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Based On

This talk is based on:

S. Deser, H. Liu, H. Lu, C. N. Pope, T. C. S. and B. Tekin, �Critical Points
of D-Dimensional Extended Gravities,� Phys. Rev. D 83, 061502 (2011)
[arXiv:1101.4009 [hep-th]].

I. Gullu, M. Gurses, T. C. S. and B. Tekin, �AdS waves as exact solutions to
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Motivation

Problem: Einstein's gravity

I =
1

κ

∫
d4x
√
−g R,

is not renormalizable ('t Hooft and Veltman, 1974; Deser and van
Nieuwenhuizen, 1974). (κ ≡ 16πG)

E�ective �eld theory perspective: High energies ⇒ Higher curvature
terms; i.e. αR2, βRµνRµν , γRµνρσRµνρσ , ... .

Result: In addition to determining the high energy behavior, the theory gains
additional features such as particle spectrum change.

Question: Are there any special points in the extended parameter space
having nontrivial change in the features of the theory like particle spectrum,
energy of the excitations, energy of the black holes.

This �critical� points may be interesting in quantizing gravity.
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Einstein Gravity

Einstein's gravity

I =
1

κ

∫
d4x
√
−g R ⇒

δ

Rµν −
1

2
gµνR = 0,

which describes evolution of gµν .

One can consider this theory as the �uctuations of massless spin-2 �eld hµν

around the background ḡµν solving Rµν − 1
2gµνR = 0:

gµν = ḡµν +hµν .

Noninteracting theory can be found by looking at the linearized order in hµν :
In �at background, hµν satis�es

�̄hµν = 0,

in the gauge ∂

∂xµ h
µ

ν = 1
2

∂

∂xν h. (�̄≡ ∂

∂xµ

∂

∂xµ )
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Critical theories in D = 3 - I

Einstein's gravity in D = 3: There is no propagating degree of freedom. Space
is �at in the absence of sources (See e.g. Deser, Jackiw and 't Hooft, 1984).

I =
1

κ

∫
d3x
√
−g R.

Adding cosmological constant: Theory has black hole solution (Banados,
Teitelboim and Zanelli, 1992).

I =
1

κ

∫
d3x
√
−g

(
R +

2

`2

)
.

Adding higher derivative terms: Theory has unitary massive helicity-2

excitations with mass m2 = µ2

κ2 (Deser, Jackiw and Templeton, 1982).

I =
∫
d3x

[
−
√
−g 1

κ
R +

1

2µ
ε

µνρ

(
Γα

µβ
∂ν Γβ

ρα +
2

3
Γα

µγ Γγ

νβ
Γβ

ρα

)]
.
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Critical theories in D = 3 - II

Adding cosmological constant + higher derivative terms: The mass of the

excitation modi�ed as m2
AdS =

(
µ2

κ2 − 1

`2

)
.

I =
∫
d3x

[
−
√
−g 1

κ

(
R +

2

`2

)
+

1

2µ
ε

µνρ

(
Γα

µβ
∂ν Γβ

ρα +
2

3
Γα

µγ Γγ

νβ
Γβ

ρα

)]
.

For generic values of ` and µ, the unitarity of the degree of freedom and the
positivity of the energy of the black hole is in con�ict.

BUT, if the parameters of the theory tuned as µ` = κ; massive mode
becomes massless, on-shell energy of this mode becomes zero ⇒ degree of
freedom becomes pure gauge ⇒ con�ict in the unitarity of the excitations and
the positivity of the black hole is removed (Li, Song and Strominger, 2008).

�The corresponding chiral quantum theory of gravity is conjectured to exist
and be dual to a purely right-moving boundary CFT� (Li, Song and
Strominger, 2008).
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Quadratic curvature gravity in D = 4

In D = 4, quadratic curvature modi�cation of Einstein's gravity:

I =
∫
d4x
√
−g
[
1

κ
(R−2Λ0) + αR2 + βRµνRµν

]
.

Flat background analysis; i.e. gµν = ηµν +hµν : Renormalizable, but not
unitary (Stelle, 1977).

Spectrum of the theory: massless spin-2, massive helicity-0 and massive
helicity-2 excitations.

The massive spin-2 mode is ghost; i.e. negative energy classically, negative
norm state quantum mechanically.
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Critical gravity in D = 4

Lu and Pope (2011) apply the ideas in three dimensions to four dimensions:

I =
∫
d4x
√
−g
[
1

κ

(
R +

1

2κα

)
+ αR2−3αRµνRµν

]
.

The critical theory involves only massless spin-2 excitation with zero on-shell
energy.

The energy of the Schwarzschild-de Sitter black hole is zero.
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Critical gravity in D dimensions - I

The most general quadratic curvature action in D dimensions is

I =
∫
dDx

√
−g
[
1

κ
(R−2Λ0) + αR2 + βRµνRµν

+ γ
(
RµνρσRµνρσ −4RµνRµν +R2

)]
.

Gauge choice ∇̄µhµν = ∇̄νh. With this gauge choice, �eld equation for the
massive helicity-0 mode

[
(4α (D−1) +Dβ)�̄− (D−2)

(
1

κ
+4f Λ

)]
h = 0.

Set 4α (D−1) +Dβ = 0 and take 1

κ
+4f Λ 6= 0, no helicity-0 mode.

The remaining �eld equations are

−β

2

(
�̄− 4Λ

(D−1)(D−2)
−M2

)(
�̄− 4Λ

(D−1)(D−2)

)
hµν = 0,

where M2 ≡− 1

β

(
c + 4Λβ

(D−1)(D−2)

)
.
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Critical gravity in D dimensions - II

Thus, massless spin-2 and massive helicity-2 modes satisfy

(
�̄− 4Λ

(D−1)(D−2)

)
h

(m)
µν = 0,

(
�̄− 4Λ

(D−1)(D−2)
−M2

)
h

(M)
µν = 0.

The energy of the black holes and the on-shell energy of the excitations are
proportional to M2.

The �critical point� is M2 = 0, and the action takes the form

I =
∫
dDx

√
−g
[
(R−2Λ0) + γC µνρσCµνρσ

]
, Λ0 =

(D−1)(D−2)

8γ (D−3)
.

Here, Cµνρσ is the Weyl tensor, for which

C µνρσCµνρσ = RµνρσRµνρσ −
4

D−2
RµνRµν +

2

(D−1)(D−2)
R2.

Theory has only massless spin-2 degree of freedom just like Einstein's gravity
with zero energy excitations and black holes (Deser et al, 2011).
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Log mode of critical gravity

Double pole structure yields logarithmic modes which have a di�erent
asymptotic behavior than Einstein modes at spacelike in�nity in radial
coordinate (Alishahiha et al, 2011; Gullu et al, 2011; Bergshoe� et al, 2011).

Take the D-dimensional AdS-wave metric ansatz in the Kerr-Schild form

gµν = ḡµν +2Vλµ λν ,

where λµ λ µ = 0, λ µ ∇µ λ ν = 0, and ḡµν is the metric of the AdS space in the
coordinates

ds̄2 =
`2

z2

(
dz2 +2dudv +

D−3

∑
n=1

(dxn)2
)
.

Constrain coordinate dependence of V by requiring ∇µ

(
Vλµ λν

)
= 0 ⇒

∂vV = 0 ⇒ curvature tensors become linear in V ⇒ Field equations are
linear in V ⇒ solving field equations

V (u,z) = d1 (u)zD−3 +
d2 (u)

z2
+

1

D−1

(
c1 (u)zD−3− c2 (u)

z2

)
ln

( z
`

)
.

The theory is NOT unitary in the presence of the Log modes. Removing Log
modes by boundary conditions yields a trivial theory with just vacuum state
(Porrati and Roberts, 2011).
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Critical gravity and conformal gravity

Maldacena recently proposed that, in D = 4, conformal gravity
Lconf ≡−

√
−gγC µνρσCµνρσ is equivalent to L ≡

√
−g (R−2Λ0) in long

wavelengths with a speci�c Λ0 = Λ0 (γ) and with certain boundary conditions
(arXiv:1105.5632 [hep-th]).

Lu, Pang and Pope observed that Λ0 = Λ0 (γ) is the same as in critical gravity
and the boundary conditions are the ones removing Log modes
(arXiv:1106.4657 [hep-th]).

Thus, trivial nature of the critical gravity is basically a re�ection of the
equivalance between two parts of the critical gravity action:

I =
∫
d4x
√
−g
[
(R−2Λ0) + γC µνρσCµνρσ

]
, Λ0 =

3

4γ
.
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Conclusions

We extend D = 4 critical gravity of Lu and Pope to D dimensions which
reduces to New Massive Gravity at the Proca limit for D = 3 (Deser et al,
2011) ⇒ these theories involve massless spin-2 excitation just like
Einstein's gravity.

We �nd Log modes of the critical gravity (Alishahiha et al, 2011; Gullu et al,
2011; Bergshoe� et al, 2011) ⇒ the theory is not unitary due to
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