Quantum geometry in Topological BF model in 3d and 4d

Valentin Bonzom

Perimeter Institute for Theoretical Physics

Topological BF theory [Blau \& Thompson, Horowitz '89]

Generalization of Chern-Simons

- Lie group G (internal symmetry)
- gauge field A, curvature strength $F=d A+\frac{1}{2}[A, A]$
- $\operatorname{Ad}(G)$-valued $(d-2)$-form B, Lagrange multiplier for curvature

$$
S_{B F}(A, B)=\int \operatorname{tr} B \wedge F(A)
$$

- Gauge symmetry 1

$$
A \mapsto \operatorname{Ad}(g) A+g d g^{-1}, \quad B \mapsto \operatorname{Ad}(g) B
$$

- Gauge symmetry 2

$$
A \mapsto A, \quad B \mapsto B+d_{A} \eta
$$

- Diffeomorphisms

Equations of motion

- Vary B, Lagrange multiplier,

$$
F=0
$$

A flat connection. Locally $A=0$ up to gauge.

Equations of motion

- Vary B, Lagrange multiplier,

$$
F=0
$$

A flat connection. Locally $A=0$ up to gauge.

- Vary A

$$
d_{A} B=0
$$

B closed, so locally exact: $B=d C$.

- Use gauge symmetry $2, \quad B^{\prime}=B-d C=0$.

Equations of motion

- Vary B, Lagrange multiplier,

$$
F=0
$$

A flat connection. Locally $A=0$ up to gauge.

- Vary A

$$
d_{A} B=0
$$

B closed, so locally exact: $B=d C$.

- Use gauge symmetry $2, \quad B^{\prime}=B-d C=0$.

All solutions are gauge equivalent to trivial sol No local degrees of freedom

Motivations

- This is 3d gravity with degenerate metrics
- Theories written like BF + something Yang-mills

$$
S_{Y M}=S_{B F}+g_{Y M}^{2} \int \operatorname{tr} B \wedge *_{\eta} B
$$

Motivations

- This is 3d gravity with degenerate metrics
- Theories written like BF + something Gravity a la Palatini-Cartan

$$
S_{P C}=S_{B F}+\int \operatorname{tr} \phi B \wedge B
$$

Simplicity constraint, $B^{I J}=\epsilon^{I J}{ }_{K L} e^{K} \wedge e^{L}$

Motivations

- This is 3d gravity with degenerate metrics
- Theories written like BF + something Gravity a la MacDowell-Mansouri

$$
S_{M D M}=S_{B F}+\alpha \int \operatorname{tr} \gamma_{5} B \wedge * B
$$

with $\alpha=G \wedge$

Motivations

- This is 3d gravity with degenerate metrics
- Theories written like BF + something Gravity a la MacDowell-Mansouri

$$
S_{M D M}=S_{B F}+\alpha \int \operatorname{tr} \gamma_{5} B \wedge * B
$$

with $\alpha=G \wedge$

- Lattice gauge theory
- Topological effects in condensed matter (top insulators)
- Kitaev model and generalizations: topological order, quantum information
- Topological invariants, quantum invariants

Issues

In BF and Gravity, dynamics = gauge symmetries
Vector field ξ, def: $\phi_{\xi}=i_{\xi} A$ and $\eta_{\xi}=i_{\xi} B$

$$
\begin{aligned}
\mathcal{L}_{\xi} A & =d_{A} \phi_{\xi}+i_{\xi} F, \\
\mathcal{L}_{\xi} B & =d_{A} \eta_{\xi}+\left[\phi_{\xi}, B\right]+i_{\xi} d_{A} B . \\
\text { Diffeos } & =\text { internal gauge }+ \text { e.o.m. of } B F
\end{aligned}
$$

What we want to do
In Loop quantum gravity context

- Wheeler-DeWitt equation for 3d gravity ??
- Transition amplitudes in a 4d theory ??
- Relations to gauge symmetries in spin foams ??

What we got (I)

Hamiltonian scalar constraint in 3d

- $H|\psi\rangle=0$ in spin network basis: pentagon identity of group G representation theory
- Enables to solve the theory
- Interesting consequences on splitting diffeo/scalar constraints
- Side-product: Recursion relations on arbitrary Wigner coefficients

Some insights into cosmological case $\Lambda \neq 0$
Relation quantum group/curved spacetime geometry

Collaborators: E.R. Livine, L. Freidel, S. Speziale On symmetries: Berlin groups B. Dittrich and D. Oriti.
On spin network evaluations: many people in different fields !
R. Littlejohn, S. Garoufalidis, M. Marino, A. Marzuoli

What we got (II)

Loop quantization of 4 d BF

- Evaluation of spin networks on flat connections
- Lattice definition of the model
- Gauge symmetry identified (in any dim)
- Non-trivial measure (same as that from path integral)
- Challenge for Ooguri spin foam model

Collaborator: M. Smerlak
Mathematics: C. Frohman, J. Dubois, F. Costantini,...

Spin networks

Let G be a compact Lie group.
A spin network is a decorated graph:

- a closed oriented graph Г,
- an irreducible representation ρ_{I} of G attached to each link $/$,
- an intertwiner attached to each node: invariant vector in $Q_{l \text { meeting at } v} \rho_{l}$
- $G=\mathrm{SO}(3), 3$-valent node, intertwiner $=$ Clebsch-Gordan coeff

Spin networks II

- They span the Hilbert space:

$$
\mathcal{H}_{\Gamma}=L^{2}\left(G^{E} / G^{V}\right)
$$

Functions of group elements $\left(g_{e}\right)$ on links (Wilson lines), invariant under translation by G at each node.

- Quantization on a classical phase space

Wilson lines of gauge field A
Flux E_{l}^{i} of some non-Abelian electric field.

$$
\begin{gathered}
\text { Lattice Yang-Mills phase space ! } \\
\left\{E_{l}^{i}, g_{l}\right\}=g_{l} \tau^{i}, \quad\left\{E_{l}^{i}, E_{l}^{j}\right\}=\epsilon_{k}^{i j} E_{l}^{k}
\end{gathered}
$$

Fluxes act as left-invariant derivatives.

Geometry on the dual triangulation, $d=3, G=\mathrm{SO}(3)$

- Triangles embedded in flat 3-space
- Fluxes $E_{l} \in \mathbb{R}^{3}$: normals to edges
$E_{l}^{2}=\ell_{l}^{2}, \quad E_{I} \cdot E_{l^{\prime}}=\ell_{1} \ell_{l^{\prime}} \cos \phi_{I \prime}$
- Dihedral angles $\theta_{l}\left(g_{l}\right)$
- Hamiltonian relates extrinsic to intrinsic geometry

Hamiltonian scalar constraint

- In general relativity (Ashtekar-Barbero variables)

$$
H=\epsilon_{k}^{i j} E_{i}^{a} E_{j}^{b} F(A)_{a b}^{k}+\text { others }
$$

(at the quantum level: Thiemann's proposal, recently improved by Alesci-Rovelli.)

Hamiltonian scalar constraint

- In general relativity (Ashtekar-Barbero variables)

$$
H=\epsilon_{k}^{i j} E_{i}^{a} E_{j}^{b} F(A)_{a b}^{k}+\text { others }
$$

(at the quantum level: Thiemann's proposal, recently improved by Alesci-Rovelli.)

- 3d gravity: flat gauge field, $F(A)_{a b}^{k}=0$. Quantization well-known (Witten, Noui-Perez).

Hamiltonian scalar constraint

- In general relativity (Ashtekar-Barbero variables)

$$
H=\epsilon_{k}^{i j} E_{i}^{a} E_{j}^{b} F(A)_{a b}^{k}+\text { others }
$$

(at the quantum level: Thiemann's proposal, recently improved by Alesci-Rovelli.)

- 3d gravity: flat gauge field, $F(A)_{a b}^{k}=0$.

Quantization well-known (Witten, Noui-Perez).

- F^{k} has only one space component, F_{12}^{k}.

Project it on the normal $\vec{n}=\vec{e}_{1} \times \vec{e}_{2}$,

$$
H=\epsilon_{k}^{i j} E_{i}^{a} E_{j}^{b} F(A)_{a b}^{k}=(\vec{n} \cdot \vec{F}) /|\vec{n}|
$$

Tentative

- Know we can restrict to a single cell decomposition
- H not graph changing
- Expect H to shift spins of spin networks.
- Regularize curvature. $W_{p} \in \mathrm{SO}(3)$ Wilson loop around a face,

$$
\epsilon_{k}^{i j} F_{a b}^{k} \quad \longrightarrow \quad \delta^{i j}-\left(W_{p}\right)^{i j}
$$

Flatness: $W_{p}=\mathbb{1}$

- Usual spin ambiguity: here spin 1 natural.
- Proposal along cycle c, node n where 2 and 6 meet

$$
H_{n, c}=\vec{E}_{l} \cdot \vec{E}_{l^{\prime}}-\vec{E}_{l} \cdot W_{p} \vec{E}_{l^{\prime}}
$$

Proposal to mimic the scalar constraint

Some properties, classically

- At least three constraints per face, 3 independent
- Looking at matrix W_{p} in suitable basis: spanned by fluxes
- Algebra closes: generate gauge symmetry
- No need for splitting vector/scalar constraints !
- Tension

Curvature regularized around vertices vs. $H=\vec{n} \cdot \vec{F}$
What is the normal to a vertex in 3-space?

Some properties, classically

- At least three constraints per face, 3 independent
- Looking at matrix W_{p} in suitable basis: spanned by fluxes
- Algebra closes: generate gauge symmetry
- No need for splitting vector/scalar constraints !
- Tension

Curvature regularized around vertices vs. $H=\vec{n} \cdot \vec{F}$
What is the normal to a vertex in 3 -space?

Some properties, classically

- At least three constraints per face, 3 independent
- Looking at matrix W_{p} in suitable basis: spanned by fluxes
- Algebra closes: generate gauge symmetry
- No need for splitting vector/scalar constraints !
- Tension

Curvature regularized around vertices vs. $H=\vec{n} \cdot \vec{F}$
What is the normal to a vertex in 3-space ?
One normal per adjacent face (at least 3)

Flat geometry

$$
H_{p, n}=0 \quad \sim \quad \cos \theta_{I^{\prime \prime}}=\frac{\cos \phi_{I^{\prime}}-\cos \phi_{I^{\prime \prime} \mid} \cos \phi_{I^{\prime \prime} I^{\prime}}}{\sin \phi_{I^{\prime \prime} I} \sin \phi_{I^{\prime \prime} I^{\prime}}}
$$

Quantization of flat geometry!

Questions

What is the Wheeler-DeWitt equation ?

$$
\widehat{H}_{n, p} \psi=0,
$$

in the spin network basis.
Can we solve it and reproduce known results in 3d ?

Questions

What is the Wheeler-DeWitt equation ?

$$
\widehat{H}_{n, p} \psi=0,
$$

in the spin network basis.
Can we solve it and reproduce known results in 3d ? Yes

The Biedenharn-Elliott identity

Triangulation of S^{2} by the boundary of a tetrahedron.
A single physical state satisfying flatness: $\prod_{\text {plaquettes }} \delta\left(W_{p}\right)$, or:

$$
|\psi\rangle=\sum_{\left\{j_{i}\right\}}\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\}\left|j_{i}\right\rangle
$$

The Biedenharn-Elliott identity

Triangulation of S^{2} by the boundary of a tetrahedron.
A single physical state satisfying flatness: $\prod_{\text {plaquettes }} \delta\left(W_{p}\right)$, or:

$$
|\psi\rangle=\sum_{\left\{j_{i}\right\}}\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\}\left|j_{i}\right\rangle
$$

How can we characterize Wigner 6 j -symbol ?
Well-known 2nd order recursion relation:

$$
\begin{aligned}
A_{+}\left(j_{1}\right)\left\{\begin{array}{ccc}
j_{1}+1 & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\}+A_{0}\left(j_{1}\right)\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\} \\
+A_{-}\left(j_{1}\right)\left\{\begin{array}{ccc}
j_{1}-1 & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\}=0 .
\end{aligned}
$$

Triangulation of S^{2} by the boundary of a tetrahedron

The recurrence relation

$$
\begin{aligned}
& A_{+}(j)=j_{1} E\left(j_{1}+1\right) \text { and } A_{-}(j)=\left(j_{1}-1\right) E\left(j_{1}\right) \text {, with: } \\
& \begin{aligned}
& E\left(j_{1}\right)=\left[\left(\left(j_{2}+j_{3}+1\right)^{2}-j_{1}^{2}\right)\left(j_{1}^{2}-\left(j_{2}-j_{3}\right)^{2}\right)\right. \\
&\left.\times\left(\left(j_{5}+j_{6}+1\right)^{2}-j_{1}^{2}\right)\left(j_{1}^{2}-\left(j_{5}-j_{6}\right)^{2}\right)\right]^{\frac{1}{2}}
\end{aligned}
\end{aligned}
$$

A_{0} is:

$$
\begin{aligned}
A_{0}(j)= & \left(2 j_{1}+1\right)\left\{2 \left[j_{2}\left(j_{2}+1\right) j_{5}\left(j_{5}+1\right)\right.\right. \\
& \left.+j_{6}\left(j_{6}+1\right) j_{3}\left(j_{3}+1\right)-j_{1}\left(j_{1}+1\right) j_{4}\left(j_{4}+1\right)\right] \\
-\left[j_{2}\left(j_{2}+1\right)\right. & \left.\left.+j_{3}\left(j_{3}+1\right)-j_{1}\left(j_{1}+1\right)\right]\left[j_{5}\left(j_{5}+1\right)+j_{6}\left(j_{6}+1\right)-j_{1}\left(j_{1}+1\right)\right]\right\}
\end{aligned}
$$

The Wheeler-DeWitt equation

$H_{n, c}=\vec{E}_{l} \cdot \vec{E}_{l^{\prime}}-\vec{E}_{l} \cdot W_{p} \vec{E}_{l^{\prime}}$ becomes an operator on the boundary Hilbert space to the tetrahedron.

- $E_{l} \cdot E_{l^{\prime}}$ is diagonal on spin network functions
- The matrix W_{p} produces shifts.

The Wheeler-DeWitt equation

$H_{n, c}=\vec{E}_{l} \cdot \vec{E}_{l^{\prime}}-\vec{E}_{l} \cdot W_{p} \vec{E}_{l}$ becomes an operator on the boundary Hilbert space to the tetrahedron.

- $E_{I} \cdot E_{l^{\prime}}$ is diagonal on spin network functions
- The matrix W_{p} produces shifts.
- $\hat{H} \sum_{\left\{j_{l}\right\}} \psi\left(j_{l}\right)\left|j_{l}\right\rangle=0$ gives the equation:

$$
A_{+}\left(j_{1}\right) \psi\left(j_{1}+1, j_{\prime^{\prime}}\right)+A_{0}\left(j_{1}\right) \psi\left(j_{1}, j_{l^{\prime}}\right)+A_{-}\left(j_{1}\right) \psi\left(j_{1}-1, j_{l^{\prime}}\right)=0
$$

- solution: $\left\{\begin{array}{llll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right\}$.

4d lift

- Lift the Hamiltonian to 4d, get difference equations solved by $15 j$-symbols of the Ooguri model!

Asymptotics

- In 3d, LQG geometries are Regge, and usual equation:

$$
\begin{gathered}
{\left[\Delta_{j l}+2\left(1-\cos \theta_{l}(j)\right)\right] \psi=0} \\
\psi \sim \cos \left(S_{\text {Regge }}+\frac{\pi}{4}\right) / \sqrt{12 \pi V}[\text { Schulten \& Gordon '75] }
\end{gathered}
$$

4d lift

- Lift the Hamiltonian to 4d, get difference equations solved by $15 j$-symbols of the Ooguri model !

Asymptotics

- In 3d, LQG geometries are Regge, and usual equation:

$$
\left[\Delta_{j_{l}}+2\left(1-\cos \theta_{l}(j)\right)\right] \psi=0
$$

$\psi \sim \cos \left(S_{\text {Regge }}+\frac{\pi}{4}\right) / \sqrt{12 \pi V}$ [Schulten \& Gordon '75]

- In 4d, LQG describes twisted geometries. Different cases: geometric (Regge) sector, and others.
Geometric sector: the same equation.
But the Hamiltonian is defined on the whole phase space, and the Wheeler-DeWitt equation makes sense everywhere on it !

Remarks

- Reproduce the expected result, without divergencies even for spherical topology!
- Define H with W_{p} in spin 2 produces shifts $\pm 2, \pm 1$ More initial conditions to specify !
- What is the quantum algebra of constraints ???
- More recursions from group representation have been derived, like closure of simplex

Path integral

- Naively, B Lagrange multiplier,

$$
Z=\int D A \delta(F(A))=\sum_{\substack{\phi, \text { flat connections } \\ \text { (up to gauge) }}} \frac{1}{\left|\frac{\delta F}{\delta A}[\phi]\right|}
$$

Integral peaked on flat connections

- After gauge-fixing

$$
Z=\sum_{\substack{\phi, \text { flat connections } \\ \text { up to gauge }}} \operatorname{tor}[\phi]
$$

where tor is a topological invariant, the torsion, associated to the manifold and flat connection.
(actually simple homotopy invariant).

Amplitudes

- Insert functions over set of flat connections

$$
\langle\psi \mid \chi\rangle=\sum_{\substack{\phi, \text { flat connections } \\ \text { up to gauge }}} \overline{\psi[\phi]} \operatorname{tor}[\phi] \chi[\phi]
$$

- Spin network quantization ?

Lattice construction of the model

Discretize the fields

$$
\begin{aligned}
1 \text {-form } A & \rightarrow A_{e} \text { on edges } \\
(d-2) \text {-form } B & \rightarrow B_{f} \text { on faces }
\end{aligned}
$$

Action of gauge symmetry $1, A+d_{A} \omega$

$$
\text { function } \omega \rightarrow \omega_{v} \text { on vertices }
$$

Action of gauge symmetry II, $B+d_{A} \eta$

$$
(d-3) \text {-form } \eta \rightarrow \quad \eta_{3 c} \text { on 3-cells }
$$

Covariant derivative

For a flat connection ϕ on the lattice

$$
d_{\phi}^{2}=F=0 \quad \longrightarrow \quad \delta_{\phi}: k \text {-cells } \mapsto(k+1) \text {-cells }
$$

$\delta_{\phi}^{2}=0$
Gauge-Fixing

- Freidel-Louapre gauge fixing, trivial FP determinant on $\Sigma_{g} \times[0,1]$
- Generically non-trivial $\Delta_{F P}(\phi) \neq 1$

2-complex not enough, need to known the full cellular structure to get the correct path integral

