
3

The gauge fields are evolving in an FLRW background in

conformal coordinates and thus Jh redshift by a factor

of a [22]. We define Jh = Jh/a; where Jh are constants,

(6) becomes

Äh + k
2
Ah = −h k Ahθ̇/M∗ + a

3
Jh . (8)

The solution for the left-handed gauge field reads

A− = A
0
− cosh(βkη)+Ã

0
− sinh(βkη)+Ξ[H,β, J̃−, η] , (9)

where A
0
− and Ã

0
− are determined by the initial condi-

tions, J̃± = a
3
0 J± and the growth factor β

2
k
= k(θ̇/M∗ −

k). Therefore, the particular solution reads

Ξ[H,β, J̃−, η] =
J̃−

2H2(1−Hη) +
βJ̃−
4H3Ψ(x)

���
x= β

H
(1−Hη)

x=− β

H
(1−Hη)

,

with Ψ(x) = e
x

x�
∞

e
−t

dt

t
. (10)

We have two interesting branches, each with a different

corresponding time-behavior, for the left-handed gauge

field.

We will have exponentially growing fields provided that

βk is real (or k < θ̇/M∗). But even if βk (k > θ̇/M∗) is

imaginary and the exponential of the general solution in

(9) and Ψ become oscillatory, the gauge field still grows

because of the J̃−/[2H
2
(1−Hη)] term in Ξ[H,β, J̃−, η],

due to the back-reaction provided by the gravitational

field.

Concerning the right handed gauge field A+ of opposite

helicity, it is interesting that this will also grow in time

as a(η), and for all values of k, i.e.

A+ = A
0
+ cos(γkη) + Ã

0
+ sin(γkη) + Σ[H, γ, J̃+, η] , (11)

in which γ
2
k
= k(θ̇/M∗ + k), the amplitudes A

0
+ and Ã

0
+

must be fixed from the initial conditions and the partic-

ular solution Σ[H, γ, J̃+, y] ≡ Σ reads

Σ =
γJ̃+

2H3



1

y
+sin(y)

∞�

−y

cos t dt

t
+ cos(y)

y�

0

sin t dt

t



, (12)

with y = (1−Hη)γ/H. Notice that the general solution

in (11) oscillates for all values of momentum k, while the

particular solution (12) grows as a(η) in the J̃
+
0 /[2H

2
(1−

Hη)] and for all values of k. Moreover, (12) also shows an

oscillatory behavior in the other terms, which is peaked

around a resonant momentum k̄ =
θ̇

2M∗
.

Consistency of Inflationary Dymamics. We now

turn our attention to the Einstein Equations and seek

a consistent inflationary solution. It has been shown

by Ford [6] that vector fields necessarily generate an

anisotropic metric arising from off-diagonal components

of the energy momentum tensor [23]. Likewise, we will

find that values of the gauge field necessary to generate

inflation in the isotropic part of the energy-momentum

tensor yield electric and magnetic components that are

perturbations. This occurs because the derivatives that

act on A to generate the electric and magnetic fields are

suppressed by a
−4

[24]. Therefore it is consistent to en-

code the anisotropies with a gauge invariant, perturbed

FLRW metric [7],

gµν = a
2
(η) diag[−1, 1, 1, 1] + δ a

2
(η)g

(1)
µν

, (13)

δ being an infinitesimal parameter regulating the

strength of the perturbation, given by

g
(1)
µν

=

�
E Fi

Fi Vi,j + Vj,i

�
. (14)

In (14) Fi are the off-diagonal metric perturbation and

Vi the space-space metric perturbation, both subjected

to ∇ ·F =∇ ·V = 0 and with the condition for both Fi

and Vi to be small. Therefore, if E and B are small

compared to Ai, then we can use the above perturbed

FLRW metric.

The G00 component of the Einstein Equations gives

the first Friedmann equation:

3
ȧ
2

a4
=

8πG

a4
(E+E− +B+B−) +

+ 8πG (A+J− +A−J+) . (15)

The coupled system can be solved if the interaction

term A·J is nearly spatio-temporarily constant during

inflation. The fact that J+ and J− dilutes as 1/a might

raise concern, but notice that for both the gauge field

components, the dominant term for η → 1/H is exactly

given by a factor of a(η), as is evident from (9) and (11).

Moreover, A · J is almost constant during all of infla-

tion [25] and dominates the r.h.s of (15). We can solve

the Friedmann equation (15) to find an inflationary scale

factor,

a(η) = a0/[1−H(η − η0)] , (16)

where a0 is a normalization factor such that a(η0) =

a0, and we have defined the Hubble parameter to be

MpH �
�

(A · J )η0a0. We can easily obtain the comov-

ing scale factor a(t) using the map ∂η = ∂t/a, which is

a(t) = a0 expHt, which gives rise to exponential growth

in the scale factor. With the choice of initial conditions

such that a(η)/a0 = (1 − Hη)
−1

= expHt, the time co-

ordinate is conformally mapped to the bounded range

η ∈ [0, H
−1

).

Returning to the Friedmann equation (15) we can

check the validity of our ansatz for spatial constancy of

A·J by using the solutions of the gauge fields (9, 11) [26].

Then the energy density ofA·J becomes

� +K
−K

dk

2K (1−Hη)

�
J̃
0
−

�
A

0
+ cos(γkη) + Σ[H, γk, J̃+, η]

�

+J̃
0
+

�
A

0
− cosh(βkη) + Ξ[H,βk, J̃−, η]

��
e
ikz

=A·J ,(17)


