Singular topologies in Group Field Theory (GFT)

Sylvain Carrozza

Max Planck Institute for Gravitational Physics, Albert Einstein Institute and Laboratoire de Physique Théorique, Université Paris XI

Chora, Naxos, September 2011

Introduction: some general ideas about GFT

A Group Field Theory (GFT) is:

- a quantum field theory on a group manifold.
- a generalization of matrix models.
- dual to simplicial quantum gravity models and spinfoam models.

 \Rightarrow allows to implement a notion of sum over topologies, and a sum over geometries for each topology.

One of the main challenges in LQG and Spinfoam approaches to quantum gravity: continuum limit.

Hope: available QFT tools will help us understand the discrete to continuum transition.

Introduction

In GFT, the topology of spacetime is dynamical.

The sum over topologies includes:

- all topological manifolds (of a given dimension d)
- but also degenerate configurations i.e. with topological singularities : points whose neighborhoods are not homeomorphic to \mathbb{R}^d .

 \Rightarrow 1st structure to be recovered on the way to the continuum limit: topological manifold.

In a sense, GFT provides us with a mechanism for the emergence of the topological structure of spacetime.

2 Topological singularities in the Boulatov model

3 Coloring and bounds

Boulatov model: kinematics

A model for Euclidean 3d quantum gravity: SU(2) or SO(3). [Boulatov '92]

• Scalar field on $SU(2)^3$ (L^2 with respect to the Haar measure), or $\mathfrak{su}(2)^3$, mapped to one another by a group Fourier transform: [Baratin, Oriti '10]

$$\varphi(g_1, g_2, g_3) \longleftrightarrow \widehat{\varphi}(x_1, x_2, x_3) \tag{1}$$

• Closure constraint:

"
$$x_1 + x_2 + x_3 = 0$$
"
 $\varphi(hg_1, hg_2, hg_3) = \varphi(g_1, g_2, g_3)$

Boulatov model

Topological singularities in the Boulatov model Coloring and bounds Conclusion

Boulatov model: dynamics

• Action:

$$\begin{split} S_{kin}[\varphi] &= \int [\mathrm{d}g_i]^3 \,\varphi(g_1, g_2, g_3) \varphi(g_1, g_2, g_3), \\ S_{int}[\varphi] &= \lambda \int [\mathrm{d}g_i]^6 \,\varphi(g_1, g_2, g_3) \varphi(g_3, g_5, g_4) \varphi(g_5, g_2, g_6) \varphi(g_4, g_6, g_1) \end{split}$$

• Partition function: $\mathcal{Z} \equiv \int d\mu_{inv}(\varphi, \overline{\varphi}) e^{-S[\varphi]} = \sum_{\mathcal{G}} \frac{\lambda^{\mathcal{N}\mathcal{G}}}{\operatorname{sym}(\mathcal{G})} \mathcal{A}_{\operatorname{PR}}(\mathcal{G}) \Rightarrow$ Sum over discrete quantum spacetimes (simplicial complexes), with Ponzano-Regge weights.

Singularities

- Q: Which discrete (topological) structures are we summing over?
 - Topological manifolds (spacetime interpretation)
 - Structures with topological singularities (no spacetime interpretation):
 - Point sigularities
 - Extended singularities
- \Rightarrow Two strategies:
 - Find a physical interpretation for the singular topologies
 - Find a way to get rid of these pathological structures
 - Impose additionnal combinatorial conditions, so that (some of) these structures are not generated.
 - Show that their amplitudes are highly suppressed in some regime.

1st step: Colored GFT

• From one to four fields, with color labels ℓ :

$$\phi_{\ell}, \qquad \ell \in \{1, \cdots, 4\} \tag{2}$$

• Restrict the interaction to fields with 4 different colors:

$$S[\phi] = \sum_{\ell} \int |\phi_{\ell}|^2 + \lambda \int \phi_1 \phi_2 \phi_3 \phi_4 + c.c$$
(3)

 \Rightarrow amplitudes unchanged, but restricted class of simplicial complexes summed over:

Theorem [Ferri, Cagliardi '80s; Gurau '10; Caravelli '10]

Simplicial complexes generated by the colored model are triangulations of pseudo-manifolds (i.e. with at most pointlike singularities), and the singularities are located on the vertices of the triangulation.

2nd step: bounding the remaining singular topologies

Principal tool: 1/N expansion [Gurau '10 '11; Gurau, Rivasseau '11]

• Analog of the size N of a matrix \rightarrow ultra spin cut-off Λ on δ -functions:

$$\delta(g) = \sum_{j \in \mathbb{N}/2} (2j+1)\chi_j(g) \to \delta^{\wedge}(g) = \sum_{j \leq \wedge} (2j+1)\chi_j(g)$$
(4)

• Appropriate scaling of λ such that:

$$\mathcal{Z} = [\delta^{\Lambda}(\mathbf{1})]^2 \mathcal{Z}_0(\lambda \overline{\lambda}) + O([\delta^{\Lambda}(\mathbf{1})]^1)$$
(5)

Gurau '11

 \mathcal{Z}_0 contains only triangulations of the sphere, hence manifolds

Optimal bounds

- Genus g of a closed surface: number of "holes". ex: $g_{sphere} = 0$; $g_{donut} = 1$; etc.
- Bubble \equiv boundary of a small neighborhood around a vertex v of the triangulation.

```
v is regular \Leftrightarrow the bubble around v is a sphere \Leftrightarrow g = 0
```

• A measure of the *manifoldness* of the triangulation: sum over the genera of the bubbles.

Amplitude ${\cal A}$ of a triangulation [Oriti, SC '11]

$$\mathcal{A} = O([\delta^{\Lambda}(\mathbf{1})]^{2-2\sum_{b \in \mathcal{B}_{\ell}} g_b}).$$

(6)

N.B. This result is optimal.

Corollary

Dominating graphs are manifolds (i.e. $g_b = 0$, $\forall b \in \mathcal{B}_{\ell}$), and moreover amplitudes of pseudo-manifolds are at most in O(1).

Conclusion and perspectives

- Topological singularities in the Boulatov model tackled in two steps:
 - Combinatorial restricions \Rightarrow only point singularities.
 - Bounds on bubbles \Rightarrow amplitudes of pseudo-manifolds suppressed.
- w.i.p and future work:
 - Detail study of the divergent amplitudes: leading order, and first order corrections.
 - Generalization to 4D BF and gravity models.

Conclusion and perspectives

- Topological singularities in the Boulatov model tackled in two steps:
 - Combinatorial restricions \Rightarrow only point singularities.
 - Bounds on bubbles \Rightarrow amplitudes of pseudo-manifolds suppressed.
- w.i.p and future work:
 - Detail study of the divergent amplitudes: leading order, and first order corrections.
 - Generalization to 4D BF and gravity models.

Thank you for your attention