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IntroductionIntroduction

- Loop Quantum Cosmology  (LQC) is a quantum approach for cosmological systems 
inspired by the ideas and methods of Loop Quantum Gravity (LQG). 

- It has been successfully applied mainly to homogeneous and isotropic (FRW) models, 
predicting e.g. the Big Bounce mechanism, which eludes the initial singularity.



  

IntroductionIntroduction

- To deal with more complicated systems, and test the robustness of the results, LQC has 
been applied also to anisotropic and to inhomogeneous models. 

- The best studied inhomogeneous system is the vacuum Gowdy model with three-torus 
topology.  A hybrid approach has been adopted, which combines techniques of LQC with a 
Fock quantization of the inhomogeneities.

- More realistic analyses call for the introduction of matter. 

- In particular, the subfamily of homogeneous solutions in vacuo does not contain FRW 
spacetimes. Then, one cannot study the behavior around them quantum mechanically. 

- The goal is to discuss the effect of LQC phenomena in the (matter and gravitational) 
inhomogeneities, and viceversa. Developing perturbative approaches seems important.

- With this aim, we are going to introduce a massless  scalar field  in the Gowdy model 
(with the same symmetries as those spacetimes) and study its hybrid quantization.



  

The ModelThe Model

- We consider linearly polarized Gowdy T3 cosmologies with a minimally coupled massles 
scalar field,  

- These cosmologies are globally hyperbolic spacetimes with three-torus topology and two 
axial and hypersurface orthogonal Killing vectors, which are also matter symmetries.

- We can choose coordinates so that the metric depends only on a cyclic one,           and 
on time 

- The geometry is described by three scale factors (     one for each direction  ) and a field 
without zero mode in its Fourier expansion in    

- This field describes linearly polarized gravitational 
waves, which propagate in a Bianchi I background  
determined by the scale factors

- The content of this background is the zero mode 
of  the  matter  scalar  field.  In particular, there exist
FRW solutions.
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The Model: VariablesThe Model: Variables

-  We describe the background geometry with Ashtekar variables --densitized triads and 
su(2) connections-- as in LQC:

where we have used a diagonal gauge and (with      being the Immirzi parameter):  

- The background matter content is described with the canonical pair 

- Matter field          and gravitational waves         :  we rescale both fields,  without zero
modes, by a factor                     and expand in Fourier modes. 

- We then define creation and annihilation variables as if they were
massless free fields:
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The Model: Metric and ConstraintsThe Model: Metric and Constraints

- The Gowdy metric can be written in the form: 

 where      is determined in terms of       and          and has no zero mode.      

- Two constraints remain in this partially gauge-fixed model:

 i)        , which generates rigid rotations in        
This constraint gets contributions only from inhomogeneous (i.e., non-zero) modes.

ii) The zero mode of the densitized Hamiltonian constraint,   
It has a homogenous part (due to zero modes) and an inhomogeneous contribution:

- The inhomogeneous parts of the constraints are the sum of two identical contributions, 
one for each field (matter and gravitational waves).
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Hybrid Quantization. Loop VariablesHybrid Quantization. Loop Variables

-  We adopt a hybrid quantization, assuming that the most relevant quantum geometry 
effects are those affecting the zero modes.

- For the background geometry, the elementary variables are      (triads) and holonomies 
of the connections, along edges of coordinate length             for each direction.

The holonomy elements are linear combinations of 

- For each direction we consider the basis of states                               

         -

         -  The Hilbert space is the completion wrt the discrete product  

         - The Bianchi I Hilbert space is the tensor product of those for the three directions.

- The inverse volume is regularized by Thiemann's trick (commutators with holonomies). 
Curvature is defined in terms of holonomies along closed circuits.
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Improved Dynamics & Fock SpaceImproved Dynamics & Fock Space

- The holonomy edges, of coordinate length             form rectangles whose physical area
is set equal to the minimum area       allowed by the LQG spectrum (improved dynamics).

 - It is then convenient to change the labels       of the states to:                                            
                                                                     

                                                    

-         produces a unit shift in      but it also scales      in a complicated     -dependent way.

- For the zero mode of the matter field we use a standard quantization.

- For the inhomogeneities, creation and annihilation variables become operators and we 
construct the Fock space.

- This Fock quantization is privileged (when the background is classical) under symmetry 
and unitarity requirements  (Cortez, Mena-Marugán, Velhinho).
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Quantum ConstraintsQuantum Constraints

 - Global momentum constraint:

 - Global Hamiltonian constraint                                      (up to a global constant factor):
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Quantum ConstraintsQuantum Constraints

 - Global momentum constraint:

 - Global Hamiltonian constraint                                      (up to a global constant factor):

 Here, 

                                                                                                         represents  

 Recall that the inverse of            is regularized by Thiemann's trick.
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Superselection. LRS ModelSuperselection. LRS Model

- Superselection sectors: Not all values of      and       are related by the constraints. 

- The     sectors are (e.g.) positive semilattices of 4 
units step. The minimum volume characterizes the
sector: 

- The cosmological singularities are resolved: their quantum analogs are removed.

- The physical Hilbert space can be obtained from the data at the minimum volume.

- The      sectors are dense (e.g.) in the positive semiaxis, and depend on      In particular, 
we will work with the real label 

- The model is symmetric under the interchange of the directions     and      For simplicity, 
we consider the LRS submodel. Quantum mechanically, this can be achieved by the map: 
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LRS Hamiltonian ConstraintLRS Hamiltonian Constraint

-  Let us define                            and eliminate the coordinate subindices. Let us define                            and eliminate the coordinate subindices. 

Then, the Then, the LRS Hamiltonian constraintLRS Hamiltonian constraint,                                        is :,                                        is :

-         and          commute. -         and          commute. 

- It can be interpreted as the constraint of a - It can be interpreted as the constraint of a FRW modelFRW model  with the contributions of two  with the contributions of two 
massless free fields, and two types of corrections:massless free fields, and two types of corrections:

i)  an i)  an anisotropyanisotropy contribution, which  contribution, which does not commutedoes not commute with the FRW constraint, with the FRW constraint,
ii) ii) interaction termsinteraction terms between field modes. between field modes.
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ApproximationsApproximations

- The spectrum of the geometry operator for FRW,        is absolutely continuous, positive 
and nondegenerate. 

- Let          be the generalized eigenstates, where        is the eigenvalue

- The eigenfunctions are exponentially suppressed for small                 

- For               one can approximate them by their Wheeler-DeWitt  (WDW)  limit in the 
matrix elements of the anisotropy and interaction terms. This limit is well known (Martín-
Benito, Mena Marugán, Olmedo, Pawlowski).

-Besides, when            the sums in those elements  (coming from the discrete inner 
product) can be approximated by integral expressions. 

► In particular, one can prove that

This was expected, since             for  
Actually, the diference is a state of finite (kinematical) norm.
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Approximations: Born-OppenheimerApproximations: Born-Oppenheimer

- The anisotropy operator         does not commute with        in the improved dynamics. 

Otherwise, the constraint (without inverse volume corrections) would act   diagonally on  

- One can prove that the “WDW limit” of the operator                        is                     

- This limit is a good approximation for states with                and which do not vary much 
on      regions of size 

► Proceeding as for the inverse volume corrections, one can then show:   

  

-             and         COMMUTE. This allows a true Born-Oppenheimer approximation.
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Approximations: Interaction TermsApproximations: Interaction Terms

- The operator        is well defined on the superselection sector for       on sublattices of 
step   

- It has an absolutely continuous and doubly degenerated spectrum: the real line 
(the eigenvalue problem is a difference equation relating three points in the sublattices).

- For each real eigenvalue,         one can find a generalized eigenstate             which tends 
to zero at minus infinity.

- We call               the orthogonal eigenstate, and           the spaces with bases
(for all sublattices).

- On        the interactions of the inhomogeneous modes, proportional to       ,  should be 
small. In this sense, 
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UnperturbedUnperturbed Constraint Constraint

- We can regard            as a “perturbation”. 

- Let us focus on the unperturbed constraint. This constraint is solvable. 

Using the spectral decomposition associated with the FRW constraint and the n-particle 
states of the free field, we obtain a (family of) one-dimensional problem(s):

We call 

- We expect                   to have a doubly degenerated, absolutely continuous spectrum. 

-                 is well defined on           Let                   be the corresponding eigenstates, and
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SolutionsSolutions

- The solutions to the unperturbed constraint can be expressed in the form: 

- We are only interested in those for which           should be a perturbation:  

► Small 

►

► 

- It is not difficult to provide the space of solutions with a Hilbert structure (e.g., by means 
of reality conditions) to obtain the space of physical states.  
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ConclusionsConclusions

► We have completed the quantization of the linearly polarized Gowdy T3 model with an 
inhomogeneous scalar field using hybrid techniques in LQC.

► The analogs of the cosmological singularities are eliminated quantum mechanically.

►We have approximated the Hamiltonian constraint by a solvable one and discussed 
in detail under which conditions the perturbations are expected to be small.

► We have found the solutions to this approximated constraint. They can be regarded as 
solutions of the Born-Oppenheimer type, constructed in terms of FRW states.

► Lines for future research:

-  Perturbative treatments in interaction picture.

- Effects of the bounce in the anisotropy and the inhomogenities. Numerical simulations:

i) With a truncated number of modes.

ii) In the effective dynamics.  
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