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Introduction

I Experience from quantum �eld theory implies that at high
energies Einstein's gravity should be replaced with:
Einstein-Hilbert term+Higher Curvature terms,

I Higher curvature terms are motivated by the quantum gravity
scenarios such as string theory and asymptotic safety.

I To have a better IR behaviour a mass term added to the
theory.

I Mass can be given to graviton by adding Pauli-Fierz mass
term.



Tree Level and Boundary Unitarity

I To have a physically meaningfull theory it must be unitary.
I Tree level unitarity is tachyon and ghost freedom.

I Ghost is characterized by negative kinetic energy,
I Tachyon is characterized by negative mass square.

I Thus, unitarity analysis is basically a check of proper signs in
the graviton propagator (−,+,+, . . . ) that is 1

p2−m2 .



The Lineer Equation of Motion
I The most general quadratic gravity model augmented with

Pauli-Fieerz mass term is

I =

ˆ
dDx
√
−g

{
1

κ
(R − 2Λ0) + αR2 + βR

2

µν + γ
(
R2
µνσρ − 4R2

µν + R2)}
+

ˆ
dDx
√
−g

{
−M

2

4κ

(
h2µν − h2

)
+ Lmatter

}
, (1)

I To get the one-particle exchange aplitude we need the lineer
equations of motion:
I we take tha variation of (1) with respect to the metric gµν ,

(−,+,+, . . . ) to get the equations of motion,
I then we linearize the equations of motion around a constant

curvature background gµν = ḡµν + hµν
I The linearized equations of motion are

Tµν (h) = aGLµν + (2α + β)

(
ḡµν�̄− ∇̄µ∇̄ν +

2Λ

D − 2
ḡµν

)
RL

+ β

(
�̄GLµν −

2Λ

D − 1
ḡµνR

L

)
+
M2

2κ
(hµν − ḡµνh) , (2)

where we have de�ned a ≡ 1
κ

+ 4ΛD
D−2α + 4Λ

D−1β + 4Λ(D−3)(D−4)
(D−1)(D−2)

γ.



Tree-Level Scattering Amplitude
I To get the physical parts of hµν we decompose it as

hµν ≡ hTTµν + ∇̄(µVν) + ∇̄µ∇̄νφ+ ḡµνψ, (3)

I Taking divergence and double divergence of (3)

h = �̄φ+ Dψ, �̄h = �̄2φ+
2Λ

(D − 2)
�̄φ+ �̄ψ, (4)

where we used ∇̄ν∇̄µhµν = �̄h, which is not a gauge condition
but imposed on us as a result of the nonzero mass term.

I Using (4)

ψ =

{
Λ

κ
+ 4Λf − cΛ�̄−

M2

2κ
(D − 1)

}−1 (
(D − 1) (D − 2)

2Λ
�̄+ D

)−1
T , (5)

where c ≡ 4(D−1)α
D−2

+ Dβ
D−2

.
I Decomposing the energy-momentum tensor one can write the

one-particle exchange amplitude between two covariantly
conserved sources as

A =
1

4

ˆ
dDx
√
−ḡT ′µν (x) hµν (x) =

1

4

ˆ
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√
−ḡ

(
T ′µνh

TTµν + T ′ψ
)
.

(6)



Tree-Level Scattering Amplitude

I Finally,

4A = 2T
′
µν
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(β�̄ + a)(4(2)
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T (7)

−
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where f ≡ (αD + β) (D−4)

(D−2)2
+ γ (D−3)(D−4)

(D−1)(D−2)
.



Tree-Level Amplitude

I From (7) one can �gure out the particle spectrum,
I One can also compute the Newtonia potentials in �at

spacetime,
I In curved background the Green's function (matrix) of

Lichnerowicz operator must be handled,
I We can see the M2 → 0 and Λ→ 0 limits does not commute,
I First taking �atspace limit we encounter the van

Dam-Veltman-Zakharov (vDVZ) discontinuity,
I First taking the massless limit take us to New Massive Gravity

(NMG) theory.



vDVZ Discontinuity
I For this case the amplitude become

4A = −2T ′µν

{
β∂4 +

1

κ
∂2 −

M2

κ

}−1
Tµν+

2

D − 1
T ′

{
β∂4 +

1

κ
∂2 −

M2

κ

}−1
T

(8)

Unless β = 0, we have a massive ghost.
I The Newtonian potential energy between T ′00 ≡ m1δ(x − x1),

T 00 ≡ m2δ(x − x2) in three and four dimensions can be obtained
as

U =
1

2β(m2
+ −m2

−)

m1m2

4π
[K0(m−r)− K0(m+r)] D = 3,

U =
m1m2

3β(m2
+ −m2

−)

1

4πr
[e−m−r − e−m+r ] D = 4. (9)

where r ≡ |~x1 − ~x2|.
I As β → 0, the potential energies become

U = − κ
8π
m1m2K0(Mr) D = 3, (10)

U = − 4
3
Gm1m2

r
e−Mr D = 4 (11)

M. Porrati, P. L. B 498, 92 (2001).



New Massive Gravity
I For M2 = 0 then taking Λ→ 0 limit

4A = −2T ′µν

{
β∂4 +

1

κ
∂2

}−1
Tµν +

2

(D − 1)
T ′

{
β∂4 +

1

κ
∂2

}−1
T

−
2

(D − 1)(D − 2)
T ′

{
c∂4 −

1

κ
∂2

}−1
T (12)

I Generically there are three poles :

∂21 = 0, ∂22 = − 1

κβ
, ∂23 =

1

κc
. (13)

Res(∂21) =
2κ (3− D)

(D − 2)
, Res(∂22) =

2κ (D − 2)

(D − 1)
, Res

(
∂23

)
= −

2κ

(D − 1) (D − 2)

I From the second poleand its residue; κβ < 0 and κ < 0,
I From the residue massless pole; D > 3
I The residue of the third pole becomes positive for negative κ.

To eliminate this residue c = 8α + 3β = 0. E. A. Bergshoe�,
O. Hohm and P. K. Townsend, P. R. L. 102, 201301 (2009);
P. R. D 79, 124042 (2009).



New Massive Gravity

I Newtonian potential

U =
κ

8π
m1m2 (K0(mg r)− K0(m0r)) D = 3, (14)

where m2
g ≡ − 1

κβ and m2
0 ≡ 1

κ(8α+3β) . Clearly, m0 is a
massive ghost that gives a repulsive component.

I This result also con�rms that, at this level, NGM has the same
Newtonian limit as the usual massive gravity (10), if the
Pauli-Fierz mass term is chosen as M = mg .

I Beyond three dimensions, in �at space, massive ghost does not
decouple unless β = 0. As an example, let us look at D = 4:

U = −Gm1m2

r

(
1− 4

3
e−mg r +

1

3
e−mar

)
, (15)

where m2
a ≡ 1

2κ(3α+β) . The middle, repulsive term signals the
ghost problem. K.S. Stelle, P. R. D 16, 953 (1977).



Conclusion

I We compute the one-partical scattering amplitude of the most
general quadratic curvature gravity augmented with PF mass
term,

I For the �atspace and massless limit we encounter with the
vDVZ discontinuity and NMG,

I NMG is non-ghost and non-tachyonic theory at tree-level,
I The unitarity of NMG must be checked for loop levels.



Thank you!


