Effective Dynamics from Spinfoam Cosmology

Mercedes Martín-Benito

MPI für Gravitational Physics, Albert Einstein Institute

In collaboration with Etera Livine (paper in preparation, soon to appear)

6th Aegean Summer School, Naxos (Greece)

M. Martín-Benito (AEI)

Effective dynamics from SF cosmology

Introduction

- Extraction of effective (classical) dynamics from Spin foams
 - transition amplitudes between spin

networks, $\psi_{in} \rightarrow \psi_{out}$

 Fixed graph: \u03c6_{in} and \u03c6_{out} same underlying graph

Introduction

- Extraction of effective (classical) dynamics from Spin foams
 - ► transition amplitudes between spin networks, ψ_{in} → ψ_{out}
 - Fixed graph: \u03c6_{in} and \u03c6_{out} same underlying graph

finite graph \rightarrow finite number of dof \rightarrow minisuperspaces ??

Introduction

- Extraction of effective (classical) dynamics from Spin foams
 - ► transition amplitudes between spin networks, ψ_{in} → ψ_{out}
 - Fixed graph: \u03c6_{in} and \u03c6_{out} same underlying graph

finite graph \rightarrow finite number of dof \rightarrow minisuperspaces ??

• Simple setting \rightarrow homogenous and isotropic configuration. Trying to modelize effective FRW models

Spinfoam cosmology

Bianchi, Rovelli, Vidotto

Spinfoam cosmology approach

Kinematics

- We choose a suitable graph and attach to it appropriate classical data: 3-geometry
- We reduce to the homogeneous and isotropic sector
 - \blacktriangleright Finite graph \rightarrow finite region of the homogeneous geometry
- We define suitable coherent spin networks peaked on above symmetric configurations

Spinfoam cosmology approach

Dynamics

- We calculate the transition amplitude between two such states at first order in a vertex expansion by using the Spinfoam ansatz (evaluation of the boundary spin network on the identity)
 - Renormalization/ coarse grain procedure in GFT would give an expansion in effective contributions. We assume such a one-vertex contribution is the leading order.
- We look for symmetries of the transition amplitude
 - \rightarrow discrete diffeomorphisms

Spinfoam cosmology approach

Dynamics

- We calculate the transition amplitude between two such states at first order in a vertex expansion by using the Spinfoam ansatz (evaluation of the boundary spin network on the identity)
 - Renormalization/ coarse grain procedure in GFT would give an expansion in effective contributions. We assume such a one-vertex contribution is the leading order.
- We look for symmetries of the transition amplitude
 - \rightarrow discrete diffeomorphisms
 - $\blacktriangleright \text{ Homogeneity} \rightarrow \text{Hamiltonian constraint}$

(effective) FRW model ??

Loop gravity on a fixed graph

- In LQG, phase space of gravity parametrized by holonomy-flux variables $(g_e, X_e) \longrightarrow$ classical data attached to graphs Γ
- Quantization of the holonomy-flux algebra: spin networks
- Given Γ , quantum states are gauge-invariant functions $\psi_{\Gamma}(g_e)$ of the group elements g_e living on the edges $e \in \Gamma$
 - ▶ Spin network basis: irreps. of SU(2) attached to edges, intertwiners [SU(2) invariant tensors] attached to vertices

Recent approach

- Phase space of loop gravity parameterized by spinors
 - Twisted geometries
 Freidel, Speziale, Livine, Tambornino
- Spin networks are the quantization of classical spinor networks
 - U(N) formalism for intertwiners

Girelli, Livine, Freidel, Dupuis...

M. Martín-Benito (AEI)

Effective dynamics from SF cosmology

Choice of graph: two-vertex graph with N edges

- Two spinors $z_i, w_i \in \mathbf{C}^2$ per edge, attached to α and β resp.
- Poisson bracket: $\{z_a, \bar{z}_b\} = -i\delta_{ab} = \{w_a, \bar{w}_b\}$, a, b = 0, 1
- Closure contraints: SU(2) invariance in every vertex
- Matching constraints: U(1) invariance in every edge

Choice of graph: two-vertex graph with N edges

- Two spinors $z_i, w_i \in \mathbf{C}^2$ per edge, attached to α and β resp.
- Poisson bracket: $\{z_a, \bar{z}_b\} = -i\delta_{ab} = \{w_a, \bar{w}_b\}$, a, b = 0, 1
- Closure contraints: SU(2) invariance in every vertex
- Matching constraints: U(1) invariance in every edge

•
$$|z\rangle\langle z| = \frac{1}{2}\left(\langle z|z\rangle\mathbb{I} + \vec{V}(z)\cdot\vec{\sigma}\right), \quad |z][z| = \frac{1}{2}\left(\langle z|z\rangle\mathbb{I} - \vec{V}(z)\cdot\vec{\sigma}\right)$$

• z_i defined by $\vec{V}(z_i)$ up to a global phase

2-vertex spinor network: Geometrical interpretation

• $ec{V}(z_i) = \langle z_i | ec{\sigma} | z_i
angle$ vector normal to the i-th face

• $|ec{V}(z_i)| = \langle z_i | z_i
angle$ (twice) the area of the i-th face

• Closure constraints: $C_{\alpha} \equiv \sum_{i} \vec{V}(z_i) = 0$, analogously for β .

• $\vec{V}(z_i)$ generators of SU(2) algebra \rightarrow fluxes

• Matching constraints: $\mathcal{M}_i \equiv |ec{V}(z_i)| - |ec{V}(w_i)| = 0$, $\forall i$

 z_{Λ}

 w_i

- U(N)-action on the set of spinors: $z_k \to (Uz)_k$, $U \in U(N)$ Commutes with closure constraint
- Scalar products between spinors are SU(2)-invariant

•
$$E_{ij}^v = \langle z_i^v | z_j^v \rangle$$

★ They generate a U(N)-algebra

- $\blacktriangleright \ F^v_{ij} = [z^v_i | z^v_j \rangle, \quad \bar{F}^v_{ij} = \langle z^v_j | z^v_i]$
 - ★ They close algebra with the above observables

Symmetry reduction

• Matching constraints: invariance under $U(1)^N$

$$\forall i, \quad \mathcal{M}_i = E_{ii}^{\alpha} - E_{ii}^{\beta} = 0 \longleftrightarrow \langle z_i | z_i \rangle = \langle w_i | w_i \rangle$$

• Symmetry reduction: imposing a larger symmetry

ightarrow invariance under U(N) Borja, Diaz-Polo, Garay, Livine $orall i, j, \qquad \mathcal{E}_{ij} \equiv E^{lpha}_{ij} - E^{eta}_{ji} = 0, \qquad \mathcal{E}_{ii} = \mathcal{M}_i$

- Polyhedra dual to α and β are identical \rightarrow homogeneity
- $\forall i \quad |w_i] = e^{i\phi} |z_i\rangle$. Same phase for all edges \rightarrow isotropy
- Reduced phase space: $\{A, \phi\} = 1$, $A \equiv \frac{1}{2} \sum_{i} \langle z_i | z_i \rangle$

 - $\star~\phi$ matches the angle ξ parameterizing twisted geometries
 - ! Individual areas $A_k = \langle z_k | z_k \rangle$ not imposed to be equal

Quantum representation

- SU(2)-invariant observables: \hat{E}_{ij} , \hat{F}_{ij} , \hat{F}_{ij}^{\dagger}
- Each space of N-valent intertwiners at fixed total area J $\mathcal{R}^J = \bigoplus_{J=\sum_i j_i} \operatorname{Inv}_{SU(2)} \otimes_i V^i$, carries an irrep. of U(N)• $\hat{E}_{ij} : \mathcal{R}^J \to \mathcal{R}^J$ generator U(N)-action
- Whole space of N-valent intertwiners: H_N = ⊕_J R^J
 → Fock structure
 - $\begin{array}{ll} \hat{F}_{ij}: \mathcal{R}^J \to \mathcal{R}^{J-1} & \quad \text{annhilation operator} \\ \hat{F}_{ij}^{\dagger}: \mathcal{R}^J \to \mathcal{R}^{J+1} & \quad \text{creation operator} \end{array}$
- $\bullet\,$ Quantum matching constraints in every edge $\rightarrow\,$ spin networks

${\cal U}(N)$ coherent intertwiners

• Eigenstates of the annihilation operators \hat{F}_{ij}

$$\begin{split} ||\{z_i\}\rangle &= \sum_J \frac{1}{J!(J+1)!} \left(\sum_{ij} [z_i|z_j\rangle \hat{F}_{ij}^{\dagger} \right)^J |0\rangle \\ &= \sum_{\{j_e\}} \frac{1}{\sqrt{\prod_e (2j_e)!}} ||\{j_e, z_e\}\rangle \\ &= \int dgg \triangleright (\mathsf{HO's-coherent state}) \end{split}$$

- U(N)-coherent: $\hat{U}||\{z_i\}\rangle = ||\{(Uz)_i\}\rangle$
- Scalar product and norm explicitly known

$$\langle \{z_i\} || \{z_i\} \rangle = \sum_J \frac{A(z_i)^{2J}}{J!(J+1)!} = \frac{I_1(2A(z_i))}{A(z_i)}, \quad A(z_i) \equiv \frac{1}{2} \sum_i \langle z_i | z_i \rangle$$

Basic transition amplitude

- SU(2)-BF theory
- One-vertex transition amplitude

• Symmetric configuration: $|w_i] = e^{i\phi} |z_i\rangle \longrightarrow ||\{w_i\}\rangle = ||\{e^{i\phi}z_i\}\rangle$

Basic transition amplitude

$$\mathcal{A}_{\sigma} = \langle \{e^{i\phi}z_i\} || \{z_i\} \rangle \langle \{e^{i\phi'}z_f\} || \{z_f\} \rangle$$
$$= \frac{e^{i\phi}I_1(2e^{-i\phi A})}{A} \frac{e^{i\phi'}I_1(2e^{-i\phi' A'})}{A'} = \psi_{in}(A,\phi)\psi_{out}(A',\phi')$$

Symmetries of \mathcal{A}_{σ}

•
$$\hat{C}\psi(A,\phi) = 0$$
, $\hat{C} = A^2\partial_A^2 - 2A\partial_A + 2$

- Differential equation explicitly known
- No need to take the large area (spin) limit

Basic transition amplitude

$$\mathcal{A}_{\sigma} = \langle \{e^{i\phi}z_i\} || \{z_i\} \rangle \langle \{e^{i\phi'}z_f\} || \{z_f\} \rangle$$
$$= \frac{e^{i\phi}I_1(2e^{-i\phi A})}{A} \frac{e^{i\phi'}I_1(2e^{-i\phi' A'})}{A'} = \psi_{in}(A,\phi)\psi_{out}(A',\phi')$$

Symmetries of \mathcal{A}_{σ}

•
$$\hat{C}\psi(A,\phi) = 0$$
, $\hat{C} = A^2\partial_A^2 - 2A\partial_A + 2$

- Differential equation explicitly known
- No need to take the large area (spin) limit

•
$$\{A, \phi\} = 1 \quad \rightarrow \quad C = -A^2 \phi^2 - i2A\phi + 2$$

► Link with FRW (work in progress) (using SL(2, C) SF model Dupuis, Freidel, Livine Speziale)

Outlook

- Using coherent intertwiners based on spinors it is possible to compute exactly basic transition amplitudes
- Within a simple setting, explicit realization of the recursion relations on boundary data (Bonzom, Freidel, Livine)
 - \rightarrow symmetries of the transition amplitude
 - \rightarrow effective classical dynamics
- Goal: to play around with the boundary data and the SF bulk to modelize specific models with physical interest (cosmology)