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Topological BF theory [Blau & Thompson, Horowitz ’89]

Generalization of Chern-Simons

I Lie group G (internal symmetry)

I gauge field A, curvature strength F = dA + 1
2 [A,A]

I Ad(G )-valued (d − 2)-form B, Lagrange multiplier for
curvature

SBF (A,B) =

∫
tr B ∧ F (A)

I Gauge symmetry 1

A 7→ Ad(g)A + gdg−1, B 7→ Ad(g)B

I Gauge symmetry 2

A 7→ A, B 7→ B + dA η

I Diffeomorphisms



Equations of motion

I Vary B, Lagrange multiplier,

F = 0

A flat connection. Locally A = 0 up to gauge.

I Vary A
dA B = 0

B closed, so locally exact: B = dC .

I Use gauge symmetry 2, B ′ = B − dC = 0.

All solutions are gauge equivalent to trivial sol
No local degrees of freedom
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Motivations

I This is 3d gravity with degenerate metrics

I Theories written like BF + something
Yang-mills

SYM = SBF + g2
YM

∫
tr B ∧ ∗ηB

I Lattice gauge theory

I Topological effects in condensed matter (top insulators)

I Kitaev model and generalizations: topological order, quantum
information

I Topological invariants, quantum invariants
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Issues

In BF and Gravity, dynamics = gauge symmetries

Vector field ξ, def: φξ = iξA and ηξ = iξB

LξA = dA φξ + iξF ,

LξB = dA ηξ + [φξ,B] + iξ dAB.

Diffeos = internal gauge + e.o.m. of BF

What we want to do
In Loop quantum gravity context

I Wheeler-DeWitt equation for 3d gravity ??

I Transition amplitudes in a 4d theory ??

I Relations to gauge symmetries in spin foams ??



What we got (I)

Hamiltonian scalar constraint in 3d

I H|ψ〉 = 0 in spin network basis: pentagon identity of group G
representation theory

I Enables to solve the theory

I Interesting consequences on splitting diffeo/scalar constraints

I Side-product: Recursion relations on arbitrary Wigner
coefficients

Some insights into cosmological case Λ 6= 0

Relation quantum group/curved spacetime geometry

Collaborators: E.R. Livine, L. Freidel, S. Speziale
On symmetries: Berlin groups B. Dittrich and D. Oriti.
On spin network evaluations: many people in different fields !

R. Littlejohn, S. Garoufalidis, M. Marino, A. Marzuoli



What we got (II)

Loop quantization of 4d BF

I Evaluation of spin networks on flat connections

I Lattice definition of the model

I Gauge symmetry identified (in any dim)

I Non-trivial measure (same as that from path integral)

I Challenge for Ooguri spin foam model

Collaborator: M. Smerlak

Mathematics: C. Frohman, J. Dubois, F. Costantini,. . .



Spin networks

Let G be a compact Lie group.
A spin network is a decorated graph:

I a closed oriented graph Γ,

I an irreducible representation ρl of G attached to each link l ,

I an intertwiner attached to each node: invariant vector in⊗
l meeting at v ρl

I G = SO(3), 3-valent node, intertwiner = Clebsch-Gordan
coeff



Spin networks II

I They span the Hilbert space:

HΓ = L2
(
GE/GV

)
Functions of group elements (ge) on links (Wilson lines),
invariant under translation by G at each node.

I Quantization on a classical phase space
Wilson lines of gauge field A
Flux E i

l of some non-Abelian electric field.

Lattice Yang-Mills phase space !

{E i
l , gl} = glτ

i , {E i
l ,E

j
l } = εijk E

k
l

Fluxes act as left-invariant derivatives.



Geometry on the dual triangulation, d = 3, G = SO(3)

θl′′

φl′′l′
φll′

φl′′l

l l′

l′′

El El′

El′′

φll′

I Triangles embedded in flat 3-space

I Fluxes El ∈ R3: normals to edges
E 2
l = `2

l , El · El ′ = `l`l ′ cosφll ′

I Dihedral angles θl(gl)

I Hamiltonian relates extrinsic to intrinsic geometry



Hamiltonian scalar constraint

I In general relativity (Ashtekar-Barbero variables)

H = εijk E a
i E

b
j F (A)kab + others

(at the quantum level: Thiemann’s proposal, recently
improved by Alesci-Rovelli.)

I 3d gravity: flat gauge field, F (A)kab = 0.
Quantization well-known (Witten, Noui-Perez).

I F k has only one space component, F k
12.

Project it on the normal ~n = ~e1 × ~e2,

H = εijk E a
i E

b
j F (A)kab =

(
~n · ~F

)
/|~n|
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Tentative

I Know we can restrict to a single cell decomposition

I H not graph changing

I Expect H to shift spins of spin networks.

I Regularize curvature. Wp ∈ SO(3) Wilson loop around a face,

εijk F
k
ab −→ δij −

(
Wp

)ij
Flatness: Wp = 1

I Usual spin ambiguity: here spin 1 natural.

I Proposal along cycle c , node n where 2 and 6 meet

Hn,c = ~El · ~El ′ − ~El ·Wp
~El ′



Proposal to mimic the scalar constraint

Wp

El El′

Hp,n = E i
l (1ij − (Wp)ij)E

j
l ′



Some properties, classically

I At least three constraints per face, 3 independent

I Looking at matrix Wp in suitable basis: spanned by fluxes

I Algebra closes: generate gauge symmetry

I No need for splitting vector/scalar constraints !

I Tension
Curvature regularized around vertices vs. H = ~n · ~F

What is the normal to a vertex in 3-space ?

One normal per adjacent face (at least 3)
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Flat geometry

θl′′

φl′′l′
φll′

φl′′l

l l′

l′′

El El′

El′′

φll′

Hp,n = 0 ∼ cos θl ′′ =
cosφll ′ − cosφl ′′l cosφl ′′l ′

sinφl ′′l sinφl ′′l ′

Quantization of flat geometry !



Questions

What is the Wheeler-DeWitt equation ?

Ĥn,pψ = 0,

in the spin network basis.

Can we solve it and reproduce known results in 3d ?

Yes
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The Biedenharn-Elliott identity

Triangulation of S2 by the boundary of a tetrahedron.
A single physical state satisfying flatness:

∏
plaquettes δ(Wp), or:

|ψ〉 =
∑
{ji}

{
j1 j2 j3
j4 j5 j6

}
|ji 〉

How can we characterize Wigner 6j-symbol ?

Well-known 2nd order recursion relation:

A+(j1)

{
j1 + 1 j2 j3
j4 j5 j6

}
+ A0(j1)

{
j1 j2 j3
j4 j5 j6

}
+ A−(j1)

{
j1 − 1 j2 j3
j4 j5 j6

}
= 0.
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Triangulation of S2 by the boundary of a tetrahedron

j1

j2

j6

j3

j5

j4

v



The recurrence relation

A+(j) = j1E (j1 + 1) and A−(j) = (j1 − 1)E (j1), with:

E (j1) =
[(

(j2 + j3 + 1)2 − j2
1

)(
j2
1 − (j2 − j3)2

)
×
(
(j5 + j6 + 1)2 − j2

1

)(
j2
1 − (j5 − j6)2

)] 1
2

A0 is:

A0(j) =
(
2j1 + 1

){
2
[
j2(j2 + 1)j5(j5 + 1)

+ j6(j6 + 1)j3(j3 + 1)− j1(j1 + 1)j4(j4 + 1)
]

−
[
j2(j2+1)+j3(j3+1)−j1(j1+1)

][
j5(j5+1)+j6(j6+1)−j1(j1+1)

]}



The Wheeler-DeWitt equation

Hn,c = ~El · ~El ′ − ~El ·Wp
~El ′ becomes an operator on the boundary

Hilbert space to the tetrahedron.

I El · El ′ is diagonal on spin network functions

I The matrix Wp produces shifts.

I Ĥ
∑
{jl} ψ(jl)|jl〉 = 0 gives the equation:

A+(j1)ψ(j1 + 1, jl ′) +A0(j1)ψ(j1, jl ′) +A−(j1)ψ(j1− 1, jl ′) = 0.

I solution:
{

j1 j2 j3
j4 j5 j6

}
.
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4d lift

I Lift the Hamiltonian to 4d, get difference equations solved by
15j-symbols of the Ooguri model !

Asymptotics

I In 3d, LQG geometries are Regge, and usual equation:

[∆jl + 2 (1− cos θl(j))]ψ = 0

ψ ∼ cos(SRegge + π
4 )/
√

12πV [Schulten & Gordon ’75]

I In 4d, LQG describes twisted geometries. Different cases:
geometric (Regge) sector, and others.
Geometric sector: the same equation.
But the Hamiltonian is defined on the whole phase space, and
the Wheeler-DeWitt equation makes sense everywhere on it !
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Remarks

I Reproduce the expected result, without divergencies even for
spherical topology !

I Define H with Wp in spin 2 produces shifts ±2,±1
More initial conditions to specify !

I What is the quantum algebra of constraints ???

I More recursions from group representation have been derived,
like closure of simplex



Path integral

I Naively, B Lagrange multiplier,

Z =

∫
DA δ(F (A)) =

∑
φ, flat connections

(up to gauge)

1∣∣ δF
δA [φ]

∣∣
Integral peaked on flat connections

I After gauge-fixing

Z =
∑

φ, flat connections
up to gauge

tor[φ]

where tor is a topological invariant, the torsion, associated to
the manifold and flat connection.
(actually simple homotopy invariant).



Amplitudes

I Insert functions over set of flat connections

〈ψ|χ〉 =
∑

φ, flat connections
up to gauge

ψ[φ] tor[φ] χ[φ]

I Spin network quantization ?



Lattice construction of the model

Discretize the fields

1-form A → Ae on edges

(d − 2)-form B → Bf on faces

Action of gauge symmetry 1, A + dAω

function ω → ωv on vertices

Action of gauge symmetry II, B + dAη

(d − 3)-form η → η3c on 3-cells



Covariant derivative

For a flat connection φ on the lattice

d2
φ = F = 0 −→ δφ : k-cells 7→ (k + 1)-cells

δ2
φ = 0

Gauge-Fixing

I Freidel-Louapre gauge fixing, trivial FP determinant on
Σg × [0, 1]

I Generically non-trivial ∆FP(φ) 6= 1

2-complex not enough, need to known the full cellular structure to
get the correct path integral
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