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Motivation

1) In LQC there exist several prescriptions to describe quantum
mechanically a flat, homogeneous and isotropic spacetime.

2) All of them provide the same physical picture for states
sharply peaked at classical trajectories.

3) However, may these different proposals result in an ambiguity
whose effects could arise in other quantum regimes?

4) Could be their differences detectable?
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Classical system & Quantum framework
Classical system

1) Flat open FRW model. Fiducial cell V of volume V0.
2) Momentum constraint (homogeneity) and gauge constraint

(diagonal gauge) vanish.
3) 1 geom. d.o.f.: {c, p} = 8πγG/3 + 1 matter d.o.f.: {φ, pφ} = 1.

The Hamiltonian constraint with flat slices is:

C = −6γ−2c2
√
|p|+ 8πGp2

φV−1, V := |p|3/2.

Quantum framework

1) Matter: standard representation Hkin
matt = L2(R, dφ), p̂φ = −i∂φ.

2) Geometrical contribution: polymeric representation in the
improved dynamics scheme

Hkin
grav = span{|v〉, v ∈ R}, 〈v′|v〉 = δv′v, N̂µ̄|v〉 = |v + 1〉.
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Quantum Constraint

1) The constraint can be regarded as: 8πG(−~2Θ̂⊗ I + I⊗ p̂2
φ)

2) The operator Θ̂ = −N̂2µ̄f (v̂)N̂2µ̄ − N̂−2µ̄f (v̂)N̂−2µ̄ + fo(v̂), with

f (v) =
3πG

4
(v2−2−α)+O(v−2), fo(v) =

3πG
2

(v2−α)+O(v−2),

is a selfadjoint operator that only relates states with support
in (semi)lattices Lε, with ε ∈ (0, 4].

3) The restriction of Θ̂ to each Lε has continuous spectrum
equal to R+. Its degeneracy is at most twofold (prescription
dependent).

4) In a suitable representation ({v, b} = 4)

Θ̂ = −12πG
[

α+ 1
4 cosh2(2x)

+ ∂2
x

]
, x := ln[tan(b/4)]/2
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Prescriptions

APS: Ashtekar, Pawłowski & Singh

Given B(v) := (27/8)|v|
∣∣|v + 1|1/3 − |v− 1|1/3

∣∣3, and
f̃ (v) = (3πG/8)|v|

∣∣|v + 1| − |v− 1|
∣∣:

f (v) = [B(v+2)]−1/2 f̃ (v)[B(v−2)]−1/2, fo(v) = B(v)−1[f̃ (v+2)+f̃ (v−2)],

Lε are lattices (generic) in general. For ε = 2, 4 they reduce to
semilattices (exceptional).
Besides, a simple calculation yields α = 5/9.

sLQC: Ashtekar, Corichi & Singh

f (v) = (3πG/4)
√
|v + 2||v|

√
|v− 2|, fo(v) = (3πG/2)v2,

This prescription shares the superselection sectors with APS. For
this prescription α = 0.
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Prescriptions

MMO: Mena-Marugán, Martı́n-Benito & Olmedo

In this case, if g(v) :=
√

3/2|v|1/3B(v)−1/6, and
s±(v) := sgn(v± 2) + sgn(v), then:

f (v) = (πG/12)g(v + 2)g(v− 2)g2(v)s+(v)s−(v),

fo(v) = (πG/12)g2(v)
{

[g(v + 2)s+(v)]2 + [g(v− 2)s−(v)]2
}
,

Lε are always semilattices. Besides, α = 5/3.

sMMO

f (v) = (3πG/16)
√
|v + 2||v|

√
|v− 2|s+(v)s−(v),

fo(v) = (3πG/16)|v|
[
|v + 2|s2

+(v) + |v− 2|s2
−(v)

]
.

This prescription shares the superselection sectors with MMO. In
addition, α = 0.
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Generalized eigenfunctions (eεk|Θ̂ = (eεk|12πGk2

Semilattices: L±ε = {±(ε+ 4n), n ∈ N}
Eigenfunctions eεk(v) determined by 1 piece of data eεk(ε) ∈ R+.
Asymptotic standing wave lı́m

v→∞
eεk(v) = 2[ek(v)eiφεk + e−k(v)e−iφεk ].

Lattices: Lε = {ε+ 4n, n ∈ Z}
Half of the basis determined by 2 pieces of data (suitable selected).
The remaining half is determined by orthogonal completion. The
construction involves: i) specification of the asymptotic data of 2
complex, auxiliary eigenfunctions; ii) complex rotation, addition and
normalization; iii) extension to the symmetric domain Lε ∪ L4−ε.

Efficiency
In generic cases, we finally extract the data of 4 real standing waves
(single exceptional situations), and we evaluate them in certain do-
main twice larger with respect to the except. cases (higher error).
The numerical cost is then 8x higher than in the exceptional cases.
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Physical states & numerics

Physical states

We have considered a 2-parameter {ko, σ} family of logarithmic nor-
mal distributions (with ko and σ determined by 〈p̂φ〉 and 〈∆p̂φ〉).
The analyzed sector: 〈∆p̂φ〉/〈p̂φ〉∈ [0.05, 0.25] and 〈p̂φ〉∈ [30~, 500~].

Numerics
The evaluation of

Ψ(v, φ) =

∫
k∈D

dkΨ̃(k)eεk(v)eiω(k)φ, ω(k) =
√

12πG|k|,

consists in a discretization of the integral and a reduction of its do-
main to a finite interval (the main error source still ruled by (eεk|).
In degenerate situations, the integration is approx. 3x more expen-
sive than in nondegenerate cases: (eεk| is twice larger and is com-
plex.
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Physical states

|Ψ(k)|2= 1√
2πσk

e−(log k/k0)2/2σ2
, 〈p̂φ〉=100~, 〈∆p̂φ〉/〈p̂φ〉=0.1 and ε=1.
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Natural observables:

The observables are:
a) A natural function of the volume log |v̂|.

b) The energy density of the universe ρ̂ :=
p̂2
φ

2V2 = ~2

2

[
1̂
V

]
Θ̂
[

1̂
V

]
.

c) The Hubble parameter Ĥ := 1
4iγ
√

∆
(N̂4µ̄ − N̂−4µ̄).
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Comparison between expectation values

|Ψ(k)|2= 1√
2πσk

e−(log k/k0)2/2σ2
, 〈p̂φ〉=100~, 〈∆p̂φ〉/〈p̂φ〉=0.1 and ε=1.

Relative dispersions (for ρ̂φ)
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Comparison between expectation values

|Ψ(k)|2= 1√
2πσk

e−(log k/k0)2/2σ2
, 〈p̂φ〉=100~, 〈∆p̂φ〉/〈p̂φ〉=0.1 and ε=1.

Dispersions vs. differences (for ρ̂φ)
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The observable: (∆̂ΘAB)2|φ := (Θ̂A − Θ̂B)2|φ

|Ψ(k)|2= 1√
2πσk

e−(log k/k0)2/2σ2
, 〈p̂φ〉=100~, 〈∆p̂φ〉/〈p̂φ〉=0.1 and ε=1.
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Conclusions

1) The calculation of the basis of generalized eigenfunction is
(numerically) more precise and efficient in semilattices than in
lattices.

2) The operator (∆̂ΘAB)2|φ measures quantitative differences
between prescriptions.

3) Some natural observables are insensitive to these differences
(dispersions� difference between expectation values).

4) The difference between prescriptions is essentially the
absolute value of the wave function (interference pattern at
the bounce).
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