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According to Loop Quantum Cosmolgy (LQC) the Big Bang
singularity is replaced by the smooth Big Bounce transition.

P ~ PPl
contraction expansion
The Planck energy density:
c® kg
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Cosmic amnesia

To get some insight into the nature of the quantum bounce, one
studies possible correlation between quantum fluctuations before
and after the bounce. In particular, one tries to find the answer to
the question: Is the semiclassicality of the universe preserved
across the bounce? If the answer is ‘no’, we would not be able to
learn what happened before the big bounce. It is called the cosmic
forgetfulness or amnesia.

The issue of cosmic amnesia was investigated in the frameworks of
effective dynamics! and sLQC? leading to contradicting predictions.
In this talk we address the issue of cosmic amnesia in the
framework of reduced phase space LQC3.
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Why “loop” ?

The quantum gravity effects are introduced by holonomies
he = Pexp [, A of Ashtekar connection, which take value in su(2).

A

-l

— 1

(3

The effect of holonomies may be seen as a kind of discretization of
continuous space. Here, discretization have a form of the regular
cubic lattice with the the elemantary lattice spacing A. Based on

various indications, as renormalization of the perturbative quantum

gravity, one may expect that A ~ lp| = \/hc—g =1.62-1073 m. In

our considerations, we keep A as a free parameter.
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Idea of the method

By solving the Hamiltonian constraint H)) ~ 0 we determine the
physical phase space I'ppys C lkin. The physical phase space ['phys
is parametrized by canonical variables @ and P satisfying the
algebra {Q, P} = 1.
Fkin
H™ ~0

/ <Z: thys

/

We find the physical Hamiltonian H) for the system without
constraints. Finally, we quantize the unconstrained system.
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Physical Hamiltonian

The physical Hamiltonian we find is the following

MG

The Hamiltonian is positive-definite since P > 0 and Q € [0, 7/]].
The Hamilton equation takes the following form

Hy = LPsin()\Q), ’

df

A _{f.H
o7 {f, H\},

where T is the intrinsic time parameter.
The @ and P variables can be related with the Hubble factor H

and volume v as follows
1 dv 1sin(2AQ) 5
== = 4xl5vP
3vdt 4 2x 0 T TR

where v is Barberro-Immirzi parameter.
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In what follows we use the Hilbert space H = L2([0,7/)], dQ) so
it has the scalar product

T/
(Flg) = /O FedQ.

The quantum Hamiltonian corresponding to the classical one is
defined in a standard way to be

Hy = % (15 sm/()\\Q) —|—sm)l5) .

The classical canonical variables @ and P satisfy the algebra
{Q, P} = 1. Choosing the Schrodinger representation for these
variables

Q0(Q) = QH(Q),  PoQ) = —i6(Q)

where ¢ € H, gives formally [Q, P] = il.



The eigenvalue problem for A, has the solution

\/ WG ERS |

where x := ‘/_ In ‘tan( )‘ and E € R, satisfying

(WE|\UE/> = (5(E/ E). The Hamiltonian is essentially self-adjoint
on the domain defined to be, D(H,) := span(F), where

F :={VEg|E € R}. The positive-definite physical Hamiltonian is
defined as follows

H|Ve) := |E||Ve), |

and we have <w|1@1|w f+°° dE|c(E)[?|E| > 0, where

W(x)) == [2° c(E)Wg(x)dE, and where c(E) is a square
integrable functlon
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Making use of the Stone theorem, we define the unitary operator
of an evolution as follows

U(s) == e_iSH, J

where s € R is a ‘time’ parameter. The state at any moment of
time can be found as follows

[W(s)) = U(s)[W(0)) = e~ |w(0)).

Let us consider a superposition of the Hamiltonian eigenstates

|w(o f+00 dEc(E)|WE) at s = 0. Then evolution of this state
is glven by
+oo .
V) = [ dEC(E)e ), J
— 00
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Gaussian packet

In what follows we consider the Gaussian packet:

1/4
c(E) = (2_@) e~ (E-Eo)’,

™

The corresponding wavefunction (assuming that \/aEg > 1) is

Acosh (—2x e
V(Q,s) = (QW(s)) = Mg ol giEo(x—s)

8rav

where & := a/G. The probability density is easily found to be

w(Q,s)? exP{_% [%|n|tan(§) _tiplr}
A B 8masin (AQ) .

For the later purpose we also define Eg := EgV/.G.



Probability density function |W(Q, s)|?

Here & = 0.1. The red line is the classical trajectory drawn by
taking classical intrinsic time T equal to quantum evolution
parameter s.
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Mean values and dispersions

Based on the state |W) one can now investigate expectation values

(0) = (W|O]v) |
and dispersions

A

A0 = \/(02) — ()2 J
of the observables ]ﬁ[ Q and P. For M

E2
M) = E erf(\/_Eo) Nl

EQ if \/_E0>>1

|1 ) ) 2Ege20E;
AH = |+ E [1—erf (\/2an)]— T erf(\/ Eo)
1/2
e_4aE02 1
- ~—— if VaEy > 1.
2T Vaa if vk >
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Evolution of P - the Big Bounce

10*
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The thick blue line represents mean value (P) for & = 0.1 and
Eo = 10. The dashed red line is the classical solution

P = Py cosh (2s/tp|). The shadowed region is constrained by
(P) + AP from above and by (P) — AP from below.
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Evolution of Q

AQ
[SIE)

S(tn]

The thick blue line represents mean value (Q) for & = 0.1. The
dashed red line is the classical solution Q = %arctan exp (2s/tp).
The shadowed region is constrained by (Q) + AQ from above and
by (Q) — AQ from below.
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Phase space evolution

il |
A /

100 \\_ -

The ellipsoides of uncertainty:

Q- @\, (P-B) _,
AQ/2 AP/2

The dispersion of Qis largest at
the bounce and tends to zero
with the increase of (P). In turn,
the dispersion AP reaches its
minimal value at the bounce and
grows with the increase of (P). It
means that quantum uncertainty
of the volume (related to (P))
measurement is growing with
increase of (P). The quantum
uncertainty of expansion rate
(related to (Q)) is decreasing

with increase of volume.

Here & = 0.1 and Eo = 10.
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Heisenberg uncertainty relation

4 @=01E=10

AQAP

&= 0.01, Eq = 100

1r -
@=001,E; =10

Forbidden dueto the Heisenberg uncertainty relation AQAﬁ’;l/Z
-3 -2 -1 0 1 2 3
slta]

The dispersions satisfy the Heisenberg uncertainty relation
A(A?AIA-’ > h/2 at any time. Moreover, the quantity AQAﬁ’
reaches its minimal value at the transition point between the
contracting and expanding phases. Therefore, the bounce is the
least quantum part of the evolution!
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Relative fluctuations

The relative fluctuations

1) ==
0) @

>
S

are measure of the semi-classicality of a quantum state. We say
that |V) is semiclassical if 6(O) < 1, and quantum if 6(O) ~ 1. It
is clear that the semiclassicality notion is not at all defined
uniquely.

For H the relative dispersion

<1

O(H) ~ 2\/1an

Therefore, the earlier requirement \/aEy > 1 is equivalent with
the semiclassicalit condition §(H) < 1.
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The relative fluctuations 6(P) are shown below.

12

1t §=0.15,E, =10

S(tp]

They saturate on §(P)|max while s — +o00 and reach the minimum
at the bounce (s = 0). Therefore, if the semiclassicality condition
d(P) < 1 is imposed in the expanding phase, it constraints the
rest of the evolution.
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The relative fluctuations 6(Q) are shown below.

1
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They are asymmetric with respect to the bounce and only become
symmetric when & — 0. For s — —oo, the §(Q) saturates at
5(Q)|max = Ve*® — 1, while tends to zero for s — +o00. Since the
directions of evolution parameter s and cosmological time t are
opposite, the relative fluctuations 6(Q) monotonically grow in the
cosmological time.
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From the point of view of the possible observability (detection) of
the amnesia, the observable (A? is favorite because in the classical
limit: @ = ~H, where H is the Hubble parameter and 7 is
Barbero-Immirzi parameter. Therefore, relative fluctuations of Q
can be constrained observationally! In contrast, it is hard to put
any constraint on §(P), because P is linked to the physical volume
of space v = 4w GyP, which is not measurable.

However, the difficulties related with the lack of possibility of
constraining 0(P) can be partially bypassed. Namely, one can
prove that, if the condition §(H) < 1 is fulfilled, we have the

following implication:
<1) J
max

< 1 ensures that

max

(5@

< 1) — (5(/5)

~

Therefore, the observational constraint 6(Q)

also 5(/5)‘ < 1
max
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Observational constraints

The relative fluctuations 6(Q) at the given time cannot be greater
than the relative uncertainty of measurement.

In particular, from the present value of the Hubble factor
Ho = 70.2 + 1.4 km s~ Mpc! we have the constraint

I(Q) < %’Z") ~ 0.02. Another constraint can be derived for the

.. . o(H«)
phase of cosmic inflation: §(Q) < % ~ 0.19.

The model we consider applies to the Planck’s epoch, however if
assuming that the quantum fluctuations are not decreasing
thereafter, the derived observational bound can be used to
constraint 0(Q)|max- From the first constraint §(Q)|max < 0.02
which translates into & < 10~% and from the second one
5(@)|max < 0.19, so & < 9-1073. Both constraints suggest that
the semiclassicality condition was indeed fulfilled. Therefore,
because constraint 6(Q)|max < 1 implies §(P)|max < 1, one can
conclude that there is no cosmic amnesia.
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Conclusions and outlook

We have performed RPS quantization of the FRW loop
cosmology with a free scalar field.

Our method may be generalized to sophisticated cosmological
models including the Bianchi type universes.

We have shown that the bounce transition is the least
quantum part of the evolution.

We have shown that the issue of cosmic amnesia can be
observationally probed.

The preliminary estimations based on astronomical data
indicate the semiclassicality is preserved across the bounce -
there is no cosmic amnesia.

The Universe remembers its quantumness across the bounce.
Further analysis can be done by calculating an evolution of
J(Q) for the FRW model with a scalar field potential. This
would enable obtaining more accurate constraints from the
Cosmic Microwave Background observations.
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Extra slides: Entropy

Our lack of an information about a system may be measured in
terms of entropy. The increase of the entropy means the increase
of our uncertainty. Let us apply the notion of the entropy to our
quantum system.

The minimal volume of phase space which can be occupied be the
quantum system is obtained by saturating Heisenberg relation so it
is equal to g = h/2. Therefore

Q=T/Ty,

where ' = [ [ dQdP ~ AQAP, is the number of the elementary
cells g occupied by the system. We propose to interpret this
number as a number of microstates in analogy with the
microcanonical ensemble. For such a system we propose to apply
the Boltzmann definition of entropy

SszInQ,

where kg is the Boltzmann constant.
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The entropy reaches the minimal value at the bounce (s = 0) while
saturate for s — +o0o. This result is in the agreement with the
earlier qualitative predictions®.

&=01,Ey=10

&= 0.01, Eq = 100

@=0.01, Ey=10

sta]

Surprisingly, the entropy is decreasing in the contracting phase,
that can be interpreted as the violation of the second law of
thermodynamics. This peculiar behavior may be linked to the
arrow of time problem in cosmology.

4E.g. C. Kiefer, “Quantum Cosmology and the Arrow of Time", Braz. J.
Phys. 35 (2005) 296.
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The arrows of entropic time (given by the gradient of entropy) are
directed outward the bounce. At the transition point (bounce) the
arrow of entropic time is undefined.

arrows of entropic time

In the entropic time the Universe evolves only from the high to the
low energy densities.
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