ε〉 ⊗ | ↑〉 = |k1k2〉κ
|ε〉 ⊗ | ↓〉 = |k2k1〉κ

with ε = ε(k1) + ε(k2)

Planckian mode entanglement becomes possible!

• e.g. the state superposition of two total “classical” energies εA = ε(k1A) + ε(k2A) and
εB = ε(k1B ) + ε(k2B ) can be entangled with the additional hidden modes e.g.

|Ψ〉 = 1/
√

2(|εA〉 ⊗ | ↑〉+ |εB〉 ⊗ | ↓〉)

...possible consequences for phenomenology?
( MA., D. Benedetti, [arXiv:0809.0889 [hep-th]]. MA., A. Marciano, [arXiv:0707.1329 [hep-th]]. MA, A. Hamma,

S. Severini, [arXiv:0806.2145 [hep-th]].)
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Conclusions

• Relativistic symmetries can be deformed to allow “curvature” for momentum
space

• Strong motivations to look at such deformations from 2+1 gravity coupled to
relativistic particles...application: appearance of running spectral dimension

• Quantization of (free) field theories with group valued momenta leads to
ambiguities related to the different choices of translation generators...physical
interpretation of such ambiguities?

• What role of deformed 2-point functions for “trans-planckian” issues in
semiclassical gravity (BH evaporation, Inflation)??

• At the multiparticle level the non-trivial behaviour of field modes leads to a fine
structure of Fock space: interesting entanglement phenomena can take place
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